(Singular) TQFTs, link homologies and Lie theory 2

Or: fun with singular surfaces

Daniel Tubbenhauer

Joint work (still in progress) with Michael Ehrig and Catharina Stroppel

November 2015

Why foams? They categorify intertwiners!

- \mathfrak{sl}_2 -webs
- \mathfrak{gl}_2 -webs
- Further generalizations

2 Singular TQFTs and foams

- What are foams? The informal answer
- What are foams? The singular TQFT construction
- The web algebra

Definition(Rumer-Teller-Weyl 1932)

The 2-web space $\operatorname{Hom}_{2\operatorname{Web}}(b, t)$ is the free $\mathbb{C}(q)$ -vector space generated by non-intersecting arc diagrams with b, t bottom/top boundary points modulo:

The 2-web category

Definition(Kuperberg 1995)

The 2-web category 2-Web is the (braided) monoidal, $\mathbb{C}(q)$ -linear category with:

- Objects are vectors $\vec{k} = (1, \dots, 1)$ and morphisms are $\operatorname{Hom}_{2\operatorname{Web}}(\vec{k}, \vec{l})$.
- Composition o:

• Tensoring
$$\otimes$$
:

$$\begin{bmatrix}
 1 & 0 & 0 \\
 1 & 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}
 \begin{bmatrix}
 1 & 0 & 0 \\
 1 & 0
 \end{bmatrix}$$

Diagrams for intertwiners

Daniel Tubbenhauer

Observe that there are (up to scalars) unique $U_q(\mathfrak{sl}_2)$ -intertwiners

$$\operatorname{cap} \colon \mathbb{C}_q^2 \otimes \mathbb{C}_q^2 \twoheadrightarrow \mathbb{C}(q), \quad \operatorname{cup} \colon \mathbb{C}(q) \hookrightarrow \mathbb{C}_q^2 \otimes \mathbb{C}_q^2,$$

projecting $\mathbb{C}_q^2 \otimes \mathbb{C}_q^2$ onto $\mathbb{C}(q)$ respectively embedding $\mathbb{C}(q)$ into $\mathbb{C}_q^2 \otimes \mathbb{C}_q^2$.

Let \mathfrak{sl}_2 -**Mod** be the (braided) monoidal, $\mathbb{C}(q)$ -linear category whose objects are tensor generated by \mathbb{C}_q^2 . Define a functor $\Gamma: 2$ -**Web** $\rightarrow \mathfrak{sl}_2$ -**Mod**:

$$ec{k} = (1, \dots, 1) \mapsto \mathbb{C}_q^2 \otimes \dots \otimes \mathbb{C}_q^2$$
 $\bigcap_{1 = 1}^{1} \mapsto \operatorname{cap} \quad , \quad \bigcup_{1 = 1}^{1} \mapsto \operatorname{cup}$

Theorem(Folklore) $\Gamma: 2$ -Web^{\oplus} $\rightarrow \mathfrak{sl}_2$ -Mod is an equivalence of (braided) monoidal categories.

\$l2-webs

November 2015

5 / 21

- Each generic slice of the cobordisms from 2-Cob is a 2-web.
- In fact, one can see 2-Cob_C as a 2-category that categorifies 2-Web (in a suitable sense). In particular, the relations in 2-Web are lifted to equivalences of 1-morphisms in 2-Cob_C:

$$O \xrightarrow{\qquad} \begin{pmatrix} \textcircled{\textcircled{\baselineskip}} \\ & \textcircled{\baselineskip} \end{pmatrix} \xrightarrow{\qquad} \emptyset \{+1\} \oplus \emptyset \{-1\} \xrightarrow{\qquad} \begin{pmatrix} \textcircled{\baselineskip} \\ & \textcircled{\baselineskip} \end{pmatrix} \xrightarrow{\qquad} O$$

- By the representation theorem and Reshetikhin-Turaev's construction: the category 2-Web can be used to calculate the Jones polynomial.
- Thus, 2-Cob should give Khovanov homology and indeed, it does.

A $\mathfrak{gl}_2\text{-web}$ is a labeled trivalent graph locally made of

$$\mathbf{m} = egin{pmatrix} & & \\ & & \\ & & \\ & & \\ & & 1 \end{bmatrix}, \quad \mathbf{s} = egin{pmatrix} & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & &$$

Define the (braided) monoidal, $\mathbb{C}(q)$ -linear category 2-reWeb by using:

Definition

The revised 2-web space $\operatorname{Hom}_{2\operatorname{reWeb}}(\vec{k}, \vec{l})$ with $\vec{k}, \vec{l} \in \{0, 1, 2\}^{\mathbb{Z}}$ is the free $\mathbb{C}(q)$ -vector space generated by \mathfrak{gl}_2 -webs modulo the "circle" removal

and isotopies fixing the boundary.

Diagrams for intertwiners

Observe that there are (up to scalars) unique $U_q(\mathfrak{gl}_2)$ -intertwiners

$$\mathrm{m} \colon \mathbb{C}_q^2 \otimes \mathbb{C}_q^2 \twoheadrightarrow \bigwedge_q^2 \mathbb{C}_q^2, \quad \mathrm{s} \colon \bigwedge_q^2 \mathbb{C}_q^2 \hookrightarrow \mathbb{C}_q^2 \otimes \mathbb{C}_q^2$$

given by projection and inclusion.

Let \mathfrak{gl}_2 -**Mod** be the (braided) monoidal, $\mathbb{C}(q)$ -linear category whose objects are tensor generated by \mathbb{C}_q^2 and $\bigwedge_q^2 \mathbb{C}_q^2$. Define a functor $\Gamma: 2$ -reWeb $\rightarrow \mathfrak{gl}_2$ -Mod:

$$\vec{k} = (0, 1, 1, 2, 0) \mapsto \mathbb{C}(q) \otimes \mathbb{C}_q^2 \otimes \mathbb{C}_q^2 \otimes \bigwedge_q^2 \mathbb{C}_q^2 \otimes \mathbb{C}(q), \text{ etc.}$$

$$\bigwedge_{l=1}^{2} \mapsto m \quad , \quad \bigvee_{l=2}^{1} \mapsto s$$

Theorem

 $\mathsf{\Gamma}\colon 2\text{-}\mathbf{reWeb}^\oplus \to \mathfrak{gl}_2\text{-}\mathbf{Mod} \text{ is an equivalence of } (\mathsf{braided}) \text{ monoidal categories}.$

Daniel Tubbenhauer

From \mathfrak{gl}_2 to \mathfrak{sl}_2

Restricting from \mathfrak{gl}_2 to \mathfrak{sl}_2 could increase the number of intertwiners:

 $\mathbf{U}_q(\mathfrak{sl}_2) \subset \mathbf{U}_q(\mathfrak{gl}_2) \quad \Rightarrow \quad \mathrm{Hom}_{\mathbf{U}_q(\mathfrak{sl}_2)}(M,M') \supset \mathrm{Hom}_{\mathbf{U}_q(\mathfrak{gl}_2)}(M,M').$

Note that \mathbb{C}_q^2 is self-dual as a $\mathbf{U}_q(\mathfrak{sl}_2)$ -module, but not as a $\mathbf{U}_q(\mathfrak{gl}_2)$ -module. We obtain extra diagrams:

$$\bigcap_{1 \leq j \leq 1} : \mathbb{C}_q^2 \otimes \mathbb{C}_q^2 \to \mathbb{C}(q), \qquad \bigcup^{1 \leq j \leq 1} : \mathbb{C}(q) \to \mathbb{C}_q^2 \otimes \mathbb{C}_q^2.$$

In particular, the so-called determinant representation $\bigwedge_a^2 \mathbb{C}_a^2$ satisfies

$$\begin{split} & \wedge_q^2 \mathbb{C}_q^2 \cong \mathbb{C}(q) \quad \text{as } \mathbf{U}_q(\mathfrak{sl}_2)\text{-modules}, \\ & \wedge_q^2 \mathbb{C}_q^2 \ncong \mathbb{C}(q) \quad \text{as } \mathbf{U}_q(\mathfrak{gl}_2)\text{-modules}. \end{split}$$

Diagrams for intertwiners

Observe that there are (up to scalars) unique $\mathbf{U}_q(\mathfrak{gl}_M)$ -intertwiners

 $\mathbf{m}_{k,l}^{k+l} \colon \bigwedge_{q}^{k} \mathbb{C}_{q}^{M} \otimes \bigwedge_{q}^{l} \mathbb{C}_{q}^{M} \twoheadrightarrow \bigwedge_{q}^{k+l} \mathbb{C}_{q}^{M} \quad \text{and} \quad \mathbf{s}_{k+l}^{k,l} \colon \bigwedge_{q}^{k+l} \mathbb{C}_{q}^{M} \hookrightarrow \bigwedge_{q}^{k} \mathbb{C}_{q}^{M} \otimes \bigwedge_{q}^{l} \mathbb{C}_{q}^{M}$ given by projection and inclusion.

Let \mathfrak{gl}_M -**Mod**_e be the (braided) monoidal, $\mathbb{C}(q)$ -linear category whose objects are tensor generated by $\bigwedge_q^k \mathbb{C}_q^M$. Define a functor $\Gamma : M$ -**Web**_g $\to \mathfrak{gl}_M$ -**Mod**_e:

Theorem(Cautis-Kamnitzer-Morrison 2012)

 $\Gamma \colon M\operatorname{\!-\!Web}_{\mathrm{g}}^{\oplus} \to \mathfrak{gl}_{M}\operatorname{\!-\!Mod}_{e} \text{ is an equivalence of } (\mathsf{braided}) \text{ monoidal categories}.$

Daniel Tubbenhauer

- The same pattern continues for other categories of intertwiners: one always needs trivalent vertices.
- If we believe in Khovanov's categorification approach using (and we do), then we should find a "cobordism" category whose generic slices are trivalent graphs aka webs.
- These are foams! We cook them up using singular TQFTs where the singular seams "categorify" the trivalent vertex.
- Note that the sign issue for the functoriality of Khovanov homology roughly comes from the identification of $\Lambda^2_{\sigma} \mathbb{C}^2_{\sigma}$ with the trivial module.

Informally, a \mathfrak{gl}_2 -foam is a two-dimensional CW-complex with singular circles, some additional data and modulo some relations. A point on a singular circle has a neighborhood homeomorphic to the product of the letter Y and an interval

Here generic slices are \mathfrak{sl}_2 -webs!

"Usual" TQFTs

Recall that equivalence classes of TQFTs for surfaces are in one-to-one correspondence with isomorphism classes of finite-dimensional, commutative Frobenius algebras. The Frobenius algebras we need are

$$\mathcal{A}_1 = \mathbb{C}[X]/(X^2), \qquad \mathcal{A}_2 = \mathbb{C},$$

with a non-trivial trace $tr_2(1) = -1$ for the second.

We have seen the TQFT for A_1 before. The one for A_2 has relations like

Singular surfaces

Fix the following data denoted by $\boldsymbol{S}:$

- A surface S with connected components divided into two sets S_1, \ldots, S_r and $S_1^p, \ldots, S_{r'}^p$, called ordinary surfaces and phantom surfaces.
- **②** The boundary components of *S* are partitioned into triples (C_i, C_j, C_k^p) such that each triple contains precisely one phantom boundary component.
- The three circles C_i, C_j and C^p_k in each triple are identified via diffeomorphisms φ_{ij}: C_i → C_j and φ_{jk}: C_j → C^p_k.
- A finite (possible empty) set of "dots" per connected components S₁,..., S_r and S^p₁,..., S^p_{r'} that move freely around its connected component.

Now identify via $\varphi_{ij} \colon C_i \to C_j$ and $\varphi_{jk} \colon C_j \to C_k^p$, e.g.

Cook up a category of pre-foams $p\mathcal{F}$ from **S** and the identification. Now we want a singular TQFT functor $\mathcal{T}: p\mathcal{F} \to \mathbb{C}$ -Vect. In order to do so we use the two TQFTs (Frobenius algebras) \mathcal{A}_1 and \mathcal{A}_2 and decompose:

Here f_i is a surface associated to A_i for i = 1, 2.

Define the gluing procedure:

$$egin{aligned} \operatorname{glue}_{\mathcal{A}_1}\colon \mathcal{A}_1\otimes \mathcal{A}_1 o \mathcal{A}_1, \ (a\!+\!bX)\otimes (c+dX)\mapsto (a+bX)(c-dX), \ & \operatorname{glue}_{\mathcal{A}_2}\colon \mathcal{A}_2 o \mathcal{A}_1, \ 1\mapsto 1. \end{aligned}$$

Then we set

$$\mathcal{T}(f_c) = (\mathrm{tr}_1)^{\otimes m}(\mathrm{glue}_{\mathcal{A}_1}^{\otimes m}(\mathcal{T}_{\mathcal{A}_1}(f_1)) \otimes \mathrm{glue}_{\mathcal{A}_2}^{\otimes m}(\mathcal{T}_{\mathcal{A}_2}(f_2))) \in \mathbb{C}^{\otimes m} \cong \mathbb{C}.$$

This gives a well-defined functor on closed pre-foams assigning to each such f_c a value $\mathcal{T}(f_c) \in \mathbb{C}$. A crucial insight of Blanchet is that this can be extended:

Theorem(Blanchet 2010)

This construction can be extended to a singular TQFT functor $\mathcal{T}: p\mathcal{F} \to \mathbb{C}\text{-}\mathbf{Vect}$.

From TQFTs to $\mathbb C\text{-linear}$ cobordism categories

Let \mathfrak{F} be the $\mathbb{C}\text{-linear}$ category whose objects are webs and:

- The hom spaces $\operatorname{Hom}_{\mathcal{C}}(web, web)$ is the \mathbb{C} -vector whose basis are all (embedded) pre-foams between these webs modulo relations.
- The relations are isotopies and some (local) relations, e.g.:

Remark

To find the relations is the most difficult part of the game.

Remark

The grading is still the (slightly rearranged) topological Euler characteristic.

A "singular cobordism algebra"

Define a 'foamy" algebra $\mathbf{W}_{\vec{k}}$ as before. An example of the multiplication is

Some nice features of the singular cobordism construction:

- \bullet One can use more general gluing maps, Frobenius algebras, work over $\mathbb Z$ etc.
- The signs in Khovanov homology are automatically fixed (similarly for the $\mathfrak{sl}_M/\mathfrak{gl}_M$ "friends" of Khovanov homology).
- This generalizes to $\mathfrak{sl}_M/\mathfrak{gl}_M$. This should generalize to other types as well.
- In particular, one obtains a categorification of $\mathbb{C}_q^M \otimes \cdots \otimes \mathbb{C}_q^M$ and possibly all its summands as well.
- This should give a generators/relations presentation of the M-block parabolic category $\mathcal O$ for $\mathfrak{gl}_m.$
- Explicit relations to algebraic geometry (e.g. Grassmannians, Springer varieties etc.) need to be worked out.
- Explicit relations to quantum Chern-Simons theory and string theory need to be worked out.
- More...

There is still much to do...

Thanks for your attention!