Green'’s theory of cells in categorification

Or: Mind your cells!
Daniel Tubbenhauer
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Clifford, Munn, Ponizovskii, Green ~1942+4. Finite semigroups or monoids.

Example. N, Aut({1,...,n}) =5, C T, = End({1, ..., n}), groups, groupoids,
categories, any - closed subsets of matrices, “everything” , etc.

The cell orders and equivalences:

x< yedziy=zx, x~ye(x < y)A(y < x),
x<pyedZ:y=x7, x~rye (x<pry)A(y<rx),
x<ipye3z,Ziy=2x7', xRy S (X <rY)A(Y <tr X).

Left, right and two-sided cells (a.k.a. £-, R- and J-cells): Equivalence classes.

Example (group-like). The unit 1 is always in the lowest cell —e.g. 1 <; y

because we can take z = y. Invertible elements g are always in the lowest cell — e.g.

g <, y because we can take z = yg~!.

L-cells «~ left modules / left ideals.
R-cells «~ right modules / right ideals.
J-cells "L ®k R" e~ bimodules / ideals.
H-cells “R ®s L" «~> subalgebras.
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Clifford, Munn, Ponizovskii, Green ~1942+4. Finite semigroups or monoids.

Example (the transformation monoid T3). Cells — £ (columns), R (rows), J
(big rectangles), H (small rectangles).

jbiggest (111) ‘ (222) ‘ (333) H = 51
(122), (221) | (133),(331) | (233), (322)

Toniddle (121), 212) | (313),(131) | (323), (232) H=S,
(221), (112) | (113), (311) | (223), (332)

(123), (213), (132)
(231), (312), (321)

u7|owest

Cute facts.

» Each H contains precisely one idempotent e or no idempotent. Each e is
contained in some #(e). (ldempotent separation.)

» Each #(e) is a maximal subgroup. (Group-like.)
» Each simple has a unique maximal J(e) whose 7(e) does not kill it. (Apex.)
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Clifford, Mur{#{_reduction. (Mind your cells!)—stated for monoids[s o monoids.

Example (the There is a one-to-one correspondence R (rows), J
(big rectangles

simples with | onetoone | Simples of (any)
jbiggest apex j(e) H(e) C j(e) ’ H = 51

In other words,
Tmiddle S-smod 7(e) = H(e)-smod. H=S,
(221)’ (11 smod means the category of simples. [23), (332)

(123), (213), (132)
(231), (312), (321)

\7|OW8$t

Cute facts.

» Each # contains precisely one idempotent e or no idempotent. Each e is
contained in some #(e). (ldempotent separation.)

» Each 7(e) is a maximal subgroup. (Group-like.)
» Each simple has a unique maximal J(e) whose 7{(e) does not kill it. (Apex.)
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Clifford, Mun

Example (the
(big rectangleq

jbiggest

Tmiddle

‘H-reduction. (Mind your cells!)—stated for monoids
There is a one-to-one correspondence
simples with | onetoone | Simples of (any)
-0y .
apex J(e) H(e) C T(e)

In other words,
S-smod 7(e) =~ H(e)-smod.

s or monoids.

R (rows), J

(221). (112) [ (113).(311) [ (223).(332)

Example. (T73.)

H(e) = S3, 52, S1 gives 3+ 2+ 1 = 6 associated simples (over C).

Cute facts.

This is a general philosophy in representation theory.

» FEach #|Buzz words. Idempotent truncations, Kazhdan—Lusztig cells, Fach e is

contain

quasi-hereditary algebras, cellular algebras, etc.

» Each H(
» Each sin

Note. Whenever one has a (reasonable) antiinvolution *,
the H-cells to consider are the diagonals H = LN L*.

| will almost ignore non-contributing H-cells from now on.
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Kazhdan—Lusztig (KL) and others ~1979-44. Green's theory in linear.

Choose a basis. For a finite-dimensional algebra S fix a basis Bg. For x,y,z € Bg
write y @zx if y appears in zx with non-zero coefficient.

The cell orders and equivalences:

x< yedziyazx, x~ye (x<py)A(y < x),
x<py&edZ:iyaxz, x~rye (x<ry)A(y <gx),
x<ipye3z,Z:yaxs, x~pry e (X <try)A(y <tr X).

L-, R- and J-cells: Equivalence classes. S3; = K{Bjy,}/bigger friends.

Example (group-like). For S = Z[G] and the choice of the group element basis
Bs = G, cell theory is boring.

L-cells «~ left modules / left ideals.
R-cells «~ right modules / right ideals.
J-cells "L ®k R" e~ bimodules / ideals.
H-cells “R ®s L «~> subalgebras.
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Kazhdan—Lusztig (KL) and others ~1979-44. Green's theory in linear.
Example (H(1 =2~ 2), Bs=KL basis, [2],[4] # 0 and 2 # 0).

Two b1212 Sy 2K

T by, bin ‘ boy
idd!
miade b2 ‘ b2, b

j@ b@ S’H =K

Sy = K([Z/27Z]

We count the wrong number of simples, namely 1+2+1 =4 < 5.
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Kazhdan—Lusztig (KL) and others ~1979-44. Green's theory in linear.

Example (H(1 -4 2), Bs=KL basis with b}y, = by + by and
by, = bo12 — b2), [2] # 0 and 2 # 0.

J0.2) — Sy 2K
J0,(.1) 212 Sy =
J().@) 21221 %21 Sy 2K
J(@.1).0) by Sy 2K
T((2).0) b Sy =

We count the correct number of simples, namely 1 +1+4+1+4+1+1=5.
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Kazhdan—Lusztig (KL) and others ~1979-44. Green's theory in linear.

Example (H(1 = 2), Bs=KL basis, [2],[5] # 0 and 2,5 # 0).

Two b12121 Sy 2K
by, b | bo1, bo1o
; S, = K[Z/2Z
Tride b1z, b1z | b2, b " 12/22]
To by Sy 2K

We count the correct number of simples, namely 1 +2 +1 = 4.
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Kazhdan—Lusztig (KL) and others ~1979-44. Green's theory in linear.

‘H-reduction in linear.
Problem 1. Everything depends on the choice of basis.

Problem 2. If H-cells are of varying size within a J-cell,
you might count a too low number of simples.

[Aside: The case where all H-cells are of size one is called cellular. ]
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Kazhdan—Lusztig (KL) and others ~1979-44. Green's theory in linear.

‘H-reduction in linear.
Problem 1. Everything depends on the choice of basis.

Problem 2. If H-cells are of varying size within a J-cell,
you might count a too low number of simples.

[Aside: The case where all H-cells are of size one is called cellular. ]

Spoiler.

On the categorified level all problems vanish
and the H-reduction can be recovered.
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Mazorchuk—Miemietz and others ~2010+4+. Green's theory in categories.

There is a good basis. For a monoidal category &, and X,Y,Z
indecomposable write Y @ZX if Y is a direct summand of ZX.

The cell orders and equivalences:

X<, Ye3Z YarX, X Yo (X< Y)A(Y <0 X),
X<pYeIZ:YeXZ, X~pY e (X<pY)A(Y <g X),
X< Y@HZ,Z/ZY@ X7, XNLRY<:>(X§LRY)/\(Y§LRX).

L-, R- and J-cells: Equivalence classes. #; = add(H, 1)/ “bigger friends”.

Example (group-like). For & = Vect¢ cell theory is boring.

L-cells «~ left modules / left ideals.
R-cells «~ right modules / right ideals.
J-cells "L ®k R" e~ bimodules / ideals.

H-cells “R ®s L «~> subalgebras.
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Mazorchuk—Miemietz and others ~2010+4+. Green's theory in categories.

Examples.
» Cells in & give ®-ideals.

» If & is semisimple, then XX* and X*X both contain the identity, so cell
theory is trivial.

» For Soergel bimodules cells are Kazhdan—Lusztig cells.

» For 2-Kac—Moody algebras you can push everything to cyclotomic KLR
algebras, and H-cells are of size one.
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Mazorchuk—Miemietz and others ~2010+4+. Green's theory in categories.

Example (H(1 =2 2), but now Soergel bimodules over C with their

indecomposables).
Two Bi212 oy " Vect
B1, B | Bo; wn
i : Iy "'~ Vect
Tmiddle B, | Ba b H 7)27
Ty By Sy ~ Vect
We count the correct number of , namely 14+2+4+1 =4

To make the “~" above precise is a whole paper...but it works.
For example, B1p12B1212 & pB112 for p = [2][4] € N[v, v 1] being a shift.
So Bj1p12 is a pseudo-idempotent, but you can't easily rescale on the categorical level.
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Mazorchuk—N G AT 24 categories.
There is a one-to-one correspondence
Examples.
» Cells in A | 2-simples with | oneto-one | 2-simples with apex H
— .
If & is se apex J of (any) Su tity, so cell
theory is 4 Strong #-reduction ~2020.
» For Soerg
> For 2-Ka Zostmody ~ Fostmody.  fmic KLR

algebras, and - ceIIs are of size one.

[stmod means the category of 2-simples.
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Mazorchuk—N

Examples.
» Cells in A | 2-simples with | oneto-one | 2-simples with apex H
— .
» If & is se apex J of (any) Sx
theory is { Strong #-reduction ~2020.
» For Soerg
» For 2-Ka — S’-stjmodj :ri%.t-stmogiﬂ. _
algebr A direct application.

#H-reduction ~2018.

There is a one-to-one correspondence

categories.

tity, so cell

mic KLR

For (Schur quotients of) 2-Kac—Moody algebras, & “~" ¥ ect,

and J-cells are indexed by dominant integral weights.

The associated 2-simples are the categorifications of simple
g-modules (3 la Chuang—Rouquier & Khovanov-Lauda).

H-reduction implies that there are no other 2-simples.

A trickier application.

We can classify 2-simples of Soergel bimodules
of any finite Coxeter type except for one apex in type Ha.
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Totality iativity Identity ibility C

Semigroupoid Unneeded  Required  Unneeded  Unneeded | Unneeded
Small
Unneeded Required  Required  Unneeded =~ Unneeded
Category

Groupoid Unneeded Required  Required Required | Unneeded

uired Unneeded Unneeded Unnee

Quasigroup | Required B3 Required  Unneeded
Required Unneeded Required Requie

Semigroup Required Required Unneeded Unneeded  Unneeded

I

MVErS€  pequired  Required Unneeded Required | Unneeded

Semigroup

Monoid  Required  Required  Required | Unneeded | Unneeded

Group  Required Required  Required Required | Unneeded
Abeli
e1aN  pequired  Required  Required Required Required
group

Picture from https://en.wikipedia.org/wiki/Semigroup.

» There are zillions of semigroups, e.g. 1843120128 of order 8. (Compare: There
are 5 groups of order 8.)

» Already the easiest of these are not semisimple — not even over C.

» Almost all of them are of wild representation type.

Is the study of semigroups hopeless?

| Green & co: No! |



https://en.wikipedia.org/wiki/Semigroup

Classification of simples of the Temperley—Lieb algebra — in real time

Cells of TL4(6), with the circle value ¢ # 0.

Jo \\_J/‘\u/ H =1
N N\ | —/——
=1 =R ==~
% D = =A He=1
I XX
2 11 0

Ji = diagrams with through-degree i.



Classification of sim

Cells of TL4(4), with

Jo

There is an antiinvolution (flip pictures),
so J-cells are squares
and H-cells are diagonal.

the circle value § # 0.

==
==

T2

Ta
J; = diagrams with t

hrough-degree i.

— in real time



Note that H-cells are group-like, e.g.

| |O\_/ | |:5u | |—in real time
N\ N\ i

so up to rescaling by 1/6,

Classification of sin

)C X

Cells of TL4(6), witl

is the unit in the trivial group.

W u‘u ]
P B N r— ~
Jo w‘w H=1
~ M|
X RI[ER v
| XX X
7 REN He1

Ji = diagrams with through-degree i.



Classification of simples of the Temperley—Lieb algebra — in real time

Cells of TL4(6), with the circle value ¢ # 0.

AW A R R,
/ \ / \ VA . YN
Jo S — o TN —

H=1
Corollary (of Green’s theorem).
simples of |  one-to-one possible
T2 TLn(6) through-degrees [ H=1
TLn(6)-smody, ~ 1-smod.
o RN w1

Ji = diagrams with through-degree i.



Classification of simples of the Brauer algebra — in real time

Cells of Br3(d), with the circle value § # 0.

KA 24

5 SSUSISSOEEREL
SRIARIER

. LUX X pes
SRS

J; = diagrams with through-degree .



Classification of simples of the Brauer algebra — in real time

Cells of Br3(d), with the circle value § # 0.

KA 24

5 SSUSISSOEEREL
SRIARIER

. LUX X pes
SRS

J; = diagrams with through-degree .

There is an antiinvolution (flip pictures),
so J-cells are squares
and H-cells are diagonal.
Moreover, H-cells are group-like.




Classification of simples of the Brauer algebra — in real time

One cell of Bry(d)

, with the circle value ¢ # 0.

M

H=S,

5

i

7

%

DOC
X

X
)OC

2

T2

In general, H-cells in J; are S;.



Classification of simples of the Brauer algebra — in real time

One cell of Bry(d)
, with the circle value ¢ # 0.

DO(
X_
1
Q\(
M

)\i(

*C

o

D(

Corollary (of

<
—_

G
7 simples of |  one-to-one partitions of
2 Br,(4) n, n—2, n—4, ...

L

reen’s theorem — here over C).

}.

V)

X

N\ :
Exercise.
Do the same for the partition algebra. ; : —\J

In general, H-cells in J; are S;.

36\(
N

I



Classification of simples of the type A Hecke algebra — cheating a bit

Cells of H( 1 =— 2 — 3 ), with b,, being the Kazhdan—Lusztig (KL) basis.

~7(4) b12321 H =1
bio1 | bizo1 | boizor
J3+1) bios2 | baz2 | biziz 25~
bi213 | bozo1 | b12321
biz | boi3z N
Jer2 b1z | b2132 H=1
b1 | by | b3 N
J2+141) b [ ha | ba H1
bioz | b3 | b3
Jat14141) by 9~ 1

In general, J-cells are indexed by partitions, and #-cells are the trivial group.



Classification of simples of the type A Hecke algebra — cheating a bit

Cells of H( 1 =— 2 — 3 ), with b,, being the Kazhdan—Lusztig (KL) basis.

T(a)

bio1 | biz1 | baiza

b12321

H

1

1

There is an antiinvolution (bar involution),

so J-cells are squares

and H-cells are diagonal.
Moreover, H-cells are group-like, e.g. bi23z1 b12321 = [3]!b12321 + bigger friends.

J2+1+1)

Ja+1+1+41)

132 T P2132

b1 | by | b3

bio | by | b3

bioz | b3 | b3
by

1%

H=1

H=1

In general, J-cells are indexed by partitions, and #-cells are the trivial group.



Classification of simples of the type A Hecke algebra — cheating a bit

Cells of H( 1 =— 2 — 3 ), with b,, being the Kazhdan—Lusztig (KL) basis.

T4 b12321 H~1

b121 | b1321 | b21321
Il
\7(3+1) Corollary (of Green s theorem) H =1
simples of | gnetoone | partitions of

J(2+2) H(S) [ n ' H=1
H(Sh)-smodz, ~ 1-smod.

x7(2+1+1) b12 b2 b32 H=1

bias | b3 | b3
Jas1141) Haring: H=1
Outside of type A you need to take a different basis, the KL basis doesn't work.

In general, J-cells are indexed by partitions, and #-cells are the trivial group.



A finite, pivotal tensor category &:

» Basics. & is K-linear and monoidal, ® is K-bilinear. Moreover, & is abelian
(this implies idempotent complete).

» Involution. & is pivotal, e.g. F** X F.

» Finiteness. Hom-spaces are finite-dimensional, the number of is
finite, finite length, enough projectives.

» Categorification. The abelian Grothendieck ring gives a finite-dimensional
algebra with involution. TT—

We only formulate the precise statements for the additive setting,
but then at least for 2-categories.

A monoidal fiat category &:
» Basics. & is K-linear and monoidal, ® is K-bilinear. Moreover, & is additive
and idempotent complete.
» Involution. & is pivotal, e.g. F** =2 F.
» Finiteness. Hom-spaces are finite-dimensional, the number of

indecomposables ‘ is finite.
» Categorification. The additive Grothendieck ring gives a finite-dimensional
algebra with involution.




A finite, pivotal tensor category &:
» Basics. . is K-linear and monoidal, ® is K-bilinear. Moreover, & is abelian
(this implies idempotent complete).
» Involution. & is pivotal, e.g. F** = F.

» Finiteness. Hom-spaces are finite-dimensional, the number of is

finite, finite length, enough projectives.

The crucial difference...

...is what we like to consider as “elements” of our theory:

/
Abelian prefers simples,
e . e
additive prefers indecomposables.
This is a difference — for example in the fiat case there is no Schur’s 2-lemma.
L T TTITCCTTTSS, IIUIII_Q}JGL,CD dTrT TITTITTCE=UTITITETISTOTTTar, Tt TTatTimToTT OT

indecomposables ‘ is finite.
» Categorification. The additive Grothendieck ring gives a finite-dimensional
algebra with involution.




A finite, pivotal tensor category &:
» Basics. . is K-linear and monoidal, ® is K-bilinear. Moreover, & is abelian
(this implies idempotent complete).

Lo Ya?’) al Tk h

» In
» Fi
fin

» C

Abelian examples.

H-_# od for H a finite-dimensional Hopf algebra. (Think: KG, G finite.)
Finite Serre quotients of G-.# od for G being a reductive group.

nal

algebra with involution.

Abelian and additive examples.

H-_# od for H a finite-dimensional, semisimple Hopf algebra. (Think: CG, G finite.)

Vects for G graded K-vector spaces, e.g. ¥ect = Vects.
= T r=)

» Finiteness. Hom-spaces are finite-dimensional, the number of

undpromnoqahleq | is finite

» C
al

Additive examples.

H-Zroj for H a finite-dimensional Hopf algebra. (Think: KG, G finite.)
Finite quotients of G-Zilt for G being a reductive group.

onal




A finite, pivotal tensor category &:
» Basics. . is K-linear and monoidal, ® is K-bilinear. Moreover, & is abelian
(this implies idempotent complete).
» Involution. & is pivotal, e.g. F** = F.

» Finiteness. Hom-spaces are finite-dimensional, the number of is

finite, finite length, enough projectives.

» Catecarification The ahelian Grathendieck ring cives a finite-dimensiqnal
al Why | like the additive case.
All the example | know from my youth are not abelian, but only additive:
A mon
» B Diagram categories, 2-Kac—Moody algebras dditive
a and their Schur quotients, Soergel bimodules,
» In tilting module categories etc.
> F
F And these only fit into the fiat and not the tensor framework.
T [

» Categorification. The additive Grothendieck ring gives a finite-dimensional
algebra with involution.



Example G = Z /27 xZ/27 (Klein four group).

If K is not of characteristic 2, KG is semisimple and additive=abelian. So let us
have a look at characteristic 2, where we have KG = K[X, Y]/(X?, Y?)

First, abelian:
» X and Y have to act as zero on each simple, so KG has just K as a simple.
» KG-_# od has just one element.

Then additive:

» Only X? and Y? have to act as zero on each indecomposable, and one can
cook-up infinitely many, e.g.

o e e e e oo

» KG-#od has infinitely many elements.



Example G = Z/27xZ/2Z (Klein four group).

If K is not of characteristic 2, KG is semisimple and additive=abelian. So let us

have a look at characteristic 2, where we have KG = K[X, Y]/(X?, Y?)

First, abelian:

>
| 2

The

ple.

Theorem (Higman ~1953).
For char(K) = p, KG-#od is...
...always a finite, pivotal tensor category.
.. monoidal fiat if and only if (p { |G| or the p-Sylow subgroup of G is cyclic).
COUR=UP TITITITtETY 1T1idiTy, €. 8.
X X X
@ — @ o — O ® < ...

» KG-_/ od has infinitely many elements.



Abelian. A &-module M:
» Basics. M is K-linear and abelian. The action is a monoidal functor
M: & — &ndg jex(M) (K-linear, left exactness).

» Finiteness. Hom-spaces are finite-dimensional, the number of is

finite, finite length, enough projectives.
» Categorification. The abelian Grothendieck group gives a finite-dimensional
Go(&)-module.

Additive. A &-module M:
» Basics. M is K-linear, additive and idempotent complete. The action is a
monoidal functor M: & — &ndg (M) (K-linear).

» Finiteness. Hom-spaces are finite-dimensional, the number of

‘ indecomposables | is finite.

» Categorification. The additive Grothendieck group gives a finite-dimensional
Ko(&)-module.




Abelian. A &-module M:

» Basics. M is K-linear and abelian. The action is a monoidal functor
M: & — Endwr . (M) (K-linear left exactness)

o The easiest of such modules are called | ;
» Finiteness. simple transitive (2-simple for short) IS
finite, finite and they satisfy a Jordan—Holder theorem.
» Categorifica By definiti h hose -modul te-dimensional
Gg(y)—mo y definition, these are those &-modules

without &-stable ideals on the morphism level.

Additive. A &-| This categorifies the definition of a simple having no
S-stable subspaces.

» Basics. M b——rrreer — e cenen =
monoidal functor Example.
» Finiteness. Hom- ber of

. For 2-Kac—Moody algebras the minimal
indecomposable; categorifications of the g-simples in the

» Categorification. [sense of Chuang—Rouquier are 2-simple.|s a finite-dimensional
Ko(&)-module.




Example (G-.# od, ground field C).

» Let & = G-#od, for G being a finite group. As & is semisimple,
abelian=additive. Simples are simple G-modules.

» Forany M\,N € &, we have M® N € &
g(m®n)=gm®agn

forall g€ G,m &M, néeN. There is a trivial module C.
» The regular &-module M: & — &nde(S):

M—MQ®_

fl [Fe-

N——N®_

» The decategorification is the regular Ko(%)-module.



Example (G-.# od, ground field C).

» Let K C G be a subgroup.
» K-Mod is a &“-module, with action

Resg ® _: G-Mod — Endc(K-Mod),

M——— ResZ(M) @ _

fl J{Resﬁ(f)@ .

N———— Resg(N) ® _

which is indeed an action because Resg is a ®-functor.
» All of these are 2-simple.
» The decategorifications are Ky(&)-modules.
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