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Pioneers of representation theory

Let G be a finite group G .

Frobenius ∼1895++, Burnside ∼1900++. Representation theory is the (useful)

study of linear group actions:

M : G −→ End(V), M(g) = a “matrix” in End(V),

with V being some C-vector space. We call V a module or a representation.

The “atoms” of such an action are called simple.

Maschke ∼1899. All modules are built out of atoms (“Jordan-Hölder”).

We want to have a categorical version of this!
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Pioneers of representation theory

Let A be a finite-dimensional algebra.

Noether ∼1928++. Representation theory is the (useful) study of algebra actions
actions:

M : A −→ End(V), M(a) = a “matrix” in End(V),

with V being some C-vector space. We call V a module or a representation.

The “atoms” of such an action are called simple.

Noether, Schreier ∼1928. All modules are built out of atoms (“Jordan-Hölder”).

We want to have a categorical version of this!
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Categorification: A picture to keep in mind

2-category categories functors nat. trafos

1-category vector spaces linear maps

0-category numbers

relate relate

relate

“categorify”

“categorify”

“categorify”

forms

forms

forms

“categorifies”

“categorifies”

An algebra A can be viewed as an one-object category C, and a representation as a
functor from C into the one-object category End(V), i.e. M : C −→ End(V).
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Classical representation theory “lives” here
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An algebra A can be viewed as an one-object category C, and a representation as a
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“Lifting” representation theory

Let C be a (suitable) 2-category, Af
k

be the 2-category of (suitable) categories and M
be a (suitable) 2-functor M : C −→ Af

k
. Then M is a 2-representation, and

2-representations decategorify to representations:

2-morphisms α 7→ M(α)
nat. trafo

1-morphisms F 7→M(F)
functor

[F] 7→ [M(F)]
linear map

objects i 7→ M(i)
category

[i] 7→ [M(i)]
vector space

[·]⊕

decategorifies

A lot of statements from classical representation theory “lift”, e.g.:

Mazorchuk-Miemietz ∼2014. Notion of “2-atoms” (called simple transitive). All
(suitable) 2-representations are built out of 2-atoms (“2-Jordan-Hölder”). These are

“determined” on the level of the Grothendieck group [·]⊕.

2-atoms of the symmetric group decategorify to atoms.
Beware: This is wrong in general.
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2-representation theory – the “How”

Basic philosophy: Stay as long in the Grothendieck group as possible!

1 list of candidates

2 reduce the list

3 construct the remaining ones

give

Example(construction). We have the i-th principal 2-representation C (i,−).

B This “lifts” the regular representation of algebras.

B Sadly: These are usually not 2-atoms.
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The state of the arts

B Chuang-Rouquier ∼2004, Khovanov-Lauda ∼2008. Systematic study of
2-representations of Lie algebras.

B Chuang-Rouquier ∼2004, Khovanov-Lauda ∼2008. All (simple)
representations have categorifications.

B Rouquier ∼2008, Losev-Webster ∼2013. These are “unique”.

B Plenty of applications and generalizations are known. It is hard to
overestimate the influence of Chuang-Rouquier’s and Khovanov-Lauda’s work.

B Mazorchuk-Miemietz ∼2014. All of these are 2-atoms, and there are no
other 2-atoms. (Both morally.)
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The state of the arts

B Mazorchuk-Miemietz ∼2010. Systematic study of 2-representations of
finite Coxeter groups.

B Mazorchuk-Miemietz & coauthors ∼2010++. Not all representations
have categorifications.

B Mackaay & coauthors ∼2016. “Uniqueness” fails in general.

B Applications. Connections to quantum groups at roots of unity, to
fusion/ribbon/modular categories and to subfactors, and hopefully more.

B Classification results are rare at the moment. But:

I Mazorchuk-Miemietz ∼2014. There is a classification in Coxeter type
A. (And its quite “boring”.)

I Kildetoft-Mackaay-Mazorchuk-Zimmermann & coauthors ∼2016.
There is a classification in dihedral Coxeter type.

This is what I am going to explain today.
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The main example today: dihedral groups

The dihedral groups are of Coxeter type I2(n):

Wn = 〈s, t|s2 = t2 = 1, sn = . . . sts︸ ︷︷ ︸
n

= w0 = . . . tst︸ ︷︷ ︸
n

= tn〉,

e.g.: W4 = 〈s, t|s2 = t2 = 1, tsts = w0 = stst〉

Example. These are the symmetry groups of regular n-gons, e.g. for n = 4; the
Coxeter complex is:

• •

•

•

•

••

••

1
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Kazhdan-Lusztig combinatorics of dihedral groups

Consider Wn = C[Wn] for n ∈ Z>2 ∪ {∞} and define

θs = s + 1, θt = t + 1.

(This might remind you of the Kazhdan-Lusztig basis.)

These elements generate Wn and their relations are fully understood:

θsθs = 2 · θs , θtθt = 2 · θt , a relation for . . . sts︸ ︷︷ ︸
n

= w0 = . . . tst︸ ︷︷ ︸
n

.

B Any categorical action will assign to these endofunctors θs ,θt .

B The relations of θs = [θs ] and θt = [θt ] have to be satisfied in [·]⊕.

Working with the group is possible,
but requires complexes and does not

directly fit into the our setup.
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The principal graph - a preparatory example

Construct a W∞-module V associated to a bipartite graph G :

V = 〈1, 2, 3, 4, 5〉C

1 3 2 4 5

• • •

•

•

θs =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



, θt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2
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The first steps towards 1 and 2

Assume one has a category V and a “categorical action m : Wn → E nd(V)”.

Mazorchuk-Miemietz ∼2014, Zimmermann ∼2015: If m corresponds to a
2-atom, then there are two disjoint cases:

B If θw0 does not act as zero, then m is trivial.

B Otherwise, there is an ordering of indecomposable objects in V such that

[θs ] =


2 0 0
0

. . . 0
0 0 2

A

0 0

 , [θt ] =


0 0

AT
2 0 0
0

. . . 0
0 0 2


(A similar statement is actually true in way bigger generality.)

The graph Gm for
(

0 A
AT 0

)
∈ Mat∗(Z≥0) is called the principal graph of m.
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“Killing” 1 and 2

By doing calculations in the Grothendieck group (checking the relations for the
matrices corresponding to θs and θt) one gets:

A category V and a simple transitive 2-representation m as before can only exist if
Gm is of ADE Dynkin type. Hereby, the Coxeter number h of Gm is n − 2.

Thus, it is easy to write down the list of all candidates.

It remains 3 – the construction of the 2-representations.

Surprisingly: The condition of [θs ],[θt ] for
the “braid relation” is hereby equivalent to

Gm having spectral radius < 4.
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Honorable mentions

B There are so-called cell 2-representations CL

I Their definition involves only combinatorics of 1-morphisms – i.e. CL is
basically determined on the Grothendieck group.

I These work for any Coxeter group and categorify the cell representations
of Kazhdan-Lusztig.

B Having a 2-representation M and a (coherent) symmetry φ of it, one can
construct a orbit 2-representation OM,φ.

B Direct construction by guessing a quiver algebra for the principal graphs.

I Representations of the quiver algebra provides the categories M(i).
I In dihedral type these are “zig-zag algebras” (in the sense of

Huerfano-Khovanov ∼2000) for the graphs in question.

Examples

In the case of the symmetric group
all simple transitive 2-representations

are cell 2-representations.
This is completely wrong in general.
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basically determined on the Grothendieck group.

I These work for any Coxeter group and categorify the cell representations
of Kazhdan-Lusztig.

B Having a 2-representation M and a (coherent) symmetry φ of it, one can
construct a orbit 2-representation OM,φ.

B Direct construction by guessing a quiver algebra for the principal graphs.
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(Co)algebras in 2-categories

The following result is inspired by work of Ostrik and several of his
coauthors on fusion categories and related notions ∼2001++.

Up to some technicalities: For any transitive 2-representation M of a fiat 2-category
C one can find a (co)algebra (1-morphism) in C whose (co)module 2-category is
equivalent to M.

B A (co)algebra A in C has some (co)multiplication 2-morphism µ satisfying
suitably formulated associativity and unit axioms. Its (Co)modules are pairs
(M, α) with M ∈ C and α : A ◦M⇒ M being the (co)action.

Example

B Checking if some 1-morphism has a (co)algebra structure is hard.

B However, a lot of (co)algebras are determined on the level of the Grothendieck
group, e.g. (pseudo) idempotents in [·]⊕ give rise to (co)algebras.

B There is a related Morita(-Takeuchi) 2-theory for these (co)algebras.
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(Co)algebras in the dihedral case

[Algebra 1-morphism] Diagram Wn [Module] dimension
θs Ak n = k n − 1

θs + θsn−1 Dk n = 2k − 2 1
2 (n + 2)

θs + θs7 E6 n = 12 6
θs + θs9 + θs17 E7 n = 18 7

θs + θs11 + θs19 + θs29 E8 n = 30 8

Similar in “tomato”.

B The type A and D algebra 1-morphisms decategorify to (pseudo) idempotents
in the Grothendieck group. Hence, without further work, we see that these are
indeed algebra 1-morphisms.

B This is not true for the one’s of type E .

Up to colors:
This completes again the classification
of simple transitive 2-representations.
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Concluding remarks

B Not all simple modules of the dihedral group are “categorifyable”.

B Everything works graded as well.

B The dihedral story is just the tip of the iceberg: We hope that the general
theory has impact beyond the case of Soergel calculus for finite Coxeter
groups, e.g. for “Soergel calculi associated to complex reflection groups
G (n, n,m)” à la Elias. Example

B There are various connections:

I To the theory of subfactors, fusion categories etc. à la
Etingof-Gelaki-Nikshych-Ostrik,...

I To quantum groups at roots of unity and their “subgroups” à la
Etingof-Khovanov, Ocneanu, Kirillov-Ostrik,...

I To web calculi à la Kuperberg, Cautis-Kamnitzer-Morrison,...

B More?
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There is still much to do...
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Thanks for your attention!

Daniel Tubbenhauer 2-representations via (co)algebras February 2017 17 / 28



Figure: Quotes from “Theory of Groups of Finite Order” by Burnside – top: first edition
(1897); bottom: second edition (1911).

Back
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The philosophy: If you have a very restrictive notion of “higher” representation
theory, then your theory will be boring. If you have a very flexible notion, then your
theory will be uncontrollable.

The (2-)categories and 2-representations which we consider are:

finitary finiteness conditions

fiat 2-category “finitary + involution + adjunction”

transitive 2-representation finitary + connectivity condition

simple 2-representation finitary + no 2-action stable 2-ideal

Plus some less important conditions à la k-linearity etc.

Examples. Soergel bimodules and “cut-offs” of categorified quantum groups.

Back

Daniel Tubbenhauer February 2017 19 / 28



Figure: The Coxeter graphs of finite type.

Example. The type A family is given by the symmetric groups using the simple
transpositions as generators.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Back
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Define the Kazhdan-Lusztig basis elements (hereby ≤ denotes the Bruhat order)

θw =
∑
w ′≤w

w ′, w ,w ′ ∈Wn,

e.g.: θs = s + 1, θt = t + 1, θsts = sts + ts + st + s + t + 1, etc.

These are our main players!

Back
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Elias-Khovanov ∼2009, Elias-Williamson ∼2013. For any Coxeter group W
the Hecke 2-category SW is given by diagrammtic generators and relations, e.g.:

s

• ,

t

• ,

s

s s

,

t

t t

Yes: Everything works graded as well.

Soergel ∼1992, Elias-Khovanov ∼2009, Elias-Williamson ∼2013. SW

categorifies W and indecomposable 1-morphisms decategorify to the
Kazhdan-Lusztig basis.

Back
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The type A family
n = 2•

•

n = 3

• •
n = 4• • •

• • •

n = 5

• • • •
n = 6• • • • •

• • • • •
. . .

The type D family
n = 6

• •
•

•
• •
•

•

n = 8

• • •
•

•
• • •

•

•

n = 10

• • • •
•

•
• • • •

•

•

n = 12

• • • • •
•

•
• • • • •

•

•

. . .

The type E exceptions
n = 12

• • • • •
•

• • • • •
•

n = 18

• • • • • •
•

• • • • • •
•

n = 30

• • • • • • •
•

• • • • • • •
•
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Dihedral case Type A Type D Type E

Cell

Orbit ?
Quiver

n = 6

cell
gives • • • • •

Back

In particular:
there are 2-representations

associated to the type
ADE principal graphs
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Dihedral case Type A Type D Type E

Cell

Orbit ?
Quiver

n = 6

symmetry

Z/2Z

fix point• • • • •

Back

In particular:
there are 2-representations

associated to the type
ADE principal graphs
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Dihedral case Type A Type D Type E

Cell

Orbit ?
Quiver

n = 6

splits
fix point• • •

Back

In particular:
there are 2-representations

associated to the type
ADE principal graphs
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Dihedral case Type A Type D Type E

Cell

Orbit ?
Quiver

n = 6

orbit • •

•

•

two
indecomposables
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Dihedral case Type A Type D Type E

Cell
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orbit • •

•

•

two
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A ◦A
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s s

s

A ◦A

A

µ

s s s

s s

s

A ◦A ◦A

A ◦A

A

s s s

ss

s

A ◦A ◦A

A ◦A

A
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s s

s

A ◦A

A

µ

s s s

s s

s

A ◦A ◦A

A ◦A

A

µ ◦ id
s s s

ss

s

A ◦A ◦A

A ◦A

A

id ◦ µ
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s s

s

A ◦A

A

µ

s s s

s

A ◦A ◦A

A ◦A

A

µ ◦ id

µ

=

s s s

s

A ◦A ◦A

A ◦A

A

id ◦ µ

µ
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s s

s

A ◦A

A

µ

s s s

s

A ◦A ◦A

A ◦A

A

µ ◦ id

µ

=

s s s

s

A ◦A ◦A

A ◦A

A

id ◦ µ

µ

s s t s t

s s t s t

s t s t

A ◦M

M

“algebra” “module”

“module”

s s t s t

s t s t

s t s t

“algebra” “module”

“module”
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s s

s

A ◦A

A

µ

s s s

s

A ◦A ◦A

A ◦A

A

µ ◦ id

µ

=

s s s

s

A ◦A ◦A

A ◦A

A

id ◦ µ

µ

s s t s t

s s t s t

s t s t

some diagram

A ◦M

M

“algebra” “module”

“module”

s s t s t

s t s t

s t s t

some diagram

“algebra” “module”

“module”
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s s

s

A ◦A

A

µ

s s s

s

A ◦A ◦A

A ◦A

A

µ ◦ id

µ

=

s s s

s

A ◦A ◦A

A ◦A

A

id ◦ µ

µ

s s t s t

s t s t

intertwining diagram

A ◦M

M

α

“algebra” “module”

“module”

=

s s t s t

s t s t

intertwining diagram

“algebra” “module”

“module”
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Let n be even. (The odd case is similar.) Then the simple Wn-modules are either
one-dimensional or two-dimensional (for k = 1, . . . , n−2

2 ):

V±± = C;

{
s  +1,−1; t  +1,−1,

θs  2, 0; θt  2, 0,

Vk = C2;


s  

(
cos( 2πk

n ) sin( 2πk
n )

sin( 2πk
n ) − cos( 2πk

n )

)
; t  

(
1 0

0 −1

)
,

θs  

(
2 · cos2(πkn ) sin( 2πk

n )

sin( 2πk
n ) 2 · sin2(πkn )

)
; θt  

(
2 0

0 0

)
,

∼= Vk .

Most of these do not “categorify”.
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“The case of Uq (sl3) for q18 = 1 which equals G(18, 18, 3)”

“Cell gives type A”

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

Beware:
Work

in progress!

Back More
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“The case of Uq (sl3) for q18 = 1 which equals G(18, 18, 3)”

“Z/3Z-symmetry”

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

fix

Beware:
Work

in progress!

Back More
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“The case of Uq (sl3) for q18 = 1 which equals G(18, 18, 3)”

“Orbit gives type D”

splits splits

•

•

•

•

•

•

•

•

•• •

•

Beware:
Work

in progress!

Back More
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Figure: “Subgroups” of quantum SU(3).

(Picture from “The classification of subgroups of quantum SU(N)” by Ocneanu ∼2000.)

Back

Daniel Tubbenhauer February 2017 28 / 28


	The what, how and why of categorical representation theory
	Classical representation theory
	Categorical representation theory

	2-representation theory of dihedral groups
	Dihedral groups as Coxeter groups
	Cooking-up candidate lists

	Constructing 2-representations of dihedral groups
	Some general methods
	2-representations via (co)algebras


