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Let A(G) be the adjacency matrix of a finite, connected graph G. Let Sg be its
spectrum. Let roots(U,) be the set of roots of the U,.

Graph problem (GP). Classify all G's such that Sg C roots(U,).

Not counting the multiplicity of 0!
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Let A(G) be the adjacency matrix of a finite, connected graph G. Let Sg be its
spectrum. Let roots(U,) be the set of roots of the U,.

Graph problem (GP). Classify all G's such that Sg C roots(U,).

Us = (X = V2)X(X +v2)

0 0 1
Az = %—g—% — A(Az) = (0 0 1) — A Sp, = {\@,0,*\/5}
1

1 0
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Let A(G) be the adjacency matrix of a finite, connected graph G. Let Sg be its
spectrum. Let roots(U,) be the set of roots of the U,.

Graph problem (GP). Classify all G's such that Sg C roots(U,).

Us = (X = V2)X(X +v2)

0 0 1
Az = %—g—% — A(Az) = (0 0 1) — A Sp, = {\@,0, *\/5}
1 1 0
U5 = (X = V3)(X — 1)X(X +1)(X +/3)
2 0 0 0 1
1 0O 0 0 1
D4 = 4 —~— A(Dy) = 00 o 1|7 Sp, = {V/3,0,0,—/3}
3 1 1 1 0
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Let A(G) be the adjacency matrix of a finite, connected graph G. Let Sg be its
spectrum. Let roots(U,) be the set of roots of the U,.

Graph problem (GP). Classify all G's such that Sg C roots(U,).

Us = (X = V2)X(X +v2)

1 3 o 00 1
Az = ¢—o—0 —— A(As)=|0 0 1] —~— Sa, ={v2,0,—V2}
) 1o v forn=3
U5 = (X —v3)(X = )X(X + 1)(X +V3)
2 00 0 1
Di= e—at  —~ AD)= |0 00 T s, = (v3,0,0,-v3}
3 1110 v forn=5
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Let A(G) be the adjacency matrix of a finite, connected graph G. Let S¢ be its
spectrum.  Smith ~1969. The graphs satisfying (GP) are precisely

G the type ADE graphs for n+ 1 being the Coxeter number.

Type A
Type Dp:

As— o
Type Eg:
D, = Type Ez:
Type Eg:

Daniel Tubbenhauer

7).

o o —o oo  forn=m

o — o« v forn=2m-3
), —v/2}

Vv forn=11

Vv forn=17 o 3}
v~ forn=29
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o A primer on “higher” representation theory
@ Classical representation theory
o Categorical representation theory

e The dihedral group revisited
@ Dihedral groups as Coxeter groups
@ Z>o-valued modules of dihedral groups

© (GP) and "higher" representation theory
o Categorical actions: A prototypical example
o Classification
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Pioneers of representation theory

Let A be a finite-dimensional algebra.

Noether ~1928++. Representation theory is the study of actions:
M: A— End(V), M(a)=a “matrix’ in End(V),

with V being some C-vector space. We call V a module or a representation.

The “atoms” of such an action are called simple.

Noether, Schreier ~1928. All modules are built out of atoms
(“Jordan—Halder").

We want to have a categorical version of this!
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Categorification: A picture to keep in mind

forms r77777T777?e|§te7777777777?(35(&77777777777
2-category — ! categories ¢ functors < nat. trafos |
“categLvifies" “categ‘orify” “categorify”
forms r””””?eﬁte”””f”*‘
1-category N osets o functions |

“categorifies” “categorify”

An algebra A can be viewed as an one-object category C, and a representation as
a functor from C into the one-object category End(V), i.e. M: C — End(V).
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Classical representation theory “lives” here

An algebra A can be viewed as an one-object category C, and a representation as
a functor from C into the one-object category End(V), i.e. M: C — End(V).
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Categorification: A picture to keep in mind

Riemann ~1857, Betti ~1871, Poincaré ~18954+.

77777777

2_Category The Betti numbers are Zzo—valued invariants 1at. trafosl
| of manifolds — which is quite remarkable.

“categorifies”

1-category \
tephrfies” Noether, Hopf, Alexandroff ~1925-44. theory should “live’ here
If one views them as dimensions of homology groups,
0-category then the appearance of Zxg is evident.

Classical representation theory “lives” here
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Categorification: A picture to keep in mind

Riemann ~1857, Betti ~1871, Poincaré ~18954+.

2-category The Betti numbers are Z>o-valued invariants
eateghrifies of manifolds — which is quite remarkable.
1-category
tephrfies” Noether, Hopf, Alexandroff ~1925-4.
1 If one views them as dimensions of homology groups,
0-category then the appearance of Zxg is evident.

Classical representation theory “lives” here

Slogan. 2-representation theory has
integrality “built-in".

In its easiest formulation — as discussed today — it
even has a “built-in" non-negativity.
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“Lifting” representation theory

Let € be a (suitable) 2-category, AL be the 2-category of (suitable) categories
and M be a (suitable) 2-functor M: 4 — 2Af . Then M is a 2-representation,
and 2-representations decategorify to representations:

2-morphisms a— M(«)
nat. trafo
1-morphisms Fe=M(F) [F] = [M(F)]
functor —_— linear map
objects i M(1) ™ [i] = [M(1)]
category vector space

A lot of statements from classical representation theory “lift", e.g.:

Mazorchuk—Miemietz ~2014. Notion of “2-atoms” (called simple transitive).
All (suitable) 2-representations are built out of 2-atoms (“2-Jordan—Hdlder").
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QN _theg
This is quite a mouthful!

For the purpose of this talk the following special case is sufficient:

Given an algebra by generators and relations.
Question. Can one find a category M(1i) such that:
e The generators are lifted to endofunctors M(F).
e The relations are lifted to isomorphisms of functors.

e One can coherently choose natural transformations M(«) for these isomorphisms.

A lot of statements from classical representation theory “lift", e.g.:

Mazorchuk—Miemietz ~2014. Notion of “2-atoms” (called simple transitive).
All 2-representations are built out of 2-atoms ( “2-Jordan—Haolder").
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QN _theg
This is quite a mouthful!

For the purpose of this talk the following special case is sufficient:

Given an algebra by generators and relations.
Question. Can one find a category M(1i) such that:
e The generators are lifted to endofunctors M(F).
e The relations are lifted to isomorphisms of functors.

e One can coherently choose natural transformations M(«) for these isomorphisms.

A Question (“higher representation theory”). Can one classify all 2-atoms?

Mazorchuk- 2-atoms of the symmetric group decategorify to atoms. transitive).
All Beware: This is wrong in general. 16lder").
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“Lifting” representation theory

Let € be What one can hope for: agories
and M be tation,
and 2-rep ) ) ) ) )
Problem involving  "lift" Problem involving
a (classical) action a categorical action
R &£
“new .
insights" .
& “.. "Decomposition of .-
the problem
into 2-atoms”

A lot of s Example(Khovanov—Seidel & others 2000+-).
Faithfulness of “categorical representations” of braid groups —

Mazorch this is a huge open problem in the classical case. nsitive).
All (suitable) 2-representations are built out ot 2-atoms ( “2-Jordan—Holder").
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The main example today: dihedral groups

The dihedral groups are of I,(n):

2_ .2
W,=(s,t|s*=t"=1,s,=...5ts=wg =_..15L = tp),
n n

eg: Wy = (s t|s> =1 =1,tsts = wg = stst)

Example. These are the symmetry groups of regular n-gons, e.g. for n = 4 the
Coxeter complex is:
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Kazhdan-Lusztig combinatorics of dihedral groups

Consider W,, = C[W,] for n € Z~, U {co} and define
95:S+17 ot:t‘i_l

(Motivation: The Kazhdan-Lusztig basis has some )

These elements generate W, and their relations are fully understood:

056, = 20, 0.6, =20,, a relation for ...sts = wg = ... tst.
n n

We want a categorical action. So we need:
> A category V to act on.
> Endofunctors @, and ©; acting on V.
> The relations of 6, and 6; have to be satisfied by the functors.
> A coherent choice of natural transformations. (Skipped today.)
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Kazhdan-Lusztig combinatorics of dihedral groups

Consider W,, = C[W,] for n € Z~, U {co} and define
95:S+17 ot:t‘i_l

(Motivation: The Kazhdan-Lusztig basis Example. In case n = 3 this reads
0501—95 - 05 = 01.959,5 - 0[—

These elements generate W, and their re We will revisit this relation !ater.
For the moment: Never mind!

0.0, = 26., 0.6, =20,, a relation for ...sts = wg = ... tst.

— ——

n n

We want a categorical action. So we need:
> A category V to act on.
> Endofunctors @, and ©; acting on V.
> The relations of 6, and 6; have to be satisfied by the functors.
> A coherent choice of natural transformations. (Skipped today.)
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Kazhdan-Lusztig combinatorics of dihedral groups

Consider W,, = C[W,] for n € Z~, U {co} and define
05:5+17 of:t‘i_l
(Motivation: The Kazhdan-Lusztig basis has some )

What we really do is studying 2-representations of Soergel bimodules .%,;:
The

full-grown 2-action

Sy B TR ond(V)

[]@l categorical action l[]@

We W,——— &nd(V)

classical action
>

(Skipped today.)

> Chiuviunicwui s s allu J aciiig vy,

> The relations of 6, and 6; have to be satisfied by the functors.
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Kazhdan-Lusztig combinatorics of dihedral groups

Consider W,, = C[W,] for n € Z~, U {co} and define
95:S+17 ot:t‘i_l

(Motivation: The Kazhdan-Lusztig basis has some )

These elements generate W, and their relations are fully understood:

0:6s = 20, 0.6, =20, a relation for ...sts = wq =_..tst.
But before going to the categorical level: M

We want a cat Let me construct some Zxq-valued modules of W,.
> A category V to act on.
> Endofunctors @, and ©; acting on V.
> The relations of 6, and 6; have to be satisfied by the functors.
> A coherent choice of natural transformations. (Skipped today.)
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Z>p-valued modules via graphs

Construct a W,-module V associated to a bipartite graph G:

V=(1,2,3,4,5)c

i3 214 5
20100 00000
02111 00000
f.~Mp=| 00000 |, @ ~My=| 11200
00000 01020
00000 01002
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Z>p-valued modules via graphs

Construct a W,-module V associated to a bipartite graph G:

V=(1,2,3,4,5)c

0.——

i3 24 5
g
20100 00000
02111 00000
f.~Myp =] 00000 |, @ ~My=| 11200
00000 01020
00000 01002
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Z>p-valued modules via graphs

Construct a W,-module V associated to a bipartite graph G:

V=(1,2,3,4,5)c

action

05
5
2/ol1 0 0 00000
02111 00000
g.~My =| 00000 |, @ ~M,=| 11200
0/0/0 00 01020
0/0/0 00 01002
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Z>p-valued modules via graphs

Construct a W,-module V associated to a bipartite graph G:

V=(1,2,3,4,5)c

6.

i 3 24 5
A
20(1/00 00000
02111 00000
f.~Mp =] 00000 |, @ ~My=| 11200
00000 01020
00000 01002
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Z>p-valued modules via graphs

Construct a W,-module V associated to a bipartite graph G:

V=(1,2,3,4,5)c

action

05

i 3 214 5

o/
20 1/0]0 00000
021/1]1 00000
§.~My. =| 00000 |, @ ~M,=| 11200
00000 01020
00000 01002
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Z>p-valued modules via graphs

Construct a W,-module V associated to a bipartite graph G:
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action
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i 3 214 5
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Z>p-valued modules via graphs

Construct a W,-module V associated to a bipartite graph G:

V=(1,2,3,4,5)c

i 3 214 5
NG
20100 00000
02111 00000
§.~My =| 00000 |, @ ~My=| 11200
000O00O 001020
000O00O 01002
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i3 24 5
J
20100 00000
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00000 01020
00000 01002

Daniel Tubbenhauer Categorical representations of dihedral groups September 2017



Z>p-valued modules via graphs

Construct a W,-module V associated to a bipartite graph G:

V=(1,2,3,4,5)c

D

action
0——

gl

103 21
O
20100 00000
02111 00000
f.~Mp=| 00000 |, @ ~My=| 11200
00000 01020
00000 01002
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Z>p-valued modules via graphs

Construct a W,-module V associated to a bipartite graph G:

V=(1,2,3,4,5)c

action
0——

20100 00000
02111 00000
f.~Mp=| 00000 |, @ ~My=| 11200
00000 01020
00000 01002
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Z>p-valued modules via graphs

Construc Note that the adjacency matrix A(G) of G is

0010
00
AG)=| 111
01
01

O OO
O OO
O O OO

Thus, in order to check that this gives a W,-module for some n
we need to check that the Z>g-valued matrices My, and My,
satisfy the braid-like relation of W,.

This boils down to checking properties of A(G).

20/100 00000
02111 00000
f.~Mp=| 00000 |, @ ~My=]| 11200
00000 01020
00000 01002
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Z>p-valued modules via graphs

Construct a Wo,-module V associated to a bipartite graph G:
Lusztig <2003. The braid-like relation of W, is

“Un(6.05) = Un(6:0.)" .

Hence, by Smith’s (GP) and Lusztig: We get a Z>o-valued module of W,
if G is of type ADE for n+ 1 being the Coxeter number.

Example. The Chebyshev polynomial for n =7 is
U7 = X7 — 6x°> + 10x3 — 4x

= (X +V2+V2)(X + V2)(X + /2 — V2X(X — /2 — V2)(X — V2)(X — \/2+V2)

The type Ds graph has spectrum
Spg = {=V2+ V2, —/2 = v3,0,1/2 = V3,\/2+ V3.

0

The braid-like relation of W7 is 0
05 ~ M 6,0:60,6:6,0:0.0; —60,0:60,0:6,0<+ 100,656,605 — 46,0< 0
2
0

= 0:60,0:0,050,050, — 6050,0:0,056, +100:0,6:0, — 4650, .

\00000/ \010
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Categorifying Z>(-valued modules

graph D
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Categorifying Z>(-valued modules

5

partners /‘

path algebra PDjg \

graph D
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Categorifying Z>(-valued modules

5 5

partners /5 /

o 1E=2EE=2 e =32

path algebra PDg \ zig-zag algebra QD;\\I
n “PDg modulo relations” 1

graph D
4

Huerfano—Khovanov ~2000. The zig-zag relations are:

The composite of two arrows is zero unless they are partners.
The composite of three arrows is zero.
= No paths i — jor i — jif i #j.
& one path i — j iff i—j.

All non-zero partner composites are equal.
= Two paths i — i or j — j.
Example. There are two path from 2 to itself:
2 and 2(3|2 = 2J4]2 = 2|5]2.
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Categorifying Z>(-valued modules

5 5

- J

o 1E=2EE=2 e =32

graph D path algebra PDjg \ zig-zag algebra QD;\\I

“PDg modulo relations” 1

We get a categorical action of Wy: Projective left module P. = QDsi.
Projective right module ; P = iQDs.
> The category to act on is ¥V = QDs-pMod. Bi-projective bimodule P; ® ;P.

> We have endofunctors @; = P Pi ® P ® _and ©, =P, P; @ P @ _.
> Lemma. The relations of 6, and 6, are satisfied by these functors.

> A coherent choice of natural transformations can be made. (Skipped today.)

Daniel Tubbenhauer Categorical representations of dihedral groups September 2017 10 / 14



Categorifying Z>(-valued modules

7
&—— = The categorical action on V decategorifies = 3==2

to the Z>¢-valued action on V from before. \
- ig-zag algebra QD5
i \Z “PDg modulo relations” 1

Example. One checks that @.(P,) = P. & P, & P..

The punchline:

graph Dg

We get a categorical action of Wy:
> The category to act on is V = QDs-pMod.
> We have endofunctors @; = Pe P: ® :P ® _and O, = P, P;®5P ®_.
> Lemma. The relations of 6, and 6, are satisfied by these functors.

> A coherent choice of natural transformations can be made. (Skipped today.)
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Categorifying Z>(-valued modules

The punchline: 5
7

&—— = The categorical action on V decategorifies = 3==2
to the Z>o-valued action on V from before. . QDS\\
i \1 “PDg modulo relations” 1

Example. One easily checks that @. 0 0. =2 0. ® 0O, and @, 00, =0, ¢ 0O,.
This ensures a categorical action of W ..

graph D

Checking the braid-like relation for n = 7 is a bit harder, but not much.
> The category to act on is V = QDs-pMod.
> We have endofunctors @; = Pe P: ® :P ® _and O, = P, P;®5P ®_.
> Lemma. The relations of 6, and 6, are satisfied by these functors.
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2-representation theory — the “How"

list of candidates
reduce the list

construct the remaining ones
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list of candidates «~Sn— assumptions on ¢ and M
reduce the list <~~~ relations among the [M(F)]'s

.. ?
construct the remaining ones no general procedure
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2-representation theory — the “How"

list of candidates «~Sn— assumptions on ¥ and M
reduce the list <~~~ relations among the [M(F)]'s

.. ?
construct the remaining ones no general procedure

In order to make meaningful, one needs to agree what €’s and M's
one allows. For today:
> No 2-things, so € should be read as being a finite-dimensional algebra.
D> The 2-representation M is given by
» The underlying V is A-pMod for some finite-dimensional algebra A.
» Action by projective endofunctors (plus a coherent choice on the 2-level).
» M gives a symmetric, strongly connected graph after decategorification.
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2-representation theory — the “How"

list of candidates «~~~— assumptions on ¢ and M
reduce the list <~~~ relations among the [M(F)]'s
=1 o , . .

" This is again quite a mouthful!
For the purpose of this talk think about the prototypical example from before.

In orc Example. In the prototypical example from before:

o means that G is connected.
> means that the endofunctors should satisfy the braid-like relations. y

is the construction via zig-zag algebras.

P~ IVE BIVCD a DYIHHITULIIG, JSLIVIIZIY LUILITITULTU glapil alLcl ucpach,uun\.ation.
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2-representation theory — the “How"

list of candidates «~Sn— assumptions on ¥ and M
reduce the list <~~~ relations among the [M(F)]'s

.. ?
construct the remaining ones no general procedure

In order to make | 1| manninafil Ana naade +a amvaa what @'c and M's
In general.

> No 2-things, boils down to classify Zx>q-valued matricesInal algebra.

> The 2-repres .y . - .
satisfying certain polynomial-type relations.
» The unc nal algebra A.

> Action | This is my favourite part of the game! ~ C¢ 0N the 2-level).
» M gives a symmetric, strongly connectea grapn arter decategorification.

Daniel Tubbenhauer Categorical representations of dihedral groups September 2017 11 /14



“Killing” [l§, B and

Assume existence of M.

An easy argument gives:

> If ©,, does not act as zero, then M s trivial.

> Otherwise, there is an ordering of indecomposable objects in V such that

decat. 2Id ‘ A decat. 0 ‘ 0

(A similar statement is actually true in way bigger generality.)

Hence, by Smith’s (GP) and Lusztig: We get a non-trivial 2-atom of W, only if G
is of type ADE for n+ 1 being the Coxeter number.

It remains — the construction of the 2-representations. This works via zig-zag
algebras, and we get a

Daniel Tubbenhauer Categorical representations of dihedral groups September 2017



“Killing” [l§, B and

Ao o . e~ ~L AN

Example. Up to some algebra:

An eas The braid-like relation is now translated to

> If Ua(A(G))) = 0.
> O 1at
Thus, Smith tells us to try construct ADE-type 2-modules.

Huerfano—Khovanov then tell us how to construct these.

One can check on an elementary level whether these are equivalent,

which completes the classification. .
Hence, Dy Jmiwn s \\:r’) dlld LUSZLIg. vve geL d Mon-wrividl £-dL0Im Ol Vv ()nly |f G

is of type ADE for n+ 1 being the Coxeter number.

It remains — the construction of the 2-representations. This works via zig-zag
algebras, and we get a

Daniel Tubbenhauer Categorical representations of dihedral groups September 2017 12 / 14



Concluding remarks

> all simple modules of the dihedral group are “categorifyable”.

> The dihedral story is just the tip of the iceberg. We hope that the general
theory has impact beyond the dihedral case, e.g. for
a la Zuber via Elias’ quantum Satake.

>> Everything works graded as well, i.e. for Hecke algebras instead of Coxeter
groups. In particular, with a bit more care, it works for braid groups.

> There are various connections:

» To the theory of subfactors, fusion categories etc. a la
Etingof—Gelaki—Nikshych—Ostrik, ...

» To quantum groups at roots of unity and their “subgroups” a la
Etingof-Khovanov, Ocneanu, Kirillov—Ostrik,...

» To web calculi a la Kuperberg, Cautis—Kamnitzer—Morrison, ...

> More?

Daniel Tubbenhauer Categorical representations of dihedral groups September 2017 13 /14
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Thanks for your attention!
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Up=1, 0, =X, Uppy =X U, — U4

Kronecker ~1857. Any complete set of conjugate algebraic integers in | — 2,2[ is

a subset of roots(U,) for some n.

AN L X1/
WA /1] 3
ol Y [
b ] It
T R -

Figure: The roots of the Chebyshev polynomials (of the second kind).

Picture from https://en.wikipedia.org/wiki/Chebyshev_polynomials.


https://en.wikipedia.org/wiki/Chebyshev_polynomials

It may then be asked why, in a book which professes to leave
all applications on one side, & iderable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that
could be most directly obtained by the consideration of grou;
of linear transformations.

ERY considerable advances in the theory of groups of

finite order bave been made since the appearance of the

first edition of this book. In particular the theory of groups

of linear substitutions has been the subject of numerous and

important investigations by several writers; and the reason

given in the original preface for omitting any account of it no
longer holds good.

In fact it i now more true to say that for further advances

in the abstract theory one must look largely to the representa-

tion of a group as a group of linear substitutions. There is

Figure: Quotes from “Theory of Groups of Finite Order” by Burnside—top: first edition
(1897); bottom: second edition (1911).
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Er =
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D, I, Hj
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Lg 5
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Figure: The Coxeter graphs of finite type.

Example. The type A family is given by the symmetric groups using the simple
transpositions as generators.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)


https://en.wikipedia.org/wiki/Coxeter_group

The Kazhdan—Lusztig basis elements for S3 = W5 with sts = wg = tst are:

=1 6O.=s+1, 6O,=t+1, 0O,=st+s+t+1,
Ois=ts+s+t+1, O, =wo+ts+st+s+1t+1.

1 s=(12) t=(23) st ts wo

Tl o o = H o

Figure: The character table of S3 = Ws.




The Kazhdan—Lusztig basis elements for S3 = W5 with sts = wg = tst are:

=1 6O.=s+1, 0, =t+1, 6O,=st+s+t+1,
Ois=ts+s+t+1, O, =wo+ts+st+s+1t+1.

6, 0s 0: Os: 0.6 Ouo

[Tl 1 2 2 4 4 6
E 1 0 0 0 0 0
H 2 2 2 1 1 0

Figure: The character table of S3 =2 Ws.



The Kazhdan—Lusztig basis elements for S3 = W5 with sts = wg = tst are:

0 =1,

0, =s+1, 60,=t+1 6Oy=st+s+1t+1,

4l -~ 1 n R T Sy B S P o1
Remark. This non-negativity of the Kazhdan—Lusztig basis
is true for all symmetric groups (and this is really neat imho),
but not for most dihedral groups (as we will see).

01 0. 0 0. 0. Oy

[Tl 1 2 2 4 4 6
E 1 0 0 0 0 0
H 2 2 2 1 1 0

Figure: The character table of S3 = Ws.



The (2-)categories and 2-representations which we consider are:

finitary finiteness conditions
fiat 2-category “finitary + involution 4+ adjunction”
transitive 2-representation finitary + connectivity condition
simple 2-representation finitary + no 2-action stable 2-ideal

Example. Soergel bimodules.

Example. categorified quantum groups and their 2-representations.



The type A family
n=5

n=2 n=3 n=4
[ o—iu—e

o—u o—iu—o—1u
| —e—u

<
afian

The type D family
n =10

i

1L

—l..

The type E exceptions

n=18

-

n =30

i



The type A family
n=5

n=2 n=13 n= n="=6

[ o—iu—e o—iu—eo—u—o
o—u o—u—eo—1u

| —e—u —e—u—e—1

The type D family
n =10

n=12

: This is an unexpected ADE classification, :
: which is — imho — quite neat. :

The type E exceptions



Let n be even. Then the simple W,-modules are either
one-dimensional or two-dimensional (for k = 1,...,"72%5):

~ +1,—1; 1,-1,
Vi =C; s+l ot
Os ~~2,0;0. ~ 2,0,

. cos(*™%/y)  sin(®™K/,) ) [t o
sin(®%/,)  —cos(>**/,) ]’ 0 -1/’
0 2cos?(™%/,)  sin(®*"k/,) g (20
: sin(>™%)  2sin®(7%/,) ) 0 0/’

Most of these do not “categorify”.

Vk = (Cz;

1%
<



Let n be even. Then the simple W,-modules are either
one-dimensional or two-dimensional (for k = 1,...,"72%5):

[ (CRVEE [ PR
Via base change, these might look familiar:

b (S 2cosc()ﬂk/")> ek <2cos(()”k/,,) g), |

2 cos(™¥/,) € roots(U,_1).
0 2cos? (k) sin(®™/,) g (20
: sin(>™%)  2sin®(7%/,) ) 0 0/’

Most of these do not “categorify”.

Vk = (Cz;

1%
<



Let n be even. Then the simple W,-modules are either
one-dimensional or two-dimensional (for k = 1,...,"72%5):

0.~~2.0:0. ~~20.
Remark. The only other Coxeter type which is fully understood
at the moment is the case of S,,.
Basically, because all simple S,-modules have Zx>(-valued
characters for the Kazhdan—Lusztig basis,
in this case 2-atoms decategorify to atoms.

0. ZLUs \ /n) Siy /n) 0, ARV
l : k sin(®™%/,) 2sin2(”k/n)) ' kO 0) ’

Most of these do not “categorify”.

Vi



Let n be even. Then the simple W,-modules are either
one-dimensional or two-dimensional (for k = 1,...,"72%5):

N {s s 41, =1t~ 41,1,
0.~ 2.0:0. ~~2.0.
Remark. The only other Coxeter type which is fully understood
at the moment is the case of S,,.
Basically, because all simple S,-modules have Zx>(-valued
characters for the Kazhdan—Lusztig basis,
in this case 2-atoms decategorify to atoms.
0 s £ CLUS \ /n} DIII\ /n} 0 s < v
1% Cangmy 28 )% Lo o)
Remark. In the dihedral case

(and most likely in almost all other cases)

Most of these What we really categorify are the Z-indecomposables.

Vi



SU(3)k

Orbifold series

Aq Az Az

A3 A8 A3 A A Ag/3 ..

a4 & A&

Conjugate orbifold series

B S N (N
vy j

Py
{
[A] [Aj A% AS A% ..

&L

[3A5][3A5] 3A5 3A9 3AS 34§ ..

Exceptionals

ﬁ a M @ \Q%E "’ | ] §@>

Es Es/3=(Es)° Eg Eg/3=(Eg)*

(Ag) (AB3) E21

Figure: “Subgroups” of quantum SU(3).

(Picture from “The classification of subgroups of quantum SU(N)" by Ocneanu ~2000.)



Remark. Another neat fact about Chebyshev polynomials:
Their roots are precisely the characters

of the fundamental 5[2 module V4 evaluated at roots of unity.
{ H H

Y

[A] [Ai A§ A$ Ag
A@@%‘%
XX

A3 B A3I3 AB AB Ag/3 ... [3A1][3A§] 3A% 3A% 3AS 34f ..
Exceptionals

. N /f\;,. '\_ A /.f
S

Es Es/3=(Es)° Eg  Eo/3=(Eg)’ (Ag3) (Ag3) Ez1

Figure: “Subgroups” of quantum SU(3).

(Picture from “The classification of subgroups of quantum SU(N)" by Ocneanu ~2000.)



Remark. Another neat fact about Chebyshev polynomials:
Their roots are precisely the characters
of the fundamental 5[2 module Vi evaluated at roots of unlty

A 4R AR
Example Vi ={vi1,v_1)c with action

Q/\Q

—1 Vil

\F/

Its character is y(x) = x~1 + xTL.
Fix n and evaluate this at exp(“™//,,1) for k =3,2,1. For n = 3:
{_\/57 Oa \/5}

(Picture | The Chebyshev polynomial for n = 3 was:

Us = (X = V2)X(X + V2).



SUR)k
Smith revisited, (Di Francesco—)Zuber ~1990-++.
7 The (GP) reformulates to: The type ADE graphs
are precisely the graphs whose spectrum is given
by evaluating the character of the fundamental
sl-module at roots of unities.

mYY g | VN

B

W A1 Ap {.,
A3 B A3I3 AB AB Ae/3 .. [3AT][3A5] 3A% 3A% 3AS 3A% ...
Exceptionals

p - /f\ .\_ A /’.f /—\

Es Es/3=(Es)° Eg  Eo/3=(Eg)" (Ag) (AB3)

Figure: “Subgroups” of quantum SU(3).

(Picture from “The classification of subgroups of quantum SU(N)" by Ocneanu ~2000.)



SU@B)k
Smith revisited, (Di Francesco—)Zuber ~1990-++.
7 The (GP) reformulates to: The type ADE graphs
are precisely the graphs whose spectrum is given
by evaluating the character of the fundamental

sl 2 module at roots of unities.
| X XXM XX KX XX
(Rank m GP) (Dl Francesco—)Zuber ~1990-H-.

Classify all G's such that

A

Se C fund(sl,),

with fund(sl,,) be the set of evaluation of the
characters of the fundamental sl,,-module at roots of unities.

The results, called generalized Dynkin diagrams,
are very present in e.g. conformal field theory.

(Picture from “The classification of subgroups of quantum SU(N)" by Ocneanu ~2000.)



(Picture fi




(Picture fr

Example. In the rank 3 case, one gets precisely Ocneanu’s list.

A type A family and a conjugate type A family:
o - o ___
Coy RS
- ‘:n_
* x

A type D family:

42 = m
Question. What are the categorical analogs of these?

) ¢

A finite number of exceptions, e.g. Ey;:
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