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Let A(T) be the adjacency matrix of a finite, connected, loopless graph T. Let
Uet1(X) be the

Classification problem (CP). Classify all T such that U..1(A(l)) = 0.
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Let A(T) be the adjacency matrix of a finite, connected, loopless graph T. Let
Uet1(X) be the

Classification problem (CP). Classify all T such that U..1(A(l)) = 0.

Us(X) = (X — 2 cos(F))X(X — 2cos(3r))

13 2 0 01
Az = o——e——0 — > A(A3) =10 0 1 — N Spy = {2cos(%),0,2cos(37)}
1 1 0
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Let A(T) be the adjacency matrix of a finite, connected, loopless graph T. Let
Uet1(X) be the

Classification problem (CP). Classify all T such that U..1(A(l)) = 0.

Us(X) = (X — 2 cos(F))X(X — 2cos(3r))

1 3 5 0o 0 1
A3 = o——e——0 — > A(Az) =10 0 1 — N Spy = {2cos(%),0,2cos(37)}
1 1 0
Us(X) = (X — 2cos(Z))(X — 2cos(2E))X(X — 2 cos(4Z))(X — 2 cos(3X))
2
0 0 0 1
Y 4 s A= [0 0 0 I s, = {2c0s(E), 0%, 2cos(52
4 = ( 4)_ 0 0 0 1 Dy —{ COS(E)v ) COS(?)}
1 1 1 0
3
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Let A(T) be the adjacency matrix of a finite, connected, loopless graph T. Let
Uet1(X) be the

Classification problem (CP). Classify all T such that Ue,1(A(F)) =0

Us(X) = (X — 2 cos(F))X(X — 2cos(3r))

13 2 0 01
A3 = o——e——0 — > A(Az) =10 0 1 — > Spy = {2co0s(%),0, 2cos(37)}
1

1 0
Us(X) = (X — 2cos(Z))(X — 2cos(2E))X(X — 2 cos(4Z))(X — 2 cos(3X)) / for

2
0 0 0 1
1 1
Dy = b s AD) = (8 09 1)4vw>sD4_{2cos( ), 0%, 2 cos(32)}
1 1 1 0

3 v fore=4

Daniel Tubbenhauer A tale of dihedral groups, SL(2), and beyond July 2018 2/14



L. e la o R £ Lioie oo | 1 L. I
bet A(T) Smith ~1969. The graphs solutions to (CP) are precisely - Let
e+1(X) ADE graphs for e + 2 being the Coxeter number.
Cl = 0.
aTypeAm: v fore=m-—1

Type Dpm: o - - / W~ fore=2m—4

-h‘;"

lcos(

1
A= Type Es: [ v~ fore=10 )

Type E7: X v~ fore=16

Dy = cos(

off

)}
\/ for e = 28

Type Esg:

TI—‘
—o
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© Dihedral representation theory
@ A brief primer on Ny-representation theory
@ Dihedral Np-representation theory

e Dihedral 2-representation theory
@ A brief primer on 2-representation theory
@ Dihedral 2-representation theory

© Towards modular representation theory
e SL(2)
@ ...and beyond

Daniel Tubbenhauer A tale of dihedral groups, SL(2), and beyond July 2018

3/14



The main example today: dihedral groups

The dihedral groups are of Coxeter type l2(e + 2):
but I will keep it easy.

Weio = (s, |s2: 2:1,§e+2:...s S=Wwy=_..t8t = Teta),
e+2 e+2
e.g.: ‘/‘/4:<S7 ‘S2: 2:1, SS:W0:55>

Example. These are the symmetry groups of regular e 4+ 2-gons, e.g. for e = 2 the

Coxeter complex is: .

~
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The main example today: dihedral groups

The dihedral groups are of Coxeter type l2(e + 2):

2 2 -
Weio=(s,t|s°=t"=1 Seyo=_..5ts=wp = _..tst = Tet2),
e+2 e+2

eg: Wy=(s,t|s?=t>=1

, tsts = wp = stst)

Example. These are the symmetry groups of regular e 4+ 2-gons, e.g. for e = 2 the

Coxeter complex is:
\1 ;Hnb.“ /
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The main example today: dihedral groups

The dihedral groups are of Coxeter type l2(e + 2):

2 2 -
Weio=(s,t|s°=t"=1 Seyo=_..5ts=wp = _..tst = Tet2),
e+2 e+2

eg: Wy=(s,t|s?=t>=1

, tsts = wp = stst)

Example. These are the symmetry groups of regular e 4+ 2-gons, e.g. for e = 2 the

Coxeter complex is: .
15 AN
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The main example today: dihedral groups

The dihedral groups are of Coxeter type l2(e + 2):

Weio = (s, |s2: 2:1, Seqp =...8ts =Wy =...tst = Tey),
e+2 e+2
e.g.: ‘/‘/4:<S7 ‘S2: 2:1, SS:W0:55>

Example. These are the symmetry groups of regular e 4+ 2-gons, e.g. for e = 2 the
Coxeter complex is:

- tsists
I will explain in a few minutes s Wo Lowest cell.
what cells are. e
For the moment: Never mind!
\ 1 HEEN S /
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The main example today: dihedral groups

The dihedral groups are of Coxeter type l2(e + 2):

Weio = (s, |s2: 2:1, Seqp =...8ts =Wy =...tst = Tey),
e+2 e+2
e.g.: ‘/‘/4:<S7 ‘S2: 2:1, SS:W0:55>

Example. These are the symmetry groups of regular e 4+ 2-gons, e.g. for e = 2 the
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The main example today: dihedral groups

The dihedral groups are of Coxeter type l2(e + 2):

Weio = (s, |s2: 2:1, Seqp =...8ts =Wy =...tst = Tey),
e+2 e+2
e.g.: ‘/‘/4:<S7 ‘S2: 2:1, SS:W0:55>

Example. These are the symmetry groups of regular e 4+ 2-gons, e.g. for e = 2 the
Coxeter complex is:

- ts ists

I will explain in a few minutes s i Wo Lowest cell.
what cells are. o2, N
For the moment: Never mind! \ 1 / nghest cell.
S ts
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Dihedral representation g T vy P W

There is also a Kazhdan—Lusztig (KL) bases. Explicit formulas do not matter today.

One-dimensional modules. My_» ,As, A € C, 0, — A, 0. — A..

e=0mod?2

M.,z € VE—{0}

Ve = roots(Uet1(X)) ‘ and VZ the Z/2Z-orbits under z s —2z.
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Dihedral representation theory on one slide

One-dimension Proposition (Lusztig?).

The list of one- and two-dimensional W >-modules
is a complete, irredundant list of simple modules.

|
Mo,0, M2,0, Mo2, M2 1 Moo, M2
|

|| learned this construction from Mackaay in 2017. |
Two-dimensional modules. M,z € C,0, — (33),6. — (29).

e=0mod?2

M.,z € VE—{0}

Ve = roots(Uet1(X)) ‘ and VZ the Z/2Z-orbits under z s —2z.
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Dihedral representation theory on one slide

One-dimensional modules. My_» ,As, A € C, 0, — A, 0. — A..

|
e=0mod 2 ! e#Z 0mod?2
,,,,,,,,,,,,,,,,,,,,,,,,,, IR
|
|
Mo,0, M2,0, Mo2, M2 1 Moo, M2
|
Example.
1 p
Moo is the sign representation and M > is the trivial representation.
In case e is odd, Uet1(X) has a constant term, so Mo, Mg are not representations
Mz, Zz&€ Vo —{Uy T Mz, Ze Ve
|

Ve = roots(Uet1(X)) ‘ and VZ the Z/2Z-orbits under z s —2z.

July 2018
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Dihedral representation theory on one slide
One-dimensional modules. My_» ,As, A € C, 0, — A, 0. — A..

e=0mod?2

Mo,0, M2,g, Mo2, M2 >
Example.

M, for z being a root of the Chebyshev polynomial is a
representation because the braid relation in terms of BS generators
involves the coefficients of the Chebyshev polynomial.

Two-dim

M,,z € VE—{0} | M,,zeVZ

Ve = roots(Uet1(X)) ‘ and VZ the Z/2Z-orbits under z s —2z.

July 2018
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.
Dlh( Example.
One-d These representations are indexed by Z/2Z-orbits of the Chebyshev roots:
3t The case e =6 The roots are 2cos(k7/8) |
Mocasrn/s)| = Macos(z/s
2L ]
Mocas(sn8)/2 Macas(3n/8)
1l )
Two-(
0
al )
Macanors){2 Macas(2r/s
2k Mg cufins) 2 Ma o 2 Mp 2 1
al )
-2 -1 0 1 2
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Np-algebras and their representations

An algebra P with a basis BY is called a Np-algebra if

xy € NoBY  (x,y € BF).

A P-module M with a basis BM is called an Ng-module if
xm € NgBM  (x € BY,m € BM).

These are Ny-equivalent if there is a Np-valued change of basis matrix.

Example. Ny-algebras and Ny-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ny-equivalence comes from 2-equivalence upstairs.
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Example.

Group algebras of finite groups with basis given by group elements are Np-algebras.

The regular representation is an Ng-module.

xy € NoBY  (x,y € BF).

A P-module M with a basis BM is called an Ng-module if
xm € NgBM  (x € BY,m € BM).

These are Ny-equivalent if there is a Np-valued change of basis matrix.

Example. Ny-algebras and Ny-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ny-equivalence comes from 2-equivalence upstairs.
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Example.

Group algebras of finite groups with basis given by group elements are Np-algebras.

The regular representation is an Ng-module.

vv e NaRP (v v e RP)
Example.

A P. The regular representation of group algebras decomposes over C into simples.

However, this decomposition is almost never an Np-equivalence.
A% AN 7

These are Ny-equivalent if there is a Np-valued change of basis matrix.

Example. Ny-algebras and Ny-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ny-equivalence comes from 2-equivalence upstairs.
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Example.

Group algebras of finite groups with basis given by group elements are Np-algebras.

The regular representation is an Ng-module.

vv e NaRP (v v e RP)
Example.

A P. The regular representation of group algebras decomposes over C into simples.

However, this decomposition is almost never an Np-equivalence.
-

AY 7
Theg Example.
Hecke algebras of (finite) Coxeter groups with their KL basis are Nog-algebras.
Exai on of
2-ca stairs.

For the symmetric group a happens: all simples are No-modules.
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Cells of Nj-algebras and Ny-modules

Kazhdan—Lusztig ~1979. x <, y if x appears in zy with non-zero coefficient for
somez € BP. x~ yifx< yandy < x.
~ partitions P into cells L. Similarly for right R, two-sided cells J or Nyg-modules.

An Np-module M is transitive if all basis elements belong to the same ~
equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive Ny-module has a unique apex.

Example. Transitive Ng-modules arise as decategorifications of simple 2-modules.
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Cells of N

Kazhdan—Lug
some z € BP.
~| partitions

An Ng-modulg
equivalence cl

Example. Tra

Philosophy.

Imagine a graph whose vertices are the x's or the m's.
vi — v if v; appears in zvs.

Xl/X2\X4 m/mQ\m4
L 1

cells = connected components
transitive = one connected component

“The basic building blocks of No-representation theory”.

coefficient for

or Ng-modules.

me ~
ing it.

ple 2-modules.
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Example.

Cell

Group algebras with the group element basis have only one cell, G itself.

Kazh ent for
come Tran5|t|ve No- modules are C[G/H] for H being a subgroup. The apex is G.

~ partitions P |nto ceIIs L. Slmllarly for right R, two-sided cells J or Ny-modules.

An Np-module M is transitive if all basis elements belong to the same ~
equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive Ny-module has a unique apex.

Example. Transitive Ng-modules arise as decategorifications of simple 2-modules.
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Example.

Cell

Group algebras with the group element basis have only one cell, G itself.

Kazh ent for
come Tran5|t|ve No- modules are C[G/H] for H being a subgroup. The apex is G.

~L partit Example (Kazhdan—Lusztng ~1979). -modules.

An No-m Hecke algebras for the symmetric group with KL basis
0 have coming from the Robinson—Schensted correspondence. -
equivalen
The transitive No-modules are the simples
with apex given by elements for the same shape of Young tableaux.
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Cell

Example.

Group algebras with the group element basis have only one cell, G itself.

Kazh ent for
come Tran5|t|ve No- modules are C[G/H] for H being a subgroup. The apex is G.
~L partit Example (Kazhdan—Lusztlg ~1979). -modules.
An No-m Hecke algebras for the symmetric group with KL basis
0 have coming from the Robinson—Schensted correspondence. -
equivalen
The transitive No-modules are the simples
with apex given by elements for the same shape of Young tableaux.
Example (Lusztig <2003).
Exar Hules.

Hecke algebras for the dihedral group with KL basis have the following cells:

/ S 2 ts T sts :tstsﬁststs\\
17 ~Wo

Mt &5 st SStst <;ststitstst/

We will see the transitive Ng-modules in a second.
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Ng-modules via graphs

Construct a W,-module M associated to a bipartite graph I':

M = C(1,2,3,4,5)

‘_
1 3 2 4 5
20100 000O0O
02111 000O0O0
0s ~» Mg = 00000 |, 0. ~ M, = 11200
0000O 01020
00000O 01002
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Ng-modules via graphs

Construct a W,-module M associated to a bipartite graph I':
M = C(1,2,3,4,5)

seion (L
O —— ——
1 3 2 4 5
J
2/0100 000600
0j2111 00000
Os ~ M, = 0ojoooo0 |, 0. ~ M, = 11200
0/0000O 01020
0/j00O00O0 01002
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Ng-modules via graphs

Construct a W,-module M associated to a bipartite graph I':

Daniel Tubbenhauer

O O O ON

al

M = C(1,2,3,4,5)

ction

N —
13

0l100

21111

0000 [, 6 ~M

0000

0000
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action

O —— ——
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Construct a W,-module M associated to a bipartite graph I':
M = C(1,2,3,4,5)

0 —
1 3 2 4 5
20100 000000O0
02111 000000O0
0s ~» Mg = 00000O0 |, 0. ~ M, = 11200
0000O0 001020
0000O0 01002

Daniel Tubbenhauer A tale of dihedral groups, SL(2), and beyond July 2018 8 /14



Ng-modules via graphs
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Ng-modules via graphs

Construct a W,-module M associated to a bipartite graph I':
M = C(1,2,3,4,5)
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Ng-modules via graphs

Constru

|It is not hard to see that the Chebyshev—braid-like relation can not hold otherwise.b O 0 O
02111 000O0O

0s ~» Mg = 00000 |, 0. ~ M, = 11200
0000O 01020

00000O 0 1/002

The adjacency matrix A(T) of T is

i

100
111
000
000
000

Al =

oo OO
el =X=]

These are W p-modules for some e
only if A(T) is killed by the Chebyshev polynomial Ue1(X).

Morally speaking: These are constructed as the simples
but with integral matrices having the Chebyshev-roots as eigenvalues.
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Ng-modules via graphs

Construct a W,-module M associated to a bipartite graph I':
M = C(1,2,3,4,5)

Hence, by Smith’s (CP) and Lusztig: We get a representation of We 2
if I is a ADE Dynkin diagram for e + 2 being the Coxeter number.

|That these are No-modules follows from categorification. |
1 3 2 4 5

['Smaller solutions" are never No-modules. |

20100 000O0O
02111 000O0O0
0s ~ Mg = 00000 |, 0. ~ M, = 11200
0000O 01020
00000O 01002
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Ng-modules via graphs

Construct a W,-module M associated to a bipartite graph I':

M = C(1,2,3,4,5)

Classification.
, irredundant of transitive No-modules of We,o:
Apex ‘ @ cell ‘ G&-@®) cell ‘ ™ cell
No-reps. ‘ Moo ‘ MADE tbicolering for € +2 = Cox. num. ‘ Moy,

| learned this from/with Kildetoft—-Mackaay—Mazorchuk—Zimmermann ~2016. |

0. ~~ M, =

O O O ON
O O O N O
O O O V=
O O O+ O

O O O+~ O

00000
00000
. f.~M. =] 11200
01020
01002
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“Lifting” Ny-representation theory

An additive, K-linear, idempotent complete, Krull-Schmidt 2-category % is called
finitary if some finiteness conditions hold.

A simple transitive 2-representation (2-simple) of %6 is an additive, K-linear

2-functor
M E — (= 2-cat of finitary cats),

such that there are no non-zero proper 6-stable ideals.
There is also the notion of 2-equivalence.

Example. Np-algebras and Np-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ng-equivalence comes from 2-equivalence upstairs.

Daniel Tubbenhauer A tale of dihedral groups, SL(2), and beyond July 2018 9 /14



“LI

An g
finit

Mazorchuk—Miemietz ~2014.

2-Simples «~ simples (e.g. 2-Jordan—Hdlder theorem),

but their decategorifications are transitive No-modules and usually not simple.

A simple transitive 2-representation (2-simple) of %6 is an additive, K-linear
2-functor

M E — (= 2-cat of finitary cats),

such that there are no non-zero proper 6-stable ideals.

There is also the notion of 2-equivalence.

alled

Example. Ny-algebras and Ny-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ng-equivalence comes from 2-equivalence upstairs.

Daniel Tubbenhauer
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“L| Mazorchuk—Miemietz ~2014.

An 4 2-Simples «~ simples (e.g. 2-Jordan—Hdlder theorem), alled
finit

but their decategorifications are transitive No-modules and usually not simple.

A simple transitive 2-representation (2-simple) of % is an additive, K-linear
2_func Mazorchuk—Miemietz ~2011.

ht Define cell theory similarly as for Np-algebras and Ny-modules.
suc

There |2-simple = transitive, and transitive 2-modules have a 2-simple quotient.

Example. Ny-algebras and Ny-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ng-equivalence comes from 2-equivalence upstairs.
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“L| Mazorchuk—Miemietz ~2014.

An 4 2-Simples «~ simples (e.g. 2-Jordan—Hdlder theorem), alled
finit

but their decategorifications are transitive No-modules and usually not simple.

A simple transitive 2-representation (2-simple) of % is an additive, K-linear
2_func Mazorchuk—Miemietz ~2011.

ht Define cell theory similarly as for Np-algebras and Ny-modules.
suc

There |2-simple = transitive, and transitive 2-modules have a 2-simple quotient.

Example. N Chan—Mazorchuk ~2016. orification of

2-categories ence upstairs.
Every 2-simple has an associated apex not killing it.

Thus, we can again study them separately for different cells.
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“Liftine” N._ronrncontatinn thenrv
Example.

An ad called

. . : £
finitan B-Mod is a prototypical object of .of".

. |A 2-module for us is very often on the category of quiver representations.
A SlmplC rdarisItive Z=TCpPTeStCTTLdationt \L‘DIIIIPIC} OT 6 15 dIT dUUrtive, IR=TITTEd

2-functor

M E — (= 2-cat of finitary cats),
such that there are no non-zero proper 6-stable ideals.
There is also the notion of 2-equivalence.

Example. Ny-algebras and Ny-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ng-equivalence comes from 2-equivalence upstairs.
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“Liftine” N._ronrncontatinn thenrv
Example.

An ad called

. q . £
finitan B-Mod is a prototypical object of .of".

. |A 2-module for us is very often on the category of quiver representations.
A SlmplC rdarisItive Z=TCpPTeStCTTLdationt \L‘DIIIIPIC} OT 6 15 dIT dUUrtive, IR=TITTEd

2-func

Example (Mazorchuk—Miemietz—Zhang & ...).

such tHThe 2-category of projective endofunctors of B-Mod is 2-finitary.
There |

The non-trivial 2-simples are given by tensoring with Be ® €B.

Example. Ny-algebras and Ny-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ng-equivalence comes from 2-equivalence upstairs.
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“Liftine” N._ronrncontatinn thenrv
Example.

An ad called

. q . £
finitan B-Mod is a prototypical object of .of".

. |A 2-module for us is very often on the category of quiver representations.
A SlmplC rdarisItive Z=TCpPTeStCTTLdationt \L‘DIIIIPIC} OT 6 15 dIT dUUrtive, IR=TITTEd

2-func

Example (Mazorchuk—Miemietz—Zhang & ...).

such tHThe 2-category of projective endofunctors of B-Mod is 2-finitary.
There |

The non-trivial 2-simples are given by tensoring with Be ® €B.

Examnle N..aloehrac and Na-madulec arice naturally ac the decatecarification nf

zExampIe (Mazorchuk—Miemietz & Chuang—Rouquier & Khovanov-Lauda & ...). s

2-Kac—Moody algebras are finitary 2-categories.

Their 2-simples are categorifications of the simples.

Daniel Tubbenhauer A tale of dihedral groups, SL(2), and beyond July 2018 9 /14



“Liftine” Nn-repnresentation theorv

Example (Mazorchuk—Miemietz & Soergel & Khovanov—Mazorchuk—Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.

Symmetric group: the 2-simples are categorifications of the simples.

M E — (= 2-cat of finitary cats),

such that there are no non-zero proper 6-stable ideals.
There is also the notion of 2-equivalence.

Example. Np-algebras and Np-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ng-equivalence comes from 2-equivalence upstairs.
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“Liftine” Nn-repnresentation theorv

Example (Mazorchuk—Miemietz & Soergel & Khovanov—Mazorchuk—Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.

Symmetric group: the 2-simples are categorifications of the simples.

Z-TOTTCTOT

Example (Kildetoft—Mackaay—Mazorchuk—Miemietz—Zhang & ...).

—

Quotients of Soergel bimodules , e.g. small quotients, are finitary 2-categories.

Except for the small quotients+e¢ the classification is widely open.
Example. Ny-algebras and Np-modules arise naturally as the decategorification of

2-categories and 2-modules, and Ng-equivalence comes from 2-equivalence upstairs.
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“Liftine” Nn-repnresentation theorv

Example (Mazorchuk—Miemietz & Soergel & Khovanov—Mazorchuk—Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.

Symmetric group: the 2-simples are categorifications of the simples.

Z-TOTTCTOT

Example (Kildetoft—Mackaay—Mazorchuk—Miemietz—Zhang & ...).

—

Quotients of Soergel bimodules , e.g. small quotients, are finitary 2-categories.

Except for the small quotients+e¢ the classification is widely open.
Example. Np-algebras and No-modules arise naturally as the decategorification of
Example (Mackaay—Mazorchuk—Miemietz & Kirillov—Ostrik & Elias & ...).

Singular Soergel bimodules and various 2-subcategories are finitary 2-categories.

For a quotient of maximal singular type A1 non-trivial 2-simples are ADE classified.

Excuse me?
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“Lifting” Ny-representation theory

An additive, K-linear, idempotent complete, Krull-Schmidt 2-category % is called
finitary if some finiteness conditions hold.

Question (“2-representation theory”).
A simple transitiy e, K-linear
2-functor Classify all 2-simples of a fixed finitary 2-category.

U . L il (s} + ~f finit +c)

This is the categorification of
such that there

There is also tH ‘Classify all simples a fixed finite-dimensional algebra’,

but much harder, e.g. it is unknown whether

Example. Np-g . . tegorification of
p P07 there are always only finitely many 2-simples. g .
2-Categ0r|es ANG—Zz=TmouuTcS, amu INJ=CYuTvarcrice CUTITTS TTOTTT Z=Cqu valence upStaII’S.
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A few words about the ‘How to’ (for dihedral
groups)

» Decategorification. What is the corresponding question about Nyp-matrices?

> ’Chebyshev—Smith—Lusztig ~> ADE-type-answer ‘

» Construction. Does every candidate solution downstairs actually lifts?

> “Brute force” (Khovanov—Seidel-Andersen—)Mackaay ~~ zig-zag algebras.

> “Smart” ’ Mackaay—Mazorchuk—Miemietz ~» “Cartan approach” |.

» Redundancy. Are the constructed 2-representations equivalent?
> %rg%p@rgrl.
» Completeness. Are we missing 2-representations?

> This is where a grading assumption comes in.

Daniel Tubbenhauer A tale of dihedral groups, SL(2), and beyond July 2018 10 / 14



2-representations of dihedral Soergel bimodules

Theorem (Soergel ~1992 & Williamson ~2010 & Elias ~2013 & ...). There
are dihedral (singular) Soergel bimodules (s)#.2 categorify the dihedral
algebra(oid) with indecomposables categorifying the KL basis.

Classification of dihedral 2-modules
(Kildetoft—Mackaay—Mazorchuk—Miemietz—Zimmermann ~ 2016).

full-grown 2-action

We+2

decat.l J{decat.

Wep——— M

Np-action

Complete, irredundant list of simple 2-representations of #,.2:

Apex ‘ @ cell ‘ e - @© cel ‘ ™ cell

2-reps. ‘ Moo ‘ AMADE+bicolering for e +2 = Cox. num. ‘ Mo

Daniel Tubbenhauer A tale of dihedral groups, SL(2), and beyond July 2018 11 /14



From dihedral groups to SL(2)

Observation. For e — oo the dihedral group W,,» becomes the affine Weyl group
W, of type A1, and the left cells are now

: : e - : :

Fact. (Andersen—Mackaay ~2014). The 2-module for the trivial cell Ly, and
the 2-module for the type A Dynkin diagrams ‘survive' the limit e — oo and are
also 2-modules for affine type A; Soergel bimodules.

Theorem. (Riche-Williamson ~2015 & Elias—Losev ~2017 &
Achar—Makisumi—Riche-Williamson ~2017).
Combining these 2-modules gives the category of tilting modules for SL(2) in prime

p > 2 characteristic, with 6, and 6. acting via translation functors.

Hence, the quiver underlying this 2-module is the quiver underlying tilting modules.

Daniel Tubbenhauer A tale of dihedral groups, SL(2), and beyond July 2018 12 /14



From dihedral groups to SL.(2)

Quiver. Zig-zag algebras living on the SL(2) weight lattice
or on the trivial and s left cells of Wi
Obs¢ group
1% T, T, U™
oo P Y : ¥* : * w.(—Fv< ><_F'< >
B A A
Leaving a 1-simplex is zero.
Any oriented path of length two between non-adjacent vertices is zero.
Fact] nd
the 1 The relations of the cohomology ring of the variety of full flags in C>. are
a|50‘ QxQy = 0y, ax +ay =0, axay = 0.
Zig-zag.
Theg iljli = ax — ay.
Achg
Com Boundary condition. prime
p > The end-space of the vertex for the trivial cell is trivial.
This is the quiver for tilting modules of the quantum group
Hen at a root of unity g =1 for k > 2. dules.

The (yet to be calculated) quiver in characteristic p can be obtained similarly.

Daniel Tubbenhauer A tale of dihedral groups, SL(2), and beyond July 2018
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Higher ranks

Playing the same game for, say, SL(3) almost works perfectly fine. One gets:
» Trihedral Hecke algebras and trihedral Soergel bimodules.
» These are controlled by higher rank Chebyshev polynomials.
» These relate to semisimple quantum sl3-modules.
>

These describe tilting modules for SL(3) at roots of unity or in prime
characteristic (for p > 3). One gets a trihedral zig-zag (in the root of
unity case; the modular case being trickier).

» Similarly for SL(N) (for p > N).

| won't say what ‘almost’ means precisely. Roughly, the ‘percentage’ one can

describe using orthogonal polynomials is ﬁ But this ﬁ—part works out nicely.
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Lee Al TR e
o100 | ADE graphs for e + 2
a o
e . o remm-|
R et [
e o rem1s
Dihedral representation
One-dimensions madules. My, .3 € C.6, = 1.9 .
czomedz £0medz
Mo, Mg, Moz, Moz Mo
Tuw-dimensional modules. My, ¢ C.0, - ()0, (35)
MereVio | Marev
TR v V' the 2

2-representations of dihedral Soergel bimodules

eorem (Soergel 1 fiamson ~2010 & Elos ~2013 & ..). Trere
e s (inglr) Soergl imodules (8. categoly the cihedr
Sasbiaoid) wich ndecomposables categoriing e KL s

Clasiication of tiedrol 2-modules
(Kildtoft-Mackaay- Mazorchuk-Mienietz-Zimenermann - 2016).

<]

Wes M

Complete, inedundant st of - simple 2 eprsentations o Wi 2

Apex

o) 60w | o

T | s | Ao e 2= G |

There is still much to do...

Daniel Tubbenhauer

Ul = 1, U(8) =X, 0o f8) = Ueyalh) + Ulx)

Kronecker ~1857. Any complete et of conugae lgeesc teges i |- 2,2{ s
i o

Figre: Therots fthe Chyhe gy

a

Ny-modules via graphs
Construct 3 W y-module M assoiate to 3 iprtitegrph

N-cn234s)

The main example today: dihedral groups
The el groups are of Coxctr ype
Wea=fe,t] =2 =1,

e +2)

g W= e

Example. Thes e thesymmetrygroups of el &+ 2-ons, e, for £=2 the
Coster conplex

o
D, rniian € o it oo o Wi
oo }(N} 00w } ©w

e e |

20100 00000
02111 00000

Ben-| 00000 bem—| 11200
00000 01020
00000 01002

ihedral groups to SL(2)
Quter T g g o B T

ik,
—— e
Loaving a1 simplex i e
A st gt of et o et - slscent v s 2,

Wt

TF e e s Tor T e o e o g

Her) oot of iy 1ot R 5 2 e
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A tale of dihedral groups, SL(2), and beyond
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)= 1, U =5, EUps8) = U+ UE) The main example today: dihedral groups

Let ATy e The il gogs v of Cotr e e+ 2
W o ST

i) A5 gk o < 2 o mamber mecker ~1857. Any compet st of conogate sgsbaic negers in| 2,2 s Wa= (ot =2
o [ i o

weH e o=t

Ce=en)
et .
g The ot o the hbyie oo
oo et . 5 ket P - are— e e 115, P
Dihedral representation [ e ] No-modules via graphs T e A ey
One-dimensional modules. My, A, A € .6, A8 — ) Construct a W.-module M associated to a bipartite graph I L _ i e
e=0mod2 e#0mod2 M=C(1.2345) - - — —
Mag. Mzp Moz, Moz Mg ot H The ope 0 iy R
D, rniian € o it oo o Wi
Towo-dimensionsl modubes. M.z € C.0. -+ (1§).0. -+ (89) oo | @ | 00w l@w ‘( ( ( (
; . e | s | W o ¢+ 2= oo |_ Mg ~ { { (
v v [ o o Km0 |
i T —
20100 60000 3 : .
U] o V: he 7 02111 00000 i [ [
oem=| 00000 | aen-| 11200
00000 cio20
o
2-representations of dihedral Soergel bimodules From dihedral grouy 2 . .
. . S T e T
- = hamson 2010 & Eis 2013 & .). Trere oot i e 5 I
TS ot o e 0 e I - b4
b wih indecomporsbes ctegoniing e KL b wl B e VA
o b S

Loaving a1 simplex i e
A st gt of et o et - slscent v s 2,

Clasiication of dibedrol 2.mox
-Mazor

s
(Kildtoft-Mac schuk-Mismiatz-Zimmermann - 2016).

: P ———— Sk
" [ F inamiboiar- ool At
- o] P (s) Loving a 2-simple s zoo. An et path o gt v betwen
- ron-sdens vrtes 5 6
Weia e e bt
i
Complte,istundant 1t of 1 il 2speesntations of 4.5 Con Goundry contion
» The e sac of vt il ol st
o | @ ] ©-0 | o . T e e s e : @ Zigarg, A m sy
Zaeps | Mog | Mavesueomim for e+ 2= Conmum. | i, [rne (€) Zig2ig equals zag times loop. k(3|1 = Kl = —oxls
(6) Boundar. Somsexs concitions kg the buncary

Thanks for your attention!
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Up(X) =1, Ui(X) =X, XUep1(X) = Uesa(X) + Ue(X)

Kronecker ~1857. Any complete set of conjugate algebraic integers in | — 2,2[ is
a subset of roots(Ue+1(X)) for some e.

‘The roots of the Chebyshev polynomials
‘The roots of the Chebyshev polynomials ‘The case of « being even
The case of ¢ being odd

Figure: The roots of the Chebyshev polynomials



The KL basis elements for S3 = W3 with sts = wy = tst are:
0.=t+1, BO.=ts+s+t+1,

0p=1, 0.,=s+1,
Owy, =wo+ts+st+s+t+1.

O =st+s+t+1,

st wo

1 1

Figure: The character table of S3 & W3.




The KL basis elements for S3 = W3 with sts = wy = tst are:

=1, 0. =s+1, O.=t+1, 6O .=ts+s+t+1,
O =st+s+t+1, Oyy=wy+ts+st+s+t+1

61 0 0. 0:s [

Figure: The character table of S3 = W3.



The KL basis elements for S3 = W3 with sts = wy = tst are:

=1, 0. =s+1, O.=t+1, 6O .=ts+s+t+1,
O =st+s+t+1, Oyy=wy+ts+st+s+t+1

Remark.
wo

This non-negativity of the KL basis

is true for all symmetric groups, L

but not for most other groups (as we will see). i

The case e = 1 is the last case h
where the Chebyshev polynomial has only integer roots.

1 0 0 0 0 0

oo 4 H

Figure: The character table of S3 = W3.



The KL basis elements for S3 = W3 with sts = wy = tst are:

=1, 0. =s+1, O.=t+1, 6O .=ts+s+t+1,

The first ever published character table (~1896) by Frobenius.
Note the root of unity p.

I llory)

Frore:

Uber Gruppencharaktere. 27

| Mmey Factor f abgesehen) einen relativen Charakter von §, und um-
Bekehrt liisst sich jeder relative Charakter von §, %, +** %, auf eine

er melirere Arten durch Hinzufiigung passender Werthe o -+ %oy —

A einem Charakter von ' ergiinz

Ich will nun die Theorie der Gruppencharaktere an einigen Bei-
spi(’,lon erliutern. Die geraden Permutationen von 4 Symbolen bilden
“e Gruppe § der Ordnung /=12, Thre Elemente zerfallen in 4 Classen,
1€ Elemente der Ordnung 2 bilden eine zweiscitige Cl: (1), die der
ell']«‘_mmg 3 zwei inverse Classen (2) und (3) = (2. Sei ¢ eine primitive

Yische Wurzel der Einheit.

Tetraeder. & =12.
X0 XY XD x| e
Xo 1 3 1 1 1

x| 1 =1 1 1 3
X2 | 1 Ojsssil piaite ot | g
X | GO i Pt P2 4| 124




(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.

Elements of S, LN (P, Q) standard Young tableaux of the same shape. Left, right
and two-sided cells of S,:

> s~ tif and only if Q(s) = Q(t)
» s ~g tif and only if P(s) = P(t)
» s~ tifand only if P(s) and P(t) have the same shape.

Example (n = 3).

S e , S e B

1 s [i1213], A2 W0<’W‘>,
33

s
’ SL e L3



(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.

Elements of S, LN (P, Q) standard Young tableaux of the same shape. Left, right
and two-sided cells of S,:

> s~ tif and only if Q(s) = Q(t)
» s ~g tif and only if P(s) = P(t)
» s~ tifand only if P(s) and P(t) have the same shape.

Example (n = 3).
s s
s ) [2] S 2] o
1
1 v O[3, [11273) Wo & [z
3

1]2 1]2
B [E SL e o[



(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.

Elements of S, LN (P, Q) standard Young tableaux of the same shape. Left, right
and two-sided cells of S,:

> s~ tif and only if Q(s) = Q(t)
» s ~g tif and only if P(s) = P(t)
» s~ tifand only if P(s) and P(t) have the same shape.

Example (n = 3). s
s s 12
s =r s G2 -
1
1 e [112]3], [2[3] Wp e~ ,
3

[if2]
O EHE St e i



(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.

Elements of S, LN (P, Q) standard Young tableaux of the same shape. Left, right
and two-sided cells of S,:

> s~ tif and only if Q(s) = Q(¢).
» s ~rg tif and only if P(s) = P(t).
» s~ tifand only if P(s) and P(t) have the same shape.

Example (n = 3).

s e Sev o0
1 ens (1011 Wop e~ |,
o 15 H st e o0



(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.
Elements of S, LN (P, Q) standard Young tableaux of the same shape. Left, right

and two Apexes:
» S~
> s ~ 91 05 er, Gts est 0w0
» s~
EEN 1 2 2 4 4 6
Exampl

The Np-representations are the simples.




In case you are wondering why this is supposed to be true, here is the main
observation of Smith ~1969:

Ues1(X,Y) = £det(XId — A(Aet1))

Chebyshev poly. = char. poly. of the type A.11 graph ‘

and

XT o 1(X) = +det(XId — A(D,)) £ (—1)" ™ *

first kind Chebyshev poly. ‘=" char. poly. of the type D, graph (n = <5*).




The type A family
e=3

—A—F—k

~
~

The type D family

e=10

.

The type E exceptions

e=16

f
i

e =28



The type A family
e=3

e=0 e=1 e = e=4

v —h—y —_——— —
—k —h—¥—k

* Fe——k Fe—F—h—F—k

The type D family

e=28 e=10

]

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the symmetric group case.

M N M N

The type E exceptions

e=16 e =128

N AP AR




Theorem (Mackaay—Mazorchuk—Miemietz ~2016). Let € be a fiat
2-category. For i € €6, consider the endomorphism 2-category .&/ of i in € (in
particular, o/ (i,1) = 4(i,1)). Then there is a natural bijection between the
equivalence classes of simple 2-representations of ./ and the equivalence classes of
simple 2-representations of %6 having a non-trivial value at i.

Theorem (Mackaay—Mazorchuk—Miemietz ~2016). Let 6 be a fiat

2-category. For any simple 2-representation .4 of 6, there exists a simple algebra
1-morphism A in 6 (the projective abelianization of 6) such that ./ is equivalent
(as a 2-representation of €) to the subcategory of projective objects of .# od(A).



Aa I 1 W ANt o) L

algebra 1-morphisms in the semisimple 2-category m#.., (the maximally singular ones)

“Cartan approach”.
This means for us that it suffices to find

which we can then ‘induce up’ to #ei2.

Theorem (Mackag

So it remains to study 2-modules of m#e».
But how to do that?

5 be a fiat

2-category. For any simple 2-representation ./ of 6, there exists a simple algebra
1-morphism A in 6 (the projective abelianization of %) such that ./ is equivalent
(as a 2-representation of €) to the subcategory of projective objects of .# od(A).
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“Cartan approach”.

This means for us that it suffices to find
algebra 1-morphisms in the semisimple 2-category m#.., (the maximally singular ones)
which we can then ‘induce up’ to #ei2.

So it remains to study 2-modules of m#e».

Theorem (Mackag But how to do that? § be a fiat
2-category. For any §Idea: Chebyshev knows everything! }Xists a simple algebra
1-morphism A in € that ./ is equivalent

(as a 2-representatiorSo where have we seen the magic formulajobjects of ./ od(A).
X Ues1(X) = Ues2(X) + Ue(X)
before?
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“Cartan approach”.

This means for us that it suffices to find
algebra 1-morphisms in the semisimple 2-category m#.., (the maximally singular ones)
which we can then ‘induce up’ to #ei2.

So it remains to study 2-modules of m#e».

Theorem (Mackag But how to do that? § be a fiat
2-category. For any §Idea: Chebyshev knows everything! }Xists a simple algebra
1-morphism A in € that ./ is equivalent

as a 2-representatior|So where have we seen the magic formulajobjects of .Z od(A).
3

XUet1(X) = Uet2(X) + Ue(X)

before?
Here:

[2]q - [e +1]q = [e + 2]q + [e]q
Ll & Le+1 = Le+2 &® Le

L. = e'® symmetric power of the vector representation of (quantum) sls.




Theorem (Mackaay—Mazorchuk—Miemietz ~2016). Let € be a fiat
2-category. For i € €6, consider the endomorphism 2-category .&/ of i in € (in
particular, o/ (i,1) = 4(i,1)). Then there is a natural bijection between the
equivalence classes of simple 2-representations of .o/ and the equivalence classes of

sir

Ti
2.
1-
(a

Quantum Satake (Elias ~2013).

Let O, be the semisimplyfied quotient of the category of
(quantum) sl-modules for 7 being a 2(e + 2)*™ primitive, complex root of unity.

There are two degree-zero equivalences, depending on a choice of a starting color,

Se: Qe = mWeio
and
Se: Qe — mWe+2.

bra
ent

A).

The point: it suffices to find algebra objects in Q.. |




Theorem (Mackaay—Mazorchuk—Miemietz ~2016). Let € be a fiat
2-category. For i € €6, consider the endomorphism 2-category .&/ of i in € (in
particular, o/ (i,1) = 4(i,1)). Then there is a natural bijection between the
equivalence classes of simple 2-representations of ./ and the equivalence classes of
simple 2-representa Theorem (Kirillov—Ostrik ~2003).

Theorem (Macka The algebra objects in Q. are ADE classified. } be a fiat

2-category. For any simple 2-representation ./ of 6, there exists a simple algebra
1-morphism A in 6 (the projective abelianization of %) such that ./ is equivalent
(as a 2-representation of €) to the subcategory of projective objects of .# od(A).



Theorem (N
2-category. H
particular, .o
equivalence @
simple 2-repr

Theorem (N
2-category. H
1-morphism 4

So who colored my Dynkin diagram?
Satake did.
And why does the quantum Satake correspondence exists?

Because Chebyshev encodes both change of basis matrices:

{LF"} - {Le}
{BS basis} «~ {KL basis}.

fiat

iin € (in
ween the

nce classes of

fiat
imple algebra
is equivalent

(as a 2-representation of €) to the subcategory of projective objects of .# od(A).

Aside:

One can check that the objects of Kirillov—Ostrik are in fact algebra objects

by using the symmetric web calculus & la Rose ~2015.

One can show that these have to be all by looking at

the decategorified statement: Np-representations of the Verlinde algebra.

This was done by Etingof-Khovanov ~1995.




Leaving a 2-simplex is zero. Any oriented path of length two between
non-adjacent vertices is zero.

The relations of the cohomology ring of the variety of full flags in C3.
;05 = aj0y, ax + oy + oy =0, agay + axa, + aya, = 0 and ayaya, = 0.

Sliding loops. jlia; = —a;jli, jliay = —asjli and jliox = axj]i = 0.
Zig-zag. iljli = a;a;.
Zig-zig equals zag times loop. k|j|i = k|ia; = —axk]|i.

Boundary. Some extra conditions along the boundary.
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