
Categorical representations of dihedral groups

Or: Z≥0-valued matrices, my love

Daniel Tubbenhauer

Sn

[·]⊕

��

full-grown 2-action
// End(V)

[·]⊕
��

Wn
classical action

//

categorical action

77

End(V)

Joint work with Ben Elias, Marco Mackaay, Volodymyr Mazorchuk and Vanessa Miemietz
(Other contributors: Tobias Kildetoft and Jakob Zimmermann)

September 2017

Daniel Tubbenhauer Categorical representations of dihedral groups September 2017 1 / 14



Let A(G ) be the adjacency matrix of a finite, connected graph G . Let SG be its
spectrum. Let roots(Ũn) be the set of roots of the Chebyshev polynomial Ũn.

Graph problem (GP). Classify all G ’s such that SG ⊂ roots(Ũn).
Not counting the multiplicity of 0!

for n = 3

for n = 5

Smith ∼1969. The graphs satisfying (GP) are precisely
the type ADE graphs for n + 1 being the Coxeter number.

Type Am: • • • · · · • • • for n = m

Type Dm: • • · · · • •
•

•
for n = 2m − 3

Type E6:
• • • • •

•
for n = 11

Type E7:
• • • • • •

•
for n = 17

Type E8:
• • • • • • •

•
for n = 29
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1 A primer on “higher” representation theory
Classical representation theory
Categorical representation theory

2 The dihedral group revisited
Dihedral groups as Coxeter groups
Z≥0-valued modules of dihedral groups

3 (GP) and “higher” representation theory
Categorical actions: A prototypical example
Classification
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Pioneers of representation theory

Let A be a finite-dimensional algebra.

Noether ∼1928++. Representation theory is the (useful) study of actions:

M : A −→ End(V), M(a) = a “matrix” in End(V),

with V being some C-vector space. We call V a module or a representation.

The “atoms” of such an action are called simple.

Noether, Schreier ∼1928. All modules are built out of atoms
(“Jordan–Hölder”).

We want to have a categorical version of this!
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Categorification: A picture to keep in mind

2-category categories functors nat. trafos

1-category sets functions

0-category numbers

relate relate

relate

“categorify”

“categorify”

“categorify”

forms

forms

forms

“categorifies”

“categorifies”

An algebra A can be viewed as an one-object category C, and a representation as
a functor from C into the one-object category End(V), i.e. M : C −→ End(V).

Riemann ∼1857, Betti ∼1871, Poincaré ∼1895++.
The Betti numbers are Z≥0-valued invariants

of manifolds – which is quite remarkable.

Noether, Hopf, Alexandroff ∼1925++.
If one views them as dimensions of homology groups,

then the appearance of Z≥0 is evident.

Slogan. 2-representation theory has
integrality “built-in”.

In its easiest formulation – as discussed today – it
even has a “built-in” non-negativity.
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“Lifting” representation theory

Let C be a (suitable) 2-category, Af
k

be the 2-category of (suitable) categories
and M be a (suitable) 2-functor M : C −→ Af

k
. Then M is a 2-representation,

and 2-representations decategorify to representations:

2-morphisms α 7→ M(α)
nat. trafo

1-morphisms F 7→M(F)
functor

[F] 7→ [M(F)]
linear map

objects i 7→ M(i)
category

[i] 7→ [M(i)]
vector space

[·]⊕

decategorifies

A lot of statements from classical representation theory “lift”, e.g.:

Mazorchuk–Miemietz ∼2014. Notion of “2-atoms” (called simple transitive).
All (suitable) 2-representations are built out of 2-atoms (“2-Jordan–Hölder”).

This is quite a mouthful!
For the purpose of this talk the following special case is sufficient:

Given an algebra by generators and relations.

Question. Can one find a category M(i) such that:

• The generators are lifted to endofunctors M(F).

• The relations are lifted to isomorphisms of functors.

• One can coherently choose natural transformations M(α) for these isomorphisms.

Question (“higher representation theory”). Can one classify all 2-atoms?

2-atoms of the symmetric group decategorify to atoms.
Beware: This is wrong in general.

What one can hope for:

Problem involving
a (classical) action

Problem involving
a categorical action

“Decomposition of
the problem

into 2-atoms”

“lift”

“new
insights”

Example(Khovanov–Seidel & others 2000++).
Faithfulness of “categorical representations” of braid groups –

this is a huge open problem in the classical case.
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The main example today: dihedral groups

The dihedral groups are of Coxeter type I2(n):

Wn = 〈s, t|s2 = t2 = 1, sn = . . . sts︸ ︷︷ ︸
n

= w0 = . . . tst︸ ︷︷ ︸
n

= tn〉,

e.g.: W4 = 〈s, t|s2 = t2 = 1, tsts = w0 = stst〉

Example. These are the symmetry groups of regular n-gons, e.g. for n = 4 the
Coxeter complex is:

• •

•

•

•

��

��

1
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Kazhdan–Lusztig combinatorics of dihedral groups

Consider Wn = C[Wn] for n ∈ Z>2 ∪ {∞} and define

θs = s + 1, θt = t + 1.

(Motivation: The Kazhdan–Lusztig basis has some neat integral properties .)

These elements generate Wn and their relations are fully understood:

θsθs = 2θs , θtθt = 2θt , a relation for . . . sts︸ ︷︷ ︸
n

= w0 = . . . tst︸ ︷︷ ︸
n

.

We want a categorical action. So we need:

B A category V to act on.

B Endofunctors Θs and Θt acting on V.

B The relations of θs and θt have to be satisfied by the functors.

B A coherent choice of natural transformations. (Skipped today.)

Example. In case n = 3 this reads
θsθtθs − θs = θtθsθt − θt

We will revisit this relation later.
For the moment: Never mind!

What we really do is studying 2-representations of Soergel bimodules Sn:

Sn

[·]⊕
��

full-grown 2-action
// E nd(V)

[·]⊕
��

Wn
classical action

//

categorical action

55

End(V)

(Skipped today.)

But before going to the categorical level:

Let me construct some Z≥0-valued modules of Wn.
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Z≥0-valued modules via graphs

Construct a W∞-module V associated to a bipartite graph G :

V = 〈1, 2, 3, 4, 5〉C

1 3 2 4 5

• � •
�

�

θs  Mθs =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, θt  Mθt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







Note that the adjacency matrix A(G ) of G is

A(G ) =

0 0 1 0 0
0 0 1 1 1
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0







Thus, in order to check that this gives a Wn-module for some n
we need to check that the Z≥0-valued matrices Mθs and Mθt

satisfy the braid-like relation of Wn.

This boils down to checking properties of A(G ).

Lusztig ≤2003. The braid-like relation of Wn is
“Ũn(θtθs) = Ũn(θsθt)”.

Hence, by Smith’s (GP) and Lusztig: We get a Z≥0-valued module of Wn

if G is of type ADE for n + 1 being the Coxeter number.

Example. The Chebyshev polynomial for n = 7 is
Ũ7 = X7 − 6X5 + 10X3 − 4X

= (X +

√
2 +
√

2)(X +
√

2)(X +
√

2 −
√

2)X (X −
√

2 −
√

2)(X −
√

2)(X −
√

2 +
√

2)

The type D5 graph has spectrum
SD5

= {−
√

2 +
√

2,−
√

2 −
√

2, 0,
√

2 −
√

2,

√
2 +
√

2}.

The braid-like relation of W7 is
θtθsθtθsθtθsθtθs − 6θtθsθtθsθtθs + 10θtθsθtθs − 4θtθs

= θsθtθsθtθsθtθsθt − 6θsθtθsθtθsθt + 10θsθtθsθt − 4θsθt .
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Z≥0-valued modules via graphs
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, θt  Mθt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2






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we need to check that the Z≥0-valued matrices Mθs and Mθt

satisfy the braid-like relation of Wn.

This boils down to checking properties of A(G ).

Lusztig ≤2003. The braid-like relation of Wn is
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Hence, by Smith’s (GP) and Lusztig: We get a Z≥0-valued module of Wn

if G is of type ADE for n + 1 being the Coxeter number.

Example. The Chebyshev polynomial for n = 7 is
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Categorifying Z≥0-valued modules

• � •
�

�

graph D5

B The category to act on is V = QD5-pMod.

B We have endofunctors Θs =
⊕
• Pi ⊗ iP ⊗ and Θt =

⊕
� Pj ⊗ jP ⊗ .

B Lemma. The relations of θs and θt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

Huerfano–Khovanov ∼2000. The zig-zag relations are:

The composite of two arrows is zero unless they are partners.
The composite of three arrows is zero.
⇒ No paths i→ j or i→ j if i 6= j .

& one path i→ j iff i j.

All non-zero partner composites are equal.
⇒ Two paths i→ i or j→ j.

Example. There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.

Projective left module Pi = QD5i.
Projective right module iP = iQD5.

Bi-projective bimodule Pi ⊗ iP.

The punchline:

The categorical action on V decategorifies
to the Z≥0-valued action on V from before.

Example. One checks that Θt(P2) ∼= P3 ⊕ P4 ⊕ P5.Example. One easily checks that Θs ◦Θs
∼= Θs ⊕Θs and Θt ◦Θt

∼= Θt ⊕Θt .
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.
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2-representation theory – the “How”

1 list of candidates

2 reduce the list

3 construct the remaining ones

give

In order to make 1 meaningful, one needs to agree what C ’s and M’s
(finitary 2-categories and simple transitive 2-representations) one allows. For today:

B No 2-things, so C should be read as being a finite-dimensional algebra.
B The 2-representation M is given by

I The underlying V is A-pMod for some finite-dimensional algebra A.
I Action by projective endofunctors (plus a coherent choice on the 2-level).
I M gives a symmetric, strongly connected graph after decategorification.

This is again quite a mouthful!
For the purpose of this talk think about the prototypical example from before.

Example. In the prototypical example from before:

1 means that G is connected.

2 means that the endofunctors should satisfy the braid-like relations.

3 is the construction via zig-zag algebras.

In general.

2 boils down to classify Z≥0-valued matrices
satisfying certain polynomial-type relations.

This is my favourite part of the game!
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“Killing” 1 , 2 and 3

Assume existence of M.

An easy argument gives:

B If Θw0 does not act as zero, then M is trivial.

B Otherwise, there is an ordering of indecomposable objects in V such that

Θs
decat.−−−→

(
2Id A

0 0

)
, Θt

decat.−−−→
(

0 0

AT 2Id

)

(A similar statement is actually true in way bigger generality.)

Hence, by Smith’s (GP) and Lusztig: We get a non-trivial 2-atom of Wn only if G
is of type ADE for n + 1 being the Coxeter number.

It remains 3 – the construction of the 2-representations. This works via zig-zag
algebras, and we get a list .

Example. Up to some algebra:
The braid-like relation is now translated to

Ũn(A(G ))) = 0.

Thus, Smith tells us to try construct ADE-type 2-modules.

Huerfano–Khovanov then tell us how to construct these.

One can check on an elementary level whether these are equivalent,
which completes the classification.
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Concluding remarks

B Not all simple modules of the dihedral group are “categorifyable”.

B The dihedral story is just the tip of the iceberg. We hope that the general
theory has impact beyond the dihedral case, e.g. for “generalized Coxeter–Dynkin diagrams”

à la Zuber via Elias’ quantum Satake.

B Everything works graded as well, i.e. for Hecke algebras instead of Coxeter
groups. In particular, with a bit more care, it works for braid groups.

B There are various connections:

I To the theory of subfactors, fusion categories etc. à la
Etingof–Gelaki–Nikshych–Ostrik,...

I To quantum groups at roots of unity and their “subgroups” à la
Etingof–Khovanov, Ocneanu, Kirillov–Ostrik,...

I To web calculi à la Kuperberg, Cautis–Kamnitzer–Morrison,...

B More?

Daniel Tubbenhauer Categorical representations of dihedral groups September 2017 13 / 14



Let A(G ) be the adjacency matrix of a finite, connected graph G . Let SG be its
spectrum. Let roots(Ũn) be the set of roots of the Chebyshev polynomial Ũn.

Graph problem (GP). Classify all G ’s such that SG ⊂ roots(Ũn).

A3 =
1 3 2• • • A(A3) =




0 0 1
0 0 1
1 1 0


 SA3

= {
√

2, 0,−
√

2}

D4 =
1

4

2

3

• •
•

•
A(D4) =




0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0


 SD4

= {
√

3, 0, 0,−
√

3}

Ũ3 = (X −
√

2)X (X +
√

2)

Ũ5 = (X −
√

3)(X − 1)X (X + 1)(X +
√

3)

Not counting the multiplicity of 0!

for n = 3

for n = 5

Smith ∼1969. The graphs satisfying (GP) are precisely
the type ADE graphs for n + 1 being the Coxeter number.

Type Am: • • • · · · • • • for n = m

Type Dm: • • · · · • •
•

•
for n = 2m − 3

Type E6:
• • • • •

•
for n = 11

Type E7:
• • • • • •

•
for n = 17

Type E8:
• • • • • • •

•
for n = 29
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Categorification: A picture to keep in mind

2-category lin. categories lin. functors lin. nat. trafos

1-category vector spaces linear maps

0-category numbers

relate relate

relate

“categorify”

“categorify”

“categorify”

forms

forms

forms

“categorifies”

“categorifies”

Classical representation theory “lives” here

2-representation theory should “live” here

An algebra A can be viewed as an one-object category C, and a representation as
a functor from C into the one-object category End(V), i.e. M : C −→ End(V).

Riemann ∼1857, Betti ∼1871, Poincaré ∼1895++.
The Betti numbers are Z≥0-valued invariants

of manifolds – which is quite remarkable.

Noether, Hopf, Alexandroff ∼1925++.
If one views them as dimensions of homology groups,

then the appearance of Z≥0 is evident.

Slogan. 2-representation theory has
integrality “built-in”.

In its easiest formulation – as discussed today – it
even has a “built-in” non-negativity.
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“Lifting” representation theory

Let C be a (suitable) 2-category, Af
k

be the 2-category of (suitable) categories
and M be a (suitable) 2-functor M : C −→ Af

k
. Then M is a 2-representation,

and 2-representations decategorify to representations:

2-morphisms α 7→ M(α)
nat. trafo

1-morphisms F 7→M(F)
functor

[F] 7→ [M(F)]
linear map

objects i 7→ M(i)
category

[i] 7→ [M(i)]
vector space

[·]⊕

decategorifies

A lot of statements from classical representation theory “lift”, e.g.:

Mazorchuk–Miemietz ∼2014. Notion of “2-atoms” (called simple transitive).
All (suitable) 2-representations are built out of 2-atoms (“2-Jordan–Hölder”).

This is quite a mouthful!
For the purpose of this talk the following special case is sufficient:

Given an algebra by generators and relations.

Question. Can one find a category M(i) such that:

• The generators are lifted to endofunctors M(F).

• The relations are lifted to isomorphisms of functors.

• One can coherently choose natural transformations M(α) for these isomorphisms.

Question (“higher representation theory”). Can one classify all 2-atoms?

2-atoms of the symmetric group decategorify to atoms.
Beware: This is wrong in general.

What one can hope for:

Problem involving
a (classical) action

Problem involving
a categorical action

“Decomposition of
the problem

into 2-atoms”

“lift”

“new
insights”

Example(Khovanov–Seidel & others 2000++).
Faithfulness of “categorical representations” of braid groups –

this is a huge open problem in the classical case.
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Z≥0-valued modules via graphs

Construct a W∞-module V associated to a bipartite graph G :

V = 〈1, 2, 3, 4, 5〉C

1 3 2 4 5

θt
action • � •

�

�

θs  Mθs =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, θt  Mθt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







Note that the adjacency matrix A(G ) of G is

A(G ) =

0 0 1 0 0
0 0 1 1 1
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0







Thus, in order to check that this gives a Wn-module for some n
we need to check that the Z≥0-valued matrices Mθs and Mθt

satisfy the braid-like relation of Wn.

This boils down to checking properties of A(G ).

Lusztig ≤2003. The braid-like relation of Wn is
“Ũn(θtθs) = Ũn(θsθt)”.

Hence, by Smith’s (GP) and Lusztig: We get a Z≥0-valued module of Wn

if G is of type ADE for n + 1 being the Coxeter number.

Example. The Chebyshev polynomial for n = 7 is
Ũ7 = X7 − 6X5 + 10X3 − 4X

= (X +

√
2 +
√

2)(X +
√

2)(X +
√

2 −
√

2)X (X −
√

2 −
√

2)(X −
√

2)(X −
√

2 +
√

2)

The type D5 graph has spectrum
SD5

= {−
√

2 +
√

2,−
√

2 −
√

2, 0,
√

2 −
√

2,

√
2 +
√

2}.

The braid-like relation of W7 is
θtθsθtθsθtθsθtθs − 6θtθsθtθsθtθs + 10θtθsθtθs − 4θtθs

= θsθtθsθtθsθtθsθt − 6θsθtθsθtθsθt + 10θsθtθsθt − 4θsθt .
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Categorifying Z≥0-valued modules

• � •
�

�

graph D5

partners

1 3 2

4

5

path algebra PD5

1 3 2

4

5

zig-zag algebra QD5
“PD5 modulo relations”

We get a categorical action of W7:

B The category to act on is V = QD5-pMod.

B We have endofunctors Θs =
⊕
• Pi ⊗ iP ⊗ and Θt =

⊕
� Pj ⊗ jP ⊗ .

B Lemma. The relations of θs and θt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

Huerfano–Khovanov ∼2000. The zig-zag relations are:

The composite of two arrows is zero unless they are partners.
The composite of three arrows is zero.
⇒ No paths i→ j or i→ j if i 6= j .

& one path i→ j iff i j.

All non-zero partner composites are equal.
⇒ Two paths i→ i or j→ j.

Example. There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.

Projective left module Pi = QD5i.
Projective right module iP = iQD5.

Bi-projective bimodule Pi ⊗ iP.

The punchline:

The categorical action on V decategorifies
to the Z≥0-valued action on V from before.

Example. One checks that Θt(P2) ∼= P3 ⊕ P4 ⊕ P5.Example. One easily checks that Θs ◦Θs
∼= Θs ⊕Θs and Θt ◦Θt

∼= Θt ⊕Θt .
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.
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2-representation theory – the “How”

1 list of candidates assumptions on C and M

2 reduce the list relations among the [M(F)]’s

3 construct the remaining ones no general procedure

give

give

?

In order to make 1 meaningful, one needs to agree what C ’s and M’s
(finitary 2-categories and simple transitive 2-representations) one allows. For today:

B No 2-things, so C should be read as being a finite-dimensional algebra.
B The 2-representation M is given by

I The underlying V is A-pMod for some finite-dimensional algebra A.
I Action by projective endofunctors (plus a coherent choice on the 2-level).
I M gives a symmetric, strongly connected graph after decategorification.

This is again quite a mouthful!
For the purpose of this talk think about the prototypical example from before.

Example. In the prototypical example from before:

1 means that G is connected.

2 means that the endofunctors should satisfy the braid-like relations.

3 is the construction via zig-zag algebras.

In general.

2 boils down to classify Z≥0-valued matrices
satisfying certain polynomial-type relations.

This is my favourite part of the game!
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Ũ0 = 1, Ũ1 = X , Ũn+1 = X Ũn − Ũn−1

U0 = 1, U1 = 2X , Un+1 = 2X Un − Un−1

Kronecker ∼1857. Any complete set of conjugate algebraic integers in ]− 2, 2[ is
a subset of roots(Ũn) for some n.

Figure: The roots of the Chebyshev polynomials (of the second kind).

Picture from https://en.wikipedia.org/wiki/Chebyshev_polynomials.

Back

The type A family
n = 2•

�

n = 3

• �

n = 4• � •

� • �

n = 5

• � • �

n = 6• � • � •

� • � • �

. . .

The type D family
n = 6

• �
•
•

� •
�

�

n = 8

� • �
•
•

• � •
�

�

n = 10

• � • �
•
•

� • � •
�

�

n = 12

� • � • �
•
•

• � • � •
�

�

. . .

The type E exceptions
n = 12

• � • � •
�

� • � • �
•

n = 18

• � • � • �
�

� • � • � •
•

n = 30

• � • � • � •
�

� • � • � • �
•

Back

This is an unexpected ADE classification,
which is – imho – quite neat.

Figure: “Subgroups” of quantum SU(3).

(Picture from “The classification of subgroups of quantum SU(N)” by Ocneanu ∼2000.)

Back

Remark. Another neat fact about Chebyshev polynomials:
Their roots are precisely the characters

of the fundamental sl2-module V1 evaluated at roots of unity.

Example. V1 = 〈v+1, v−1〉C with action

F

E

H H

v+1v−1

Its character is χ(x) = x−1 + x+1.

Fix n and evaluate this at exp(kπi/n+1) for k = 3, 2, 1. For n = 3:

{−
√

2, 0,
√

2}.

The Chebyshev polynomial for n = 3 was:

Ũ3 = (X −
√

2)X (X +
√

2).

Smith revisited, (Di Francesco–)Zuber ∼1990++.
The (GP) reformulates to: The type ADE graphs
are precisely the graphs whose spectrum is given
by evaluating the character of the fundamental

sl2-module at (certain) roots of unities.

(Rank m GP), (Di Francesco–)Zuber ∼1990++.
Classify all G ’s such that

SG ⊂ fund(slm),

with fund(slm) be the set of evaluation of the
characters of the fundamental slm-module at (certain) roots of unities.

The results, called generalized Dynkin diagrams,
are very present in e.g. conformal field theory.

Example. In the rank 3 case, one gets precisely Ocneanu’s list.
A type A family and a conjugate type A family:

?

•
••

�
�

�
�

�

�

?

•
�

�
�

�

A type D family:

?

•
••

�
�

�
�

�

�

 
?

• • •
��

A finite number of exceptions, e.g. E 21:

?

•
• •• •
•
•

�
�

�

�
�

�

�

�

�
�

�

�
�

�

�

�

Question. What are the categorical analogs of these?

There is still much to do...

Thanks for your attention!
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Let A(G ) be the adjacency matrix of a finite, connected graph G . Let SG be its
spectrum. Let roots(Ũn) be the set of roots of the Chebyshev polynomial Ũn.

Graph problem (GP). Classify all G ’s such that SG ⊂ roots(Ũn).

A3 =
1 3 2• • • A(A3) =




0 0 1
0 0 1
1 1 0


 SA3

= {
√

2, 0,−
√

2}

D4 =
1

4

2

3

• •
•

•
A(D4) =




0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0


 SD4

= {
√

3, 0, 0,−
√

3}

Ũ3 = (X −
√

2)X (X +
√

2)

Ũ5 = (X −
√

3)(X − 1)X (X + 1)(X +
√

3)

Not counting the multiplicity of 0!

for n = 3

for n = 5

Smith ∼1969. The graphs satisfying (GP) are precisely
the type ADE graphs for n + 1 being the Coxeter number.

Type Am: • • • · · · • • • for n = m

Type Dm: • • · · · • •
•

•
for n = 2m − 3

Type E6:
• • • • •

•
for n = 11

Type E7:
• • • • • •

•
for n = 17

Type E8:
• • • • • • •

•
for n = 29
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1-category vector spaces linear maps

0-category numbers

relate relate
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“categorify”
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forms

forms

forms
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“categorifies”
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An algebra A can be viewed as an one-object category C, and a representation as
a functor from C into the one-object category End(V), i.e. M : C −→ End(V).

Riemann ∼1857, Betti ∼1871, Poincaré ∼1895++.
The Betti numbers are Z≥0-valued invariants

of manifolds – which is quite remarkable.

Noether, Hopf, Alexandroff ∼1925++.
If one views them as dimensions of homology groups,

then the appearance of Z≥0 is evident.

Slogan. 2-representation theory has
integrality “built-in”.

In its easiest formulation – as discussed today – it
even has a “built-in” non-negativity.
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“Lifting” representation theory

Let C be a (suitable) 2-category, Af
k

be the 2-category of (suitable) categories
and M be a (suitable) 2-functor M : C −→ Af

k
. Then M is a 2-representation,

and 2-representations decategorify to representations:

2-morphisms α 7→ M(α)
nat. trafo

1-morphisms F 7→M(F)
functor

[F] 7→ [M(F)]
linear map

objects i 7→ M(i)
category

[i] 7→ [M(i)]
vector space

[·]⊕

decategorifies

A lot of statements from classical representation theory “lift”, e.g.:

Mazorchuk–Miemietz ∼2014. Notion of “2-atoms” (called simple transitive).
All (suitable) 2-representations are built out of 2-atoms (“2-Jordan–Hölder”).

This is quite a mouthful!
For the purpose of this talk the following special case is sufficient:

Given an algebra by generators and relations.

Question. Can one find a category M(i) such that:

• The generators are lifted to endofunctors M(F).

• The relations are lifted to isomorphisms of functors.

• One can coherently choose natural transformations M(α) for these isomorphisms.

Question (“higher representation theory”). Can one classify all 2-atoms?

2-atoms of the symmetric group decategorify to atoms.
Beware: This is wrong in general.

What one can hope for:

Problem involving
a (classical) action

Problem involving
a categorical action

“Decomposition of
the problem

into 2-atoms”

“lift”

“new
insights”

Example(Khovanov–Seidel & others 2000++).
Faithfulness of “categorical representations” of braid groups –

this is a huge open problem in the classical case.
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Z≥0-valued modules via graphs

Construct a W∞-module V associated to a bipartite graph G :

V = 〈1, 2, 3, 4, 5〉C

1 3 2 4 5

θt
action • � •

�

�

θs  Mθs =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, θt  Mθt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







Note that the adjacency matrix A(G ) of G is

A(G ) =

0 0 1 0 0
0 0 1 1 1
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0







Thus, in order to check that this gives a Wn-module for some n
we need to check that the Z≥0-valued matrices Mθs and Mθt

satisfy the braid-like relation of Wn.

This boils down to checking properties of A(G ).

Lusztig ≤2003. The braid-like relation of Wn is
“Ũn(θtθs) = Ũn(θsθt)”.

Hence, by Smith’s (GP) and Lusztig: We get a Z≥0-valued module of Wn

if G is of type ADE for n + 1 being the Coxeter number.

Example. The Chebyshev polynomial for n = 7 is
Ũ7 = X7 − 6X5 + 10X3 − 4X

= (X +

√
2 +
√

2)(X +
√

2)(X +
√

2 −
√

2)X (X −
√

2 −
√

2)(X −
√

2)(X −
√

2 +
√

2)

The type D5 graph has spectrum
SD5

= {−
√

2 +
√

2,−
√

2 −
√

2, 0,
√

2 −
√

2,

√
2 +
√

2}.

The braid-like relation of W7 is
θtθsθtθsθtθsθtθs − 6θtθsθtθsθtθs + 10θtθsθtθs − 4θtθs

= θsθtθsθtθsθtθsθt − 6θsθtθsθtθsθt + 10θsθtθsθt − 4θsθt .
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Categorifying Z≥0-valued modules

• � •
�

�

graph D5

partners

1 3 2

4

5

path algebra PD5

1 3 2

4

5

zig-zag algebra QD5
“PD5 modulo relations”

We get a categorical action of W7:

B The category to act on is V = QD5-pMod.

B We have endofunctors Θs =
⊕
• Pi ⊗ iP ⊗ and Θt =

⊕
� Pj ⊗ jP ⊗ .

B Lemma. The relations of θs and θt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

Huerfano–Khovanov ∼2000. The zig-zag relations are:

The composite of two arrows is zero unless they are partners.
The composite of three arrows is zero.
⇒ No paths i→ j or i→ j if i 6= j .

& one path i→ j iff i j.

All non-zero partner composites are equal.
⇒ Two paths i→ i or j→ j.

Example. There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.

Projective left module Pi = QD5i.
Projective right module iP = iQD5.

Bi-projective bimodule Pi ⊗ iP.

The punchline:

The categorical action on V decategorifies
to the Z≥0-valued action on V from before.

Example. One checks that Θt(P2) ∼= P3 ⊕ P4 ⊕ P5.Example. One easily checks that Θs ◦Θs
∼= Θs ⊕Θs and Θt ◦Θt

∼= Θt ⊕Θt .
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.
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2-representation theory – the “How”

1 list of candidates assumptions on C and M

2 reduce the list relations among the [M(F)]’s

3 construct the remaining ones no general procedure

give

give

?

In order to make 1 meaningful, one needs to agree what C ’s and M’s
(finitary 2-categories and simple transitive 2-representations) one allows. For today:

B No 2-things, so C should be read as being a finite-dimensional algebra.
B The 2-representation M is given by

I The underlying V is A-pMod for some finite-dimensional algebra A.
I Action by projective endofunctors (plus a coherent choice on the 2-level).
I M gives a symmetric, strongly connected graph after decategorification.

This is again quite a mouthful!
For the purpose of this talk think about the prototypical example from before.

Example. In the prototypical example from before:

1 means that G is connected.

2 means that the endofunctors should satisfy the braid-like relations.

3 is the construction via zig-zag algebras.

In general.

2 boils down to classify Z≥0-valued matrices
satisfying certain polynomial-type relations.

This is my favourite part of the game!
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Ũ0 = 1, Ũ1 = X , Ũn+1 = X Ũn − Ũn−1

U0 = 1, U1 = 2X , Un+1 = 2X Un − Un−1

Kronecker ∼1857. Any complete set of conjugate algebraic integers in ]− 2, 2[ is
a subset of roots(Ũn) for some n.

Figure: The roots of the Chebyshev polynomials (of the second kind).

Picture from https://en.wikipedia.org/wiki/Chebyshev_polynomials.
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The type A family
n = 2•

�

n = 3

• �

n = 4• � •

� • �

n = 5

• � • �

n = 6• � • � •

� • � • �

. . .

The type D family
n = 6

• �
•
•

� •
�

�

n = 8

� • �
•
•

• � •
�

�

n = 10

• � • �
•
•

� • � •
�

�

n = 12
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•
•

• � • � •
�

�

. . .

The type E exceptions
n = 12
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•

n = 18

• � • � • �
�

� • � • � •
•

n = 30

• � • � • � •
�

� • � • � • �
•

Back

This is an unexpected ADE classification,
which is – imho – quite neat.

Figure: “Subgroups” of quantum SU(3).

(Picture from “The classification of subgroups of quantum SU(N)” by Ocneanu ∼2000.)

Back

Remark. Another neat fact about Chebyshev polynomials:
Their roots are precisely the characters

of the fundamental sl2-module V1 evaluated at roots of unity.

Example. V1 = 〈v+1, v−1〉C with action

F

E

H H

v+1v−1

Its character is χ(x) = x−1 + x+1.

Fix n and evaluate this at exp(kπi/n+1) for k = 3, 2, 1. For n = 3:

{−
√

2, 0,
√

2}.

The Chebyshev polynomial for n = 3 was:

Ũ3 = (X −
√

2)X (X +
√

2).

Smith revisited, (Di Francesco–)Zuber ∼1990++.
The (GP) reformulates to: The type ADE graphs
are precisely the graphs whose spectrum is given
by evaluating the character of the fundamental

sl2-module at (certain) roots of unities.

(Rank m GP), (Di Francesco–)Zuber ∼1990++.
Classify all G ’s such that

SG ⊂ fund(slm),

with fund(slm) be the set of evaluation of the
characters of the fundamental slm-module at (certain) roots of unities.

The results, called generalized Dynkin diagrams,
are very present in e.g. conformal field theory.

Example. In the rank 3 case, one gets precisely Ocneanu’s list.
A type A family and a conjugate type A family:

?

•
••

�
�

�
�

�

�

?

•
�

�
�

�

A type D family:

?

•
••

�
�

�
�

�

�

 
?

• • •
��

A finite number of exceptions, e.g. E 21:

?

•
• •• •
•
•

�
�

�

�
�

�

�

�

�
�

�

�
�

�

�

�

Question. What are the categorical analogs of these?

There is still much to do...

Thanks for your attention!
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U0 = 1, U1 = 2X , Un+1 = 2X Un − Un−1

Kronecker ∼1857. Any complete set of conjugate algebraic integers in ]− 2, 2[ is
a subset of roots(Ũn) for some n.

Figure: The roots of the Chebyshev polynomials (of the second kind).

Picture from https://en.wikipedia.org/wiki/Chebyshev_polynomials.
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Figure: Quotes from “Theory of Groups of Finite Order” by Burnside—top: first edition
(1897); bottom: second edition (1911).
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Figure: The Coxeter graphs of finite type.

Example. The type A family is given by the symmetric groups using the simple
transpositions as generators.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)
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The Kazhdan–Lusztig basis elements for S3
∼= W3 with sts = w0 = tst are:

θ1 = 1, θs = s + 1, θt = t + 1, θst = st + s + t + 1,

θts = ts + s + t + 1, θw0 = w0 + ts + st + s + t + 1.

1 s = (12) t = (23) st ts w0

1 1 1 1 1 1

1 −1 −1 1 1 −1

2 0 0 −1 −1 0

Figure: The character table of S3
∼= W3.

Remark. This non-negativity of the Kazhdan–Lusztig basis
is true for all symmetric groups (and this is really neat imho),

but not for most dihedral groups (as we will see).

Back
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is true for all symmetric groups (and this is really neat imho),
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The (2-)categories and 2-representations which we consider are:

finitary finiteness conditions

fiat 2-category “finitary + involution + adjunction”

transitive 2-representation finitary + connectivity condition

simple 2-representation finitary + no 2-action stable 2-ideal

Plus some less important conditions à la k-linearity etc.

Example. Soergel bimodules.

Example.“Cut-offs” of categorified quantum groups and their 2-representations.

Back
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Let n be even. (The odd case is similar.) Then the simple Wn-modules are either
one-dimensional or two-dimensional (for k = 1, . . . , n−2/2):

V±± = C;

{
s  +1,−1; t  +1,−1,

θs  2, 0; θt  2, 0,

Vk = C2;





s  
(

cos(2πk/n) sin(2πk/n)

sin(2πk/n) − cos(2πk/n)

)
; t  

(
1 0

0 −1

)
,

θs  
(

2 cos2(πk/n) sin(2πk/n)

sin(2πk/n) 2 sin2(πk/n)

)
; θt  

(
2 0

0 0

)
,

∼= Vk .

Most of these do not “categorify”.

Back

Via base change, these might look familiar:

θs  
(

2 2 cos(πk/n)
0 0

)
; θt  

(
0 0

2 cos(πk/n) 2

)

2 cos(πk/n) ∈ roots(Ũn−1).

Remark. The only other Coxeter type which is fully understood
at the moment is the case of Sn.

Basically, because all simple Sn-modules have Z≥0-valued
characters for the Kazhdan–Lusztig basis,

in this case 2-atoms decategorify to atoms.

Remark. In the dihedral case
(and most likely in almost all other cases)

what we really categorify are the Z-indecomposables.
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Figure: “Subgroups” of quantum SU(3).

(Picture from “The classification of subgroups of quantum SU(N)” by Ocneanu ∼2000.)
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Remark. Another neat fact about Chebyshev polynomials:
Their roots are precisely the characters

of the fundamental sl2-module V1 evaluated at roots of unity.

Example. V1 = 〈v+1, v−1〉C with action

F

E

H H

v+1v−1

Its character is χ(x) = x−1 + x+1.

Fix n and evaluate this at exp(kπi/n+1) for k = 3, 2, 1. For n = 3:

{−
√

2, 0,
√

2}.

The Chebyshev polynomial for n = 3 was:

Ũ3 = (X −
√

2)X (X +
√

2).

Smith revisited, (Di Francesco–)Zuber ∼1990++.
The (GP) reformulates to: The type ADE graphs
are precisely the graphs whose spectrum is given
by evaluating the character of the fundamental

sl2-module at (certain) roots of unities.

(Rank m GP), (Di Francesco–)Zuber ∼1990++.
Classify all G ’s such that

SG ⊂ fund(slm),

with fund(slm) be the set of evaluation of the
characters of the fundamental slm-module at (certain) roots of unities.

The results, called generalized Dynkin diagrams,
are very present in e.g. conformal field theory.

Example. In the rank 3 case, one gets precisely Ocneanu’s list.
A type A family and a conjugate type A family:

?

•
••

�
�

�
�

�

�

?

•
�

�
�

�

A type D family:

?

•
••

�
�

�
�

�

�

 
?

• • •
��

A finite number of exceptions, e.g. E 21:

?

•
• •• •
•
•

�
�

�

�
�

�

�

�

�
�

�

�
�

�

�

�

Question. What are the categorical analogs of these?
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