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0 Philosophy: “Categorifying” classical representation theory
@ Some classical results
@ Some categorical results

© Some details
@ A brief primer on Ny-representation theory
@ A brief primer on 2-representation theory
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Pioneers of representation theory

Let G be a finite group.

Frobenius ~1895+, Burnside ~1900++. Representation theory is the
study of linear group actions

M: G — Aut(V), |["M(g)=a matrix in Aut(v)"]

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple.

Maschke ~1899. All modules are built out of simples (“Jordan—Holder
filtration™).
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Pioneers of representation theory

Let A be a finite-dimensional algebra.

Noether ~1928-. Representation theory is the useful? study of algebra actions

M: A — End(V), |“./\/l(a) = a matrix in Snd(V)”|

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple.

Noether, Schreier ~1928. All modules are built out of simples (“Jordan—Hdlder
filtration™).
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Pioneers of representation theory

Let A be a finite-dimensional algebra.

Noether ~1928-. Representation theory is the useful? study of algebra actions
M: A — End(V),

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple.

Noether, Schreier ~1928. All modules are built out of simples (“Jordan—Hdlder
filtration™).

We want to have a
categorical version of this.

| am going to explain what we can do at present.
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The strategy

“Groups, as men, will be known by their actions.” — Guillermo Moreno

The study of group actions is of fundamental importance in mathematics and
related field. Sadly, it is also very hard.

Representation theory approach. The analogous linear problem of classifying
G-modules has a satisfactory answer for many groups.

Problem involving
a group action
GcX
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The strategy

“Groups, as men, will be known by their actions.” — Guillermo Moreno

The study of group actions is of fundamental importance in mathematics and
related field. Sadly, it is also very hard.

Representation theory approach. The analogous linear problem of classifying
G-modules has a satisfactory answer for many groups.

Problem involving Problem involving
a group action  ---------------»a linear group action
Gcx k[G]C kX
"
new . ’
insights?™..

.. “Decomposition of "
the problem”

k[G]CG @V

Philosophy. Turn problems into linear algebra.
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Some theorems in classical representation theory

> All G-modules are built out of simples.
> The character of a simple G-module is an invariant.
> There is an injection
{simple G-modules} /iso
(%
{conjugacy classes in G},
which is 1 : 1 in the semisimple case.

> All simples can be constructed intrinsically using the regular G-module.
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Some theorems in classical representation theory

> All G-modules are built out of simples.

> The character of a simple G-module is an invariant.

. .. . The only remembers the
> There is an Injection traces of the acting matrices.
{simple G-modules} /iso
—
{conjugacy classes in G},
which is 1 : 1 in the semisimple case. “Regular G-module

= G acting on itself.”
> All simples can be constructed intrinsically using the regular G-module.
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Some theorems in classical representation theory

|Find categorical versions of these facts.|

> All G-modules are built out of simples.
> The character of a simple G-module is an invariant.
> There is an injection
{simple G-modules} /iso
(%
{conjugacy classes in G},
which is 1 : 1 in the semisimple case.

> All simples can be constructed intrinsically using the regular G-module.
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Pioneers of 2-representation theory

Let G be a finite group.

|P|us some coherence conditions which | will not explain.l
Chuang—Rouquier & many others ~2004-H-. Higher representation theory is
the useful? study of (certain) categorical actions, e.g.

MG — dut(V),|"#(g) = a functor in .Fut(V)"]

with V being some C-linear category. (Called 2-modules or 2-representations.)

The “atoms” of such an action are called 2-simple.

Mazorchuk—Miemietz ~2014. All 2-modules are built out of
2-simples (“ 2-Jordan—Halder filtration™).
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Pioneers of 2-representation theory

Let 6 be a finitary 2-category.

Chuang—Rouquier & many others ~2004-H-. Higher representation theory is
the study of actions of 2-categories:

M€ — End(V),
with V being some C-linear category. (Called 2-modules or 2-representations.)
The “atoms” of such an action are called 2-simple.

Mazorchuk—Miemietz ~2014. All 2-modules are built out of
2-simples (“ 2-Jordan—Halder filtration™).

The three goals of 2-representation theory.
Improve the theory itself.
Discuss examples.
Find applications.
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The strategy — part two

“Groups, as men, will be known by their actions.” — Guillermo Moreno

The study of group actions is of fundamental importance in mathematics and
related field. Sadly, it is also very hard.

2-Representation theory approach. The higher structure might give new
insights into known group actions.

Problem involving
a group action
GCX
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The strategy — part two

“Groups, as men, will be known by their actions.” — Guillermo Moreno

The study of group actions is of fundamental importance in mathematics and
related field. Sadly, it is also very hard.

2-Representation theory approach. The higher structure might give new
insights into known group actions.

Example (Khovanov—Seidel & others ~2000-++).

There is a whole zoo of categorical actions of braid groups
which are “easily” shown to be faithful.

This is a big open problem for most braid groups and their modules.
MSIgnts! “. “Decomposition of |-
the problem”
into 2-simples
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“Lifting” classical representation theory

> All G-modules are built out of simples.
> The character of a simple G-module is an invariant.

> There is an injection

{simple G-modules} /iso
<_>

{conjugacy classes in G},

which is 1: 1 in the semisimple case.
> All simples can be constructed intrinsically using the regular G-module.
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“Lifting” classical renresentation theory
Note that we have a very particular notion

what a “suitable” 2-module is.

2-modules are built out of 2-simples.

> All
D> The character of a simple G-module is an invariant.

> There is an injection
{simple G-modules} /iso
(ﬁ
{conjugacy classes in G},

which is 1 : 1 in the semisimple case.
o> All simples can be constructed intrinsically using the regular G-module.
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“Lifting” classical representation theory

What characters were for Frobenius
th tri f 5
> All 2-modul are these matrices for us.

> The decategorified actions (a.k.a. matrices) of the M(F)'s are invariants.

> There is an injection

{simple G-modules} /iso
(ﬁ

{conjugacy classes in G},

which is 1 : 1 in the semisimple case.

o> All simples can be constructed intrinsically using the regular G-module.
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“Lifting” classical representation theory

> All 2-modules are built out of 2-simples.
> The decategorified actions (a.k.a. matrices) of the M(F)'s are invariants.
> There is an injection

{2-simples of €} /equi.

(SN |There are some technicalities.l

{certain (co)algebra 1-morphisms}/“2-Morita equi.”,

which is 1: 1 in well-behaved cases.

o> All simples can be constructed intrinsically using the regular G-module.
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“Lifting” classical representation theory

\%

All 2-modules are built out of 2-simples.
The decategorified actions (a.k.a. matrices) of the M(F)'s are invariants.
There is an injection

{2-simples of €} /equi.
(ﬁ
{certain (co)algebra 1-morphisms}/“2-Morita equi.”,

which is 1: 1 in well-behaved cases.

There exists principal 2-modules lifting the regular module.
Even in well-behaved cases there are 2-simples which do not arise in this way.

These turned out to be very interesting,
since their importance is only visible via categorification.
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Np-algebras and their modules

An algebra P with a basis B is called a Np-algebra if

xy € NoBY  (x,y € BF).

A P-module M with a basis BM is called a Ng-module if
xm € NgBM  (x € BY,m € BM).

These are Ny-equivalent if there is a Ny-valued change of basis matrix.

Example. Ny-algebras and Ny-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ny-equivalence comes from 2-equivalence.
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Example.

Group algebras of finite groups with basis given by group elements are Np-algebras.

The regular module is a No-module.
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Example.

Group algebras of finite groups with basis given by group elements are Np-algebras.

The regular module is a No-module.

A P-m

These

D

Example.
The regular module of a group algebra decomposes over C into simples.

However, this decomposition is almost never an Np-equivalence.
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Example.

Group algebras of finite groups with basis given by group elements are Np-algebras.

A The regular module is a No-module.
Example.
The regular module of a group algebra decomposes over C into simples.
A P-m
However, this decomposition is almost never an Np-equivalence.
Example.
These
Hecke algebras of (finite) Coxeter groups with
Examj their Kazhdan—Lusztig (KL) basis are Ng-algebras. htion of
2-categ
For the symmetric group a happens: all simples are No-modules.
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Cells of Nj-algebras and Ny-modules

Clifford, Munn, Ponizovskii ~1942+, Kazhdan—Lusztig ~1979. x < y if x
appears in zy with non-zero coefficient for z € BP. x ~ yifx< yandy < x.
~ partitions P into left cells L. Similarly for right R, two-sided cells J or
Ng-modules.

A Ng-module M is transitive if all basis elements belong to the same ~|
equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive Ng-module has a unique apex.

Hence, one can study them cell-wise.

Example. Transitive No-modules arise naturally as the decategorification of
simple 2-modules.
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Cells of Nj-algebras and Ny-modules

Clifford, Muni
appears in zy
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Ng-modules.

A Ng-module N
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Hence, one can

Example. Tra

Philosophy.

Imagine a graph whose vertices are the x's or the m's.
vi — v if v appears in zvs.

Xl/X2\X4 m/mQ\m4
L 1

cells = connected components
transitive = one connected component

“The simples or atoms of Ny-representation theory”.
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yandy <| x.
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Cell

Cliffg

appes

Group algebras with the group element basis have only one cell, G itself.

Transitive No-modules are C[G/H] for H being a subgroup. The apex is G.

Example.

y if x

N X

~ partitions P into left cells L. Similarly for right R, two-sided cells J or
Np-modules.

A Ng-module M is transitive if all basis elements belong to the same ~|
equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive Ng-module has a unique apex.

Hence, one can study them cell-wise.

Example. Transitive No-modules arise naturally as the decategorification of
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Cliffg

appeq Tran5|t|ve No-modules are C[G/H] for H being a subgroup. The apex is G.

Group algebras with the group element basis have only one cell, G itself.

Example.
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oo 1oLy He 1 Cioail il D 3 iladl [P |
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Np-modu

A Ng-mo| have
equivalen

with apex given by elements for the same shape of Young tableaux.

Example (Kazhdan—Lusztlg ~1979).

Hecke algebras for the symmetric group with KL basis
coming from the Robinson—Schensted correspondence.

The transitive No-modules are the simples

L
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Hence, one can study them cell-wise.

Example. Transitive No-modules arise naturally as the decategorification of
simple 2-modules.
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Ce" Example.

Group algebras with the group element basis have only one cell, G itself.

y if x

Cliffg
appeqd Tran5|t|ve No-modules are C[G/H] for H being a subgroup. The apex is G.K| X.
~ partl H Hy [P 11 1 [« HI| il D 4 | 11 1

L Example (Kazhdan—Lusztlg ~1979).
Ng-modu

Hecke algebras for the symmetric group with KL basis

A Ng-mo| have coming from the Robinson—Schensted correspondence.
equivalen

si

The transitive No-modules are the simples

with apex given by elements for the same shape of Young tableaux.
L |

Example.

Take G = Z/3Z. Then G has three conjugacy classes and three associated simples.

These are given by specifying a third root of unity.

G has only one non-trivial subgroup; G itself.
The associated Ngo-module is the regular G-module.

Moral. Np-representation theory studies modules
which make in any characteristic.
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Cell-modules

Natural, and computable, examples of transitive Nyo-modules are the so-called cell
modules which, in some sense, play the role of regular modules.

Fix a left cell L. Let M(>), respectively M(>|), be the Ng-modules spanned by
all x € BP in the union L’ >| L, respectively L’ > L.
We call C. = M(>L)/M(>L) the (left) cell module for L.

’ Fact. “Cell = transitive Ng-module”.

Empirical fact. In well-behaved cases “Cell < transitive Ng-module”, and
classification of transitive Ng-modules is fairly easy.

Question. Are there natural examples where “Cell <~ transitive No-module”?

Example. Decategorifications of cell 2-modules are key examples of cell modules.

Daniel Tubbenhauer 2-representation theory in a nutshell October 2018 11 /15



Cé Example.

Na C[G] with the group element basis has only one cell module, the regular module. Lell

M9 However, the transitive No-modules C[G/H] are cell modules for G/H.

. So morally, “Cell < transitive No-module” .
FI d TCTU CTIT L. L.TT lVl\_L}, ICDPC\-LIVCI)’ iVl\ L}, DT LI IND=TTTOuUuTcS D}Jdllllcu y

all x € BP in the union L’ >| L, respectively L’ > L.
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all x Example (Kazhdan—-Lusztig ~1979, Lusztig ~1983+).
We ¢

For Hecke algebras of the symmetric group with KL basis
“Cell < transitive No-module” .

In general, for Hecke algebras the cell modules are Lusztig's

Em
classi cell modules studied in connection with reductive groups in characteristic p.
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Cé Example.
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all x Example (Kazhdan—-Lusztig ~1979, Lusztig ~1983+).
We ¢

For Hecke algebras of the symmetric group with KL basis
“Cell < transitive No-module” .

In general, for Hecke algebras the cell modules are Lusztig's

Em
classi cell modules studied in connection with reductive groups in characteristic p.

U P P

- Example.
Question. o-module”?

Morally speaking, the more complicated the cell structure,
the more likely that “Cell <~ transitive No-module”.

Example. D¢ cell modules.
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2-representation theory in a nutshell

2-category R~ categories < functors < nat. trafos
categLrTfies categ‘orify categ‘orify

1-category 0~ vector spaces < T linear maps
categ‘orifies categ‘orify

0-category X~ numbers

The ladder of categorification: in each step there is a new layer of structure
which is invisible on the ladder rung below.
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2-representation theory in a nutshell

forms i
2-category <~~~ ~— categories < functors <
\

categorifies ‘ ‘

relate

Goal.

f
1-category R — | Categorify the theory ‘“representation theory" itself.

categorifies categorify

forms
O-category <~~~ ~~— numbers
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2-representation theory in a nutshell

forms i relate
2-category <~~~ ~— categories < functors < nat. trafos
\

categorifies ‘ ‘

Goal.

f
1-category R — | Categorify the theory ‘“representation theory" itself.
\ ’ \

categorifies categorify

s

form:
0-category <~ !

Observation.

A group G can be viewed as a single-object category G,
and a module as a functor from G
into the single-object category Aut(V), i.e.
M: G — Aut(V).
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2-representation theory in a nutshell

forms i relate
2-category <~~~ ~— categories < functors < nat. trafos
\

categorifies categorify

categorify
forms relate N
1-category <~~~— vector spaces < linear maps
categ‘orifies categ‘orify
forms
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Classical representation theory lives here
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2-representation theory in a nutshell

—— i M(1)
2-module category

categorifies categorifies

N
— i M(1)
1-module vector space

categorifies categorifies

— i m(1)

0-module number

Daniel Tubbenhauer

2-representation theory in a nutshell

F s A (F)
functor
categLrTfies
4
F - M(F)

linear map
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2-representation theory in a nutshell

categorical module

i (L) F s M (F) o M(a)

2-module category functor nat. trafo
| |
categorifies categorifies categorifies
—— i M(1) F s M(F)
1-module vector space linear map
categorifies categorifies

— i m(1)

0-module number
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“Lifting” Ny-representation theory

An additive, k-linear, idempotent complete, Krull-Schmidt 2-category % is called
finitary if some finiteness conditions hold.

A simple transitive 2-module (2-simple) of € is an additive, k-linear 2-functor
M C€ — (= 2-cat of finitary cats),

such that there are no non-zero proper 6-stable ideals.
There is also the notion of 2-equivalence.

Example. Ny-algebras and Ng-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ny-equivalence comes from 2-equivalence.
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Mazorchuk—Miemietz ~2014.

2-Simples «~ simples (e.g. 2-Jordan—Halder filtration),

but their decategorifications are transitive No-modules and usually not simple.

alled

A simple transitive 2-module (2-simple) of € is an additive, k-linear 2-functor
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uLi Mazorchuk—Miemietz ~2014.

An 4 2-Simples «~ simples (e.g. 2-Jordan—Halder filtration), L lled
finit but their decategorifications are transitive No-modules and usually not simple.

H 1 e ikl (a} A | Vs M L O Salial .1 L
A simy Mazorchuk—Mlemletz ~2011. tor

Define cell theory similarly as for Np-algebras and -modules.

such t
There|2-simple = transitive, and transitive 2-modules have a 2-simple quotient.
Example. N Chan—Mazorchuk ~2016. orification of

2-categories lence.
Every 2-simple has an associated apex not killing it.

Thus, we can again study them separately for different cells.
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“Lift — ) .E;(amplt.e..

An addB-Mod is a prototypical object of .#f.f called
finitary

A 2-module usually is given by endofunctors on B-Mod.
A simple transitive 2-module (2-simple) of € is an additive, k-linear 2-functor
Example.

such 4G can be (naively) categorified using G-graded vector spaces Vecg € .ofF.

There
The 2-simples are indexed by subgroups H and ¢ € H*(H,C").

Examnle N aloehras and Na-modulec arise naturally ac the decatecarification of

zExampIe (Mazorchuk—Miemietz & Chuang—Rouquier & Khovanov-Lauda & ...).

2-Kac—Moody algebras are finitary 2-categories.

Their 2-simples are categorifications of the simples.
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“Lifting” Ny-representation theory

Example (Mazorchuk—Miemietz & Soergel & Khovanov—Mazorchuk—Stroppel & ...).
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Symmetric group: the 2-simples are categorifications of the simples.

such that there are no non-zero proper 6-stable ideals.
There is also the notion of 2-equivalence.

Example. Ny-algebras and Ng-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ny-equivalence comes from 2-equivalence.

Daniel Tubbenhauer 2-representation theory in a nutshell October 2018 13 /15



“Lifting” Ny-representation theory

Example (Mazorchuk—Miemietz & Soergel & Khovanov—Mazorchuk—Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.

Symmetric group: the 2-simples are categorifications of the simples.

Example (Kildetoft—-Mackaay—Mazorchuk—Miemietz—Zhang & ...).

— U0

Quotients of Soergel bimodules , e.g. small quotients, are finitary 2-categories.

of

Except for the small quotients+e the classification is widely open.
-CALECEUTTES dTTu Z=TrmTouares, dima INg=EquUTvdareTicT COTITES TTUTT Z=CJUTVdITTICE.

N
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Example (Mazorchuk—Miemietz & Soergel & Khovanov—Mazorchuk—Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.

Symmetric group: the 2-simples are categorifications of the simples.

Example (Kildetoft—-Mackaay—Mazorchuk—Miemietz—Zhang & ...).

— U0

Quotients of Soergel bimodules , e.g. small quotients, are finitary 2-categories.

of

Except for the small quotients+e the classification is widely open.
-CALECEUTTES dTTu Z=TrmTouares, dima INg=EquUTvdareTicT COTITES TTUTT Z=CJUTVdITTICE.

N

Example.

Fusion or modular categories are semisimple examples
of finitary 2-categories. (Think: Rep(G) or module categories of quantum groups.)
Their 2-modules play a prominent role in quantum algebra and topology.
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“Lifting” Ny-representation theory

An additive, k-linear, idempotent complete, Krull-Schmidt 2-category % is called
finitary if some finiteness conditions hold.

A simple transitive 2-module (2-simple) of € is an additive, k-linear 2-functor
Question (“2-representation theory”).

such that there a|Classify all 2-simples of a fixed finitary 2-category.

al o LN M 1

This is the categorification of

There is alsq

Example. N  ‘Classify all simples a fixed finite-dimensional algebra’,  jorification of
2-categories lence.

but much harder, e.g. it is unknown whether
there are always only finitely many 2-simples (probably not).
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2-modules of dihedral groups

The dihedral group Dy, of the regular n-gon has two reflection generators s,

Consider: 6, =s+1, 0. =t+1.

These elements generate C[D2,] and their relations are fully understood:

0.0, = 20., 0.0. =20, a relation for ...sts = ...tst.
- T
We want a categorical action. So we need:
> A category V to act on.
> Endofunctors ©; and ©. acting on V.
D> The relations of 65 and 6. have to be satisfied by the functors.
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2-modules of dihedral groups

The dihedral group Dy, of the regular n-gon has two reflection generators s,

Consider: 6, =s+1, 0. =t+1.
Theorem ~2016.

There is a one-to-one correspondence

These elemer bod:
{ 2-simple D,-modules}/2-iso
9595 1:1 ST.
— N—"

{bicolored ADE Dynkin diagrams with Coxeter number n}.|"

We want a ¢ Thus, its easy to write down a

> A category V to act on.
> Endofunctors ©; and ©. acting on V.
D> The relations of 65 and 6. have to be satisfied by the functors.

Daniel Tubbenhauer 2-representation theory in a nutshell October 2018
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Pioneers of representation theory
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It may then be asked why, in a book which professes to leave
all applications on one side, a iderable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that
could be most directly obtained by the consideration of grou
of linear transformations.

ERY considerable advances in the theory of groups of
finite order have been made since the appearance of the
first edition of this book. In particular the theory of groups
of linear substitutions has been the subject of numerous and

important investigations by several writers; and the reason
given in the original preface for omitting any account of it no
longer holds good.

In fact it is now more true to say that for further advances

in the abstract theory one must look largely to the representa-
tion of a group as a group of linear substitutions. There is

Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).



It may then be asked why, in a book which professes to leave
all applications on one side, a iderable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that

|Nowadays representation theory is pervasive across mathematics, and beyond.|

‘7ERY considerable advances in the theory of groups of

[But this wasn't clear at all when Frobenius started it.]

of linear substitutions has been the subject of numerous and
important investigations by several writers; and the reason
given in the original preface for omitting any account of it no
longer holds good.

In fact it in now more true to say that for further advances
in the abstract theory one must look largely to the representa-
tion of a group as a group of linear substitutions. There is

Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).



¢ primitive

Figure: “Uber Gruppencharaktere (i.e. characters of groups)” by Frobenius (1896).
Bottom: first published character table.




Khovanov & others ~1999--. Knot homologies are instances of
2-representation theory. | Low-dim. topology & Math. Physics

Khovanov—Seidel & others ~2000+. Faithful 2-modules of braid groups.
’ Low-dim. topology & Symplectic geometry

Chuang—Rouquier ~2004. Proof of the Broué conjecture using 2-representation
theory. ’ p-RT of finite groups & Geometry & Combinatorics‘

Elias—Williamson ~2012. Proof of the Kazhdan—Lusztig conjecture using ideas
from 2-representation theory. ’ Combinatorics & RT & Geometry‘

Riche-Williamson ~2015. Tilting characters using 2-representation theory.
p-RT of reductive groups & Geometry‘

Many more...



Khovanov & others ~1999--. Knot homologies are instances of
2-representation theory. | Low-dim. topology & Math. Physics

Khovanov—Seidel & others ~2000+. Faithful 2-modules of braid groups.
’ Low-dim. topology & Symplectic geometry‘

Functoriality of Khovanov—Rozansky's invariants ~2017.

Chuang—Rou representation
theory. | p-RT Ve r? '

link Q functoriality linear
Elias—Willian oberdiem re using ideas

from 2-represe Lewd [

. . (This was conjectured for about 10 years,
Riche—Williay but seemed infeasible to prove,
p-RT of redu and has some impact on 4-dim. topology.)
The main ingredient?

Many more.. 2-representation theory.

n theory.




The KL basis elements for S with s = (1,2),t = (2,3) and sts = wy = tst are:

=1, O.,=s+1, O.=t+1, O.,=ts+s+t+1,
O =st+s+t+1, Oy =w+ts+st+s+t+1

[y

H EH :: : 1B

Figure: The character table of Ss.




The KL basis elements for S with s = (1,2),t = (2,3) and sts = wy = tst are:

=1, O.,=s+1, O.=t+1, O.,=ts+s+t+1,
O =st+s+t+1, Oy =w+ts+st+s+t+1

91 95 et ets est 9Wo

Figure: The character table of Ss.



The KL basis elements for S with s = (1,2),t = (2,3) and sts = wy = tst are:

=1, O.,=s+1, O.=t+1, O.,=ts+s+t+1,
O =st+s+t+1, Oy =w+ts+st+s+t+1

91 0 et 9:5 Gst 9W0
Remark.
T This non-negativity of the KL basis 6

is true for all symmetric groups,
but not for most other groups (as we will see).

 H

Figure: The character table of Ss.



(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.

Elements of S, JLLN (P, Q) standard Young tableaux of the same shape. Left,
right and two-sided cells of Sj:

> s~ tif and only if Q(s) = Q(¢).
» s ~g tif and only if P(s) = P(t).
» s~ tifand only if P(s) and P(t) have the same shape.

Example (n = 3).

S e , S e B

1 e (IT2[3], [A213] W0<'W->,
3| [3

s
’ SL e L3



(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.

Elements of S, JLLN (P, Q) standard Young tableaux of the same shape. Left,
right and two-sided cells of Sj:

> s~ tif and only if Q(s) = Q(¢).
» s ~g tif and only if P(s) = P(t).
» s~ tifand only if P(s) and P(t) have the same shape.

Example (n = 3).
s [1]3] PN [1[3]
s e L5 s e fAL ] -
1
1 e~ [20E], [11213) Wo ,
3
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(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.

Elements of S, JLLN (P, Q) standard Young tableaux of the same shape. Left,
right and two-sided cells of Sj:

> s~ tif and only if Q(s) = Q(¢).
» s ~g tif and only if P(s) = P(t).
» s~ tifand only if P(s) and P(t) have the same shape.

Example (n = 3).

Right cells

e
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1
1 e [11213], (213 Wo e ,
3
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(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.

Elements of S, JLLN (P, Q) standard Young tableaux of the same shape. Left,
right and two-sided cells of Sj:

> s~ tif and only if Q(s) = Q(¢).
» s ~g tif and only if P(s) = P(t).
» s~ tifand only if P(s) and P(t) have the same shape.

Example (n = 3).

s e Sev o0
1 ens (1011 Wop e~ |,
o 15 H st e o0



(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.
Elements of S, N (P, Q) standard Young tableaux of the same shape. Left,

right an Apexes:
» S~
> s~ 01 95 et ets 0st ewo
> S~
[1T1] 1 2 2 4 4 6
Exampl

The No-modules are the simples.




The regular Z/3Z-module is
Ow(é(l)g) & 1%((1)8%)) & 2%(8(1)
001 010 10

Jordan decomposition over C with (3 = 1 gives
10 0 100
Oevw((l)?8> & 1«w»<0< 0) & 2%(0(10)
001 00¢ ! 00 ¢

However, Jordan decomposition over f3 gives

ow(é‘fg) & 1W(H‘1’) & 2M<H
001 001 00

0
1
1

and the regular module does not decompose.



Example (SAGE). The symmetric group on 4 strands. Number of elements: 24.
Number of cells: 5, named 0 (trivial) to 4 (top).

Cell order:
O—=1==2e=3—=4

Size of the cells:

[cell Jo[1]2]3]4]
[size [1]0]4a]o]1]

Left cells are rows,
right cells are columns.

Cell 1ise.g.:
S1 $S1 | S39251 1111
number of elements
5152 S2 5352 111
515253 | 5253 S3 111

Such cells of square size are called strongly regular.



Example (SAGE). The symmetric group on 4 strands. Number of elements: 24.

Number of cells: 5, Fact.
Cell order: “Cell < transitive No-module” holds
No-algebras with only strongly regular cells.

Size of the cells:

[cell Jo[1]2]3]4]
[size [1]0]4a]o]1]

Cell 1ise.g.:
S1 $S1 | S39251 1111
number of elements
5152 S2 5352 111
515253 | 5253 S3 111

Such cells of square size are called strongly regular.



Example (SAGE). The symmetric group on 4 strands. Number of elements: 24.

Number of cells: 5, Fact.
Cell order: “Cell < transitive No-module” holds
No-algebras with only strongly regular cells.

Size of the cells:

[cell Jo[1]2]3]4]

Fact.
Cell1ise.g.: .
g For the symmetric group all cells are strongly regular.
ST S235T 5335251 T T T
number of elements
5152 S2 5352 1111
51553 $S3 S3 1 1 1

Such cells of square size are called strongly regular.



Example (SAGE). The symmetric group on 4 strands. Number of elements: 24.
Number of cells: 5, named 0 (trivial) to 4 (top).

Cell order:
0—1=—2—3—4
Size of t Example. There are three rows with three elements,
so three cells modules of dimension three.

] All of them are isomorphic and here is one of them:
Cell 1is 110 0 00 0 0 0
st~ |0 0 O)Jands, e~ |1 1 O] andss«~~= |0 0 O
0 1 1 0 0 1 0 1 0

‘ 51553 ‘ $S3 ‘ S3 1 1 I

Such cells of square size are called strongly regular.



Example (SAGE). The Weyl group of type Bg. Number of elements: 46080.
Number of cells: 26, named 0 (trivial) to 25 (top).

Cell order:
Do 7 e 10 == 13 == 15 == 18 =21
7 7/ N\ 7 /7 N N\
O=]1=2—=4 e = 8 § e ]2 = 16 == 17 == 19 == 22 o 23 e 24 = 25
/7 N /7 N\ 7
3 11 14 20

Size of the cells and whether the cells are strongly regular (sr):

cell 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 20 21 22 | 23 | 24| 25
ize 1 | 62 | 342 | 576 | 650 | 3150 | 350 | 1600 | 2432 | 3402 | 900 | 2025 | 14500 | 600 | 2025 | 900 | 3402 | 2432 | 1600 | 350 | 576 | 3150 | 650 | 342 | 62

In general there will be plenty of non-cell modules which are transitive Ng-modules.



Construct a Do,-module V associated to a bipartite graph G:

i 3 24 5
20100 0
02111 0
§o~M.=| 00000 |, G ~M=| 1
000O00O 0
000O00O 0

el ==

O O N O O

O N O O O

N O O O O



Construct a Do,-module V associated to a bipartite graph G:

action Q
0——

i 3 24 5
g
20100 0
02111 0
0. ~M.=| 1000000 |, O ~M=]| 1
00000 0
00000 0

el ==

O O N O O
O N O O O
N O O O O



Construct a Do,-module V associated to a bipartite graph G:

action

0——

i 3 24 5
g
2[0]1 00 0
0/2/1 11 0
0. ~M.=| o0looo |, G ~M=] 1
0/0j0 0O 0
0/0oj0 0O 0

el ==

O O N O O

O N O O O

N O O O O



Construct a Do,-module V associated to a bipartite graph G:

action

0——

i 3 24 5
AN
2 0l1l0 0 0
0 2/1/11 0
0. ~M.=| oo00joo |, 6 ~M=] 1
0 0|00 O 0
0 0|00 O 0

el ==

O O N O O

O N O O O

N O O O O



Construct a Do,-module V associated to a bipartite graph G:

action

0——

i 3 24 5
A_
2 0 1[0]o0 0
02111 0
0. ~M.=| oo0o0l00 |, G ~M=] 1
0 00|00 0
0 0 0|00 0

= = = O O
O O N O O
O N O O O
N O O O O



Construct a Do,-module V associated to a bipartite graph G:

action

0——

i 3 24 5
A/
20100 0
02111 0
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Construct a Do,-module V associated to a bipartite graph G:

i 3 24 5
N
20100 0
02111 0
0. ~M.=| 00000 |, G ~M=] 1
000O00O 0
000O00O 0

el ==

O O N O O
O N O O O
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Construct a Do,-module V associated to a bipartite graph G:

i 3 24 5

KNS &
20100
02111

0. ~M.=| 00000 |, 6 ~M, =
00000
00000

o O = O O

el ==

O O N O O
O N O O O

N O O O O



Construct a Do,-module V associated to a bipartite graph G:

6.
i 3 24 5
g

20100 0

02111 0

go~M,=| 00000 |, @ ~M=| 1
00000 0

00000 0

el ==

O O N O O

O N O O O

N O O O O



Construct a Do,-module V associated to a bipartite graph G:

V={(1,2,3,4,5)¢

D
etglm”

i 3 24 5

J

20100
02111

§o~M.=| 00000 |, 6 ~M =
000O00O
000O00O

o O = O O

el ==
O O N O O
O N O O O

N O O O O



Construct a Do,-module V associated to a bipartite graph G:

91;4 -

i 3 24 5

Jg
20100 0
02111 0
fo~M.=| 00000 |, O ~M=]| 1
000O00O 0
000O00O 0

el ==

O O N O O

O N O O O

N O O O O



Construct a Do,-module V associated to a bipartite graph G:

V= <la 27 gv @7 g>(C

|Lemma. For certain values of n these are No-valued C[D2,]-modules. |

e

[Lemma. All No-valued C[D;,]-module arise in this way. |

|Lemma. All 2-modules decategorify to such Np-valued C[D2,]-module. |

20100 00000
02111 00000
.M. =| 00000 |, @6 ~M=| 11200
00000 01020
00000 01002



Construct a Do,-module V associated to a bipartite graph G:

V:<la27 ) Ey >(C

Categorification.

Category ~ V = Z-Mod,
7 quiver algebra with underlying graph G.

Endofunctors ~~ tensoring with Z-bimodules.

Lemma. These satisfy the relations of C[D2,].

20100 0
02111

0. ~M.=| 00000 |, O ~M=]| 1
00000 0
00000 0

= = = O O
O O N O O
O N O O O
N O O O O



The type A family
n=5

=2 n=3 n=4
v —Ak—v

—k —Ah—F—k
* —

<
~

.

The type D family
n=10

The type E exceptions

n=18

f
g

n=12

n =30



The type A family

n=2 n=3 n=4 n=5 n==6

v —h—y —
—k —h—F—k

* F——k Fe—F—h—F—k

The type D family

12

This is an unexpected ADE classification,
< S which is — imho — quite neat. <

The type E exceptions

n=12 n=18 n =30




	Philosophy: ``Categorifying'' classical representation theory
	Some classical results
	Some categorical results

	Some details
	A brief primer on N0-representation theory
	A brief primer on 2-representation theory

	Appendix

