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Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example. N, Aut({1, ..., n}) = Sn ⊂ Tn = End({1, ..., n}), groups, groupoids,
categories, any · closed subsets of matrices, “everything” click , etc.

The cell orders and equivalences:

x ≤L y ⇔ ∃z : y = zx , x ∼L y ⇔ (x ≤L y) ∧ (y ≤L x),

x ≤R y ⇔ ∃z ′ : y = xz ′, x ∼R y ⇔ (x ≤R y) ∧ (y ≤R x),

x ≤LR y ⇔ ∃z , z ′ : y = zxz ′, x ∼LR y ⇔ (x ≤LR y) ∧ (y ≤LR x).

Left, right and two-sided cells (a.k.a. L-, R- and J -cells): Equivalence classes.

Example (group-like). The unit 1 is always in the lowest cell – e.g. 1 ≤L y
because we can take z = y . Invertible elements g are always in the lowest cell – e.g.
g ≤L y because we can take z = yg−1.

L-cells ! left modules / left ideals.
R-cells ! right modules / right ideals.
J -cells “L ⊗K R” ! bimodules / ideals.
H-cells “R⊗S L” ! subalgebras.

H-reduction. (Mind your cells!)—stated for monoids

There is a one-to-one correspondence

{
simples with

apex J (e)

}
one-to-one←−−−−→

{
simples of (any)

H(e) ⊂ J (e)

}
.

In other words,
S-smodJ (e) ' H(e)-smod.

smod means the category of simples.

Example. (T3.) More

H(e) = S3, S2,S1 gives 3 + 2 + 1 = 6 associated simples (over C).

This is a general philosophy in representation theory.

Buzz words. Idempotent truncations, Kazhdan–Lusztig cells,
quasi-hereditary algebras, cellular algebras, etc.

Note. Whenever one has a (reasonable) antiinvolution ?,
the H-cells to consider are the diagonals H = L ∩ L?.

I will almost ignore non-contributing H-cells from now on.
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Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example (the transformation monoid T3). Cells – L (columns), R (rows), J
(big rectangles), H (small rectangles).

(111) (222) (333)

(122), (221) (133), (331) (233), (322)

(121), (212) (313), (131) (323), (232)

(221), (112) (113), (311) (223), (332)

(123), (213), (132)

(231), (312), (321)

Jbiggest

Jmiddle

Jlowest

H ∼= S1

H ∼= S2

H ∼= S3

Cute facts.

I Each H contains precisely one idempotent e or no idempotent. Each e is
contained in some H(e). (Idempotent separation.)

I Each H(e) is a maximal subgroup. (Group-like.)

I Each simple has a unique maximal J (e) whose H(e) does not kill it. (Apex.)

L-cells ! left modules / left ideals.
R-cells ! right modules / right ideals.
J -cells “L ⊗K R” ! bimodules / ideals.
H-cells “R⊗S L” ! subalgebras.

H-reduction. (Mind your cells!)—stated for monoids

There is a one-to-one correspondence

{
simples with

apex J (e)

}
one-to-one←−−−−→

{
simples of (any)

H(e) ⊂ J (e)

}
.

In other words,
S-smodJ (e) ' H(e)-smod.

smod means the category of simples.

Example. (T3.) More

H(e) = S3, S2,S1 gives 3 + 2 + 1 = 6 associated simples (over C).

This is a general philosophy in representation theory.

Buzz words. Idempotent truncations, Kazhdan–Lusztig cells,
quasi-hereditary algebras, cellular algebras, etc.

Note. Whenever one has a (reasonable) antiinvolution ?,
the H-cells to consider are the diagonals H = L ∩ L?.

I will almost ignore non-contributing H-cells from now on.
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Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example (the transformation monoid T3). Cells – L (columns), R (rows), J
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Kazhdan–Lusztig (KL) and others ∼1979++. Green’s theory in linear.

Choose a basis. For a finite-dimensional algebra S fix a basis BS. For x , y , z ∈ BS

write y ⊂+ zx if y appears in zx with non-zero coefficient.

The cell orders and equivalences:

x ≤L y ⇔ ∃z : y ⊂+ zx , x ∼L y ⇔ (x ≤L y) ∧ (y ≤L x),

x ≤R y ⇔ ∃z ′ : y ⊂+ xz ′, x ∼R y ⇔ (x ≤R y) ∧ (y ≤R x),

x ≤LR y ⇔ ∃z , z ′ : y ⊂+ zxz ′, x ∼LR y ⇔ (x ≤LR y) ∧ (y ≤LR x).

L-, R- and J -cells: Equivalence classes. SH = K{BH}/bigger friends.

Example (group-like). For S = Z[G ] and the choice of the group element basis
BS = G , cell theory is boring.

L-cells ! left modules / left ideals.
R-cells ! right modules / right ideals.
J -cells “L ⊗K R” ! bimodules / ideals.
H-cells “R⊗S L” ! subalgebras.

H-reduction in linear.

Problem 1. Everything depends on the choice of basis.

Problem 2. If H-cells are of varying size within a J -cell,
you might count a too low number of simples.

Aside: The case where all H-cells are of size one is called cellular.

Spoiler.

On the categorified level all problems vanish
and (a version of) the H-reduction can be recovered.
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Kazhdan–Lusztig (KL) and others ∼1979++. Green’s theory in linear.

Example (H( 41 2), BS=KL basis, [2], [4] 6= 0 and 2 6= 0).

b1212

b1, b121 b21

b12 b2, b212

b∅

Jw0

Jmiddle

J∅

SH ∼= K

SH ∼= K[Z/2Z]

SH ∼= K

We count the wrong number of simples, namely 1 + 2 + 1 = 4 < 5.

L-cells ! left modules / left ideals.
R-cells ! right modules / right ideals.
J -cells “L ⊗K R” ! bimodules / ideals.
H-cells “R⊗S L” ! subalgebras.

H-reduction in linear.

Problem 1. Everything depends on the choice of basis.

Problem 2. If H-cells are of varying size within a J -cell,
you might count a too low number of simples.

Aside: The case where all H-cells are of size one is called cellular.

Spoiler.

On the categorified level all problems vanish
and (a version of) the H-reduction can be recovered.
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Kazhdan–Lusztig (KL) and others ∼1979++. Green’s theory in linear.

Example (H( 41 2), BS=KL basis with b′121 = b121 + b1 and

b′212 = b212 − b2), [2] 6= 0 and 2 6= 0.

b1212

b′212

b′121 b21

b12 b2

b1

b∅

J(∅,(2))

J(∅,(1,1))

J((1),(1))

J((1,1),∅)

J((2),∅)

SH ∼= K

SH ∼= K

SH ∼= K

SH ∼= K

SH ∼= K

We count the correct number of simples, namely 1 + 1 + 1 + 1 + 1 = 5.

L-cells ! left modules / left ideals.
R-cells ! right modules / right ideals.
J -cells “L ⊗K R” ! bimodules / ideals.
H-cells “R⊗S L” ! subalgebras.

H-reduction in linear.

Problem 1. Everything depends on the choice of basis.

Problem 2. If H-cells are of varying size within a J -cell,
you might count a too low number of simples.

Aside: The case where all H-cells are of size one is called cellular.

Spoiler.

On the categorified level all problems vanish
and (a version of) the H-reduction can be recovered.
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Kazhdan–Lusztig (KL) and others ∼1979++. Green’s theory in linear.

Example (H( 51 2), BS=KL basis, [2], [5] 6= 0 and 2, 5 6= 0).

b12121

b1, b121 b21, b2121

b12, b1212 b2, b212

b∅

Jw0

Jmiddle

J∅

SH ∼= K

SH ∼= K[Z/2Z]

SH ∼= K

We count the correct number of simples, namely 1 + 2 + 1 = 4.

L-cells ! left modules / left ideals.
R-cells ! right modules / right ideals.
J -cells “L ⊗K R” ! bimodules / ideals.
H-cells “R⊗S L” ! subalgebras.

H-reduction in linear.

Problem 1. Everything depends on the choice of basis.

Problem 2. If H-cells are of varying size within a J -cell,
you might count a too low number of simples.

Aside: The case where all H-cells are of size one is called cellular.

Spoiler.

On the categorified level all problems vanish
and (a version of) the H-reduction can be recovered.
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Mazorchuk–Miemietz and others ∼2010++. Green’s theory in categories.

There is a good basis. For a finitary monoidal category S , and X,Y,Z
indecomposable write Y ⊂⊕ZX if Y is a direct summand of ZX.

The cell orders and equivalences:

X ≤L Y ⇔ ∃Z : Y ⊂⊕ZX, X ∼L Y ⇔ (X ≤L Y) ∧ (Y ≤L X),

X ≤R Y ⇔ ∃Z′ : Y ⊂⊕XZ′, X ∼R Y ⇔ (X ≤R Y) ∧ (Y ≤R X),

X ≤LR Y ⇔ ∃Z,Z′ : Y ⊂⊕ZXZ′, X ∼LR Y ⇔ (X ≤LR Y) ∧ (Y ≤LR X).

L-, R- and J -cells: Equivalence classes. SH = add(H,1)/“bigger friends”.

Example (group-like). For S = V ectG cell theory is boring. (In general cell
theory is boring for fusion categories.)

L-cells ! left modules / left ideals.
R-cells ! right modules / right ideals.
J -cells “L ⊗K R” ! bimodules / ideals.
H-cells “R⊗S L” ! subalgebras.

To make the “'” above precise is a whole paper...but it works.

For example, B1212B1212 ∼= pB1212 for p = [2][4] ∈ N[v, v−1] being a shift.
So B1212 is a pseudo-idempotent, but you can’t easily rescale on the categorical level.

H-reduction ∼2018.

There is a one-to-one correspondence

{
2-simples with

apex J

}
one-to-one←−−−−→

{
2-simples with apex H

of (any) SH

}
.

Strong H-reduction ∼2020.

S -stmodJ ' SH-stmodH.

stmod means the category of 2-simples.

A direct application.

For (Schur quotients of) 2-Kac–Moody algebras, SH“'”V ect,
and J -cells are indexed by dominant integral weights.

The associated 2-simples are the categorifications of simple
g -modules (à la Chuang–Rouquier & Khovanov–Lauda).

H-reduction implies that there are no other 2-simples.

A trickier application.

We can classify 2-simples of Soergel bimodules
of any finite Coxeter type except for one apex in type H4.
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Mazorchuk–Miemietz and others ∼2010++. Green’s theory in categories.

Examples.

I Cells in S give ⊗-ideals.

I If S is semisimple, then XX? and X?X both contain the identity, so cell
theory is trivial.

I For Soergel bimodules cells are Kazhdan–Lusztig cells.

I For 2-Kac–Moody algebras you can push everything to cyclotomic KLR
algebras, and H-cells are of size one.

L-cells ! left modules / left ideals.
R-cells ! right modules / right ideals.
J -cells “L ⊗K R” ! bimodules / ideals.
H-cells “R⊗S L” ! subalgebras.
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Mazorchuk–Miemietz and others ∼2010++. Green’s theory in categories.

Example (H( 41 2), but now Soergel bimodules over C with their

indecomposables).

B1212

B1,B121 B21

B12 B2,B212

B∅

Jw0

Jmiddle

J∅
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SH“'”V ectZ/2Z

SH ' V ect

We count the correct number of 2-simples , namely 1 + 2 + 1 = 4.
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Examples.
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Mazorchuk–Miemietz and others ∼2010++. Green’s theory in categories.

Examples.

I Cells in S give ⊗-ideals.

I If S is semisimple, then XX? and X?X both contain the identity, so cell
theory is trivial.

I For Soergel bimodules cells are Kazhdan–Lusztig cells.

I For 2-Kac–Moody algebras you can push everything to cyclotomic KLR
algebras, and H-cells are of size one.

L-cells ! left modules / left ideals.
R-cells ! right modules / right ideals.
J -cells “L ⊗K R” ! bimodules / ideals.
H-cells “R⊗S L” ! subalgebras.

To make the “'” above precise is a whole paper...but it works.

For example, B1212B1212 ∼= pB1212 for p = [2][4] ∈ N[v, v−1] being a shift.
So B1212 is a pseudo-idempotent, but you can’t easily rescale on the categorical level.

H-reduction ∼2018.

There is a one-to-one correspondence

{
2-simples with

apex J

}
one-to-one←−−−−→

{
2-simples with apex H

of (any) SH

}
.

Strong H-reduction ∼2020.
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A direct application.
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A trickier application.
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Picture from https://en.wikipedia.org/wiki/Semigroup.

I There are zillions of semigroups, e.g. 1843120128 of order 8. (Compare: There
are 5 groups of order 8.)

I Already the easiest of these are not semisimple – not even over C.

I Almost all of them are of wild representation type.

Is the study of semigroups hopeless?

Green & co: No!

Back

Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example (the transformation monoid T3). Cells – L (columns), R (rows), J
(big rectangles), H (small rectangles).

(111) (222) (333)

(122), (221) (133), (331) (233), (322)

(121), (212) (313), (131) (323), (232)

(221), (112) (113), (311) (223), (332)

(123), (213), (132)

(231), (312), (321)

Jbiggest

Jmiddle

Jlowest

H ∼= S1

H ∼= S2

H ∼= S3

Cute facts.

I Each H contains precisely one idempotent e or no idempotent. Each e is
contained in some H(e). (Idempotent separation.)

I Each H(e) is a maximal subgroup. (Group-like.)

I Each simple has a unique maximal J (e) whose H(e) does not kill it. (Apex.)

L-cells ! left modules / left ideals.
R-cells ! right modules / right ideals.
J -cells “L ⊗K R” ! bimodules / ideals.
H-cells “R⊗S L” ! subalgebras.

H-reduction. (Mind your cells!)—stated for monoids

There is a one-to-one correspondence

{
simples with

apex J (e)

}
one-to-one←−−−−→

{
simples of (any)

H(e) ⊂ J (e)

}
.

In other words,
S-smodJ (e) ' H(e)-smod.

smod means the category of simples.

Example. (T3.) More

H(e) = S3,S2,S1 gives 3 + 2 + 1 = 6 associated simples (over C).

This is a general philosophy in representation theory.

Buzz words. Idempotent truncations, Kazhdan–Lusztig cells,
quasi-hereditary algebras, cellular algebras, etc.

Note. Whenever one has a (reasonable) antiinvolution ?,
the H-cells to consider are the diagonals H = L ∩ L?.

I will almost ignore non-contributing H-cells from now on.
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Classification of simples of the Temperley–Lieb algebra – in real time

Cells of TL4(δ), with the circle value δ 6= 0.

J0

J2

J4

H ∼= 1

H ∼= 1

H ∼= 1

Ji = diagrams with through-degree i .

Back More

There is an antiinvolution (flip pictures),
so J -cells are squares

and H-cells are diagonal.

Note that H-cells are group-like, e.g.

◦ = δ ,

so up to rescaling by 1/δ,

is the unit in the trivial group.

Corollary (of Green’s theorem).

{
simples of

TLn(δ)

}
one-to-one←−−−−→

{
possible

through-degrees

}
.

TLn(δ)-smodJi ' 1-smod .

Classification of simples of the Brauer algebra – in real time

One cell of Br4(δ) (the dimension of Br4(δ) is 105 and I wasn’t able to fit the
whole thing on the slide...), with the circle value δ 6= 0.

J2 H ∼= S2

In general, H-cells in Ji are Si .

Back More

There is an antiinvolution (flip pictures),
so J -cells are squares

and H-cells are diagonal.
Moreover, H-cells are group-like.

Corollary (of Green’s theorem – here over C).

{
simples of

Brn(δ)

}
one-to-one←−−−−→

{
partitions of

n, n−2, n−4, ...

}
.

Brn(δ)-smodJi ' Si -smod .

Exercise.

Do the same for the partition algebra.

Classification of simples of the type A Hecke algebra – cheating a bit

Cells of H( 1 2 3 ), with bw being the Kazhdan–Lusztig (KL) basis.

b12321

b121 b1321 b21321

b1232 b232 b12132

b1213 b2321 b12321

b13 b213

b132 b2132

b1 b21 b321

b12 b2 b32

b123 b23 b3

b∅

J(4)

J(3+1)

J(2+2)

J(2+1+1)

J(1+1+1+1)

H ∼= 1

H ∼= 1

H ∼= 1

H ∼= 1

H ∼= 1

In general, J -cells are indexed by partitions, and H-cells are the trivial group.

Back

There is an antiinvolution (bar involution),
so J -cells are squares

and H-cells are diagonal.
Moreover, H-cells are group-like, e.g. b12321b12321 = [3]!b12321 + bigger friends.

Corollary (of Green’s theorem).

{
simples of

H(Sn)

}
one-to-one←−−−−→

{
partitions of

n

}
.

H(Sn)-smodJi ' 1-smod .

Warning.

Outside of type A you need to take a different basis, the KL basis doesn’t work.

Mazorchuk–Miemietz and others ∼2010++. Green’s theory in categories.

Example (H( 41 2), but now Soergel bimodules over C with their

indecomposables).

B1212

B1,B121 B21

B12 B2,B212

B∅

Jw0

Jmiddle

J∅

SH“'”V ect
SH“'”V ectZ/2Z

SH ' V ect

We count the correct number of 2-simples , namely 1 + 2 + 1 = 4.

L-cells ! left modules / left ideals.
R-cells ! right modules / right ideals.
J -cells “L ⊗K R” ! bimodules / ideals.
H-cells “R⊗S L” ! subalgebras.

To make the “'” above precise is a whole paper...but it works.

For example, B1212B1212 ∼= pB1212 for p = [2][4] ∈ N[v, v−1] being a shift.
So B1212 is a pseudo-idempotent, but you can’t easily rescale on the categorical level.

H-reduction ∼2018.

There is a one-to-one correspondence

{
2-simples with

apex J

}
one-to-one←−−−−→

{
2-simples with apex H

of (any) SH

}
.

Strong H-reduction ∼2020.

S -stmodJ ' SH-stmodH.

stmod means the category of 2-simples.

A direct application.

For (Schur quotients of) 2-Kac–Moody algebras, SH“'”V ect,
and J -cells are indexed by dominant integral weights.

The associated 2-simples are the categorifications of simple
g -modules (à la Chuang–Rouquier & Khovanov–Lauda).

H-reduction implies that there are no other 2-simples.

A trickier application.

We can classify 2-simples of Soergel bimodules
of any finite Coxeter type except for one apex in type H4.

Daniel Tubbenhauer Green’s theory of cells in categorification December 2020 4 / 5

A finite, pivotal (multi)tensor category S :
I Basics. S is K-linear and monoidal, ⊗ is K-bilinear. Moreover, S is abelian

(this implies idempotent complete).
I Involution. S is pivotal, e.g. F?? ∼= F.

I Finiteness. Hom-spaces are finite-dimensional, the number of simples is

finite, finite length, enough projectives.
I Categorification. The abelian Grothendieck ring gives a finite-dimensional

algebra with involution.

A monoidal (multi)fiat category S :
I Basics. S is K-linear and monoidal, ⊗ is K-bilinear. Moreover, S is additive

and idempotent complete.
I Involution. S is pivotal, e.g. F?? ∼= F.
I Finiteness. Hom-spaces are finite-dimensional, the number of

indecomposables is finite.

I Categorification. The additive Grothendieck ring gives a finite-dimensional
algebra with involution.

Back Further

Warning.

We only formulate the precise statements for the additive setting,
but then at least for 2-categories.

The crucial difference...

...is what we like to consider as “elements” of our theory:

Abelian prefers simples,
additive prefers indecomposables.

This is a huge difference – for example in the fiat case there is no Schur’s 2-lemma.

Abelian examples.

H-Mod for H a finite-dimensional Hopf algebra. (Think: KG , G finite.)
Finite Serre quotients of G -Mod for G being a reductive group.

Abelian and additive examples.

H-Mod for H a finite-dimensional, semisimple Hopf algebra. (Think: CG , G finite.)
V ectG for G graded K-vector spaces, e.g. V ect = V ect1.

Additive examples.

H-P roj for H a finite-dimensional Hopf algebra. (Think: KG , G finite.)
Finite quotients of G -T ilt for G being a reductive group.

Why I like the additive case.

All the example I know from my youth are not abelian, but only additive:

Diagram categories, 2-Kac–Moody algebras
and their Schur quotients, Soergel bimodules,

tilting module categories etc.

And these only fit into the fiat and not the tensor framework.

Example (G -Mod, ground field C).

I Let K ⊂ G be a subgroup.

I K -Mod is a S -module, with action

ResGK ⊗ : G -Mod→ EndC
(
K -Mod

)
,

M //

f

��

ResGK (M)⊗

ResGK (f )⊗
��

N // ResGK (N)⊗

.

which is indeed an action because ResGK is a ⊗-functor.

I All of these are 2-simple.

I The decategorifications are K0(S )-modules.

Back

Mazorchuk–Miemietz and others ∼2010++. Green’s theory in categories.

Examples.

I Cells in S give ⊗-ideals.

I If S is semisimple, then XX? and X?X both contain the identity, so cell
theory is trivial.

I For Soergel bimodules cells are Kazhdan–Lusztig cells.

I For 2-Kac–Moody algebras you can push everything to cyclotomic KLR
algebras, and H-cells are of size one.

L-cells ! left modules / left ideals.
R-cells ! right modules / right ideals.
J -cells “L ⊗K R” ! bimodules / ideals.
H-cells “R⊗S L” ! subalgebras.

To make the “'” above precise is a whole paper...but it works.

For example, B1212B1212 ∼= pB1212 for p = [2][4] ∈ N[v, v−1] being a shift.
So B1212 is a pseudo-idempotent, but you can’t easily rescale on the categorical level.

H-reduction ∼2018.

There is a one-to-one correspondence

{
2-simples with

apex J

}
one-to-one←−−−−→

{
2-simples with apex H

of (any) SH

}
.

Strong H-reduction ∼2020.

S -stmodJ ' SH-stmodH.

stmod means the category of 2-simples.

A direct application.

For (Schur quotients of) 2-Kac–Moody algebras, SH“'”V ect,
and J -cells are indexed by dominant integral weights.

The associated 2-simples are the categorifications of simple
g -modules (à la Chuang–Rouquier & Khovanov–Lauda).

H-reduction implies that there are no other 2-simples.

A trickier application.

We can classify 2-simples of Soergel bimodules
of any finite Coxeter type except for one apex in type H4.
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There is still much to do...

Thanks for your attention!
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Picture from https://en.wikipedia.org/wiki/Semigroup.

I There are zillions of semigroups, e.g. 1843120128 of order 8. (Compare: There
are 5 groups of order 8.)

I Already the easiest of these are not semisimple – not even over C.

I Almost all of them are of wild representation type.

Is the study of semigroups hopeless?

Green & co: No!

Back

Clifford, Munn, Ponizovskĭı, Green ∼1942++. Finite semigroups or monoids.

Example (the transformation monoid T3). Cells – L (columns), R (rows), J
(big rectangles), H (small rectangles).

(111) (222) (333)

(122), (221) (133), (331) (233), (322)

(121), (212) (313), (131) (323), (232)

(221), (112) (113), (311) (223), (332)

(123), (213), (132)

(231), (312), (321)

Jbiggest

Jmiddle

Jlowest

H ∼= S1

H ∼= S2

H ∼= S3

Cute facts.

I Each H contains precisely one idempotent e or no idempotent. Each e is
contained in some H(e). (Idempotent separation.)

I Each H(e) is a maximal subgroup. (Group-like.)

I Each simple has a unique maximal J (e) whose H(e) does not kill it. (Apex.)

L-cells ! left modules / left ideals.
R-cells ! right modules / right ideals.
J -cells “L ⊗K R” ! bimodules / ideals.
H-cells “R⊗S L” ! subalgebras.

H-reduction. (Mind your cells!)—stated for monoids

There is a one-to-one correspondence

{
simples with

apex J (e)

}
one-to-one←−−−−→

{
simples of (any)

H(e) ⊂ J (e)

}
.

In other words,
S-smodJ (e) ' H(e)-smod.

smod means the category of simples.

Example. (T3.) More

H(e) = S3,S2,S1 gives 3 + 2 + 1 = 6 associated simples (over C).

This is a general philosophy in representation theory.

Buzz words. Idempotent truncations, Kazhdan–Lusztig cells,
quasi-hereditary algebras, cellular algebras, etc.

Note. Whenever one has a (reasonable) antiinvolution ?,
the H-cells to consider are the diagonals H = L ∩ L?.

I will almost ignore non-contributing H-cells from now on.

Daniel Tubbenhauer Green’s theory of cells in categorification December 2020 2 / 5

Classification of simples of the Temperley–Lieb algebra – in real time

Cells of TL4(δ), with the circle value δ 6= 0.

J0

J2

J4

H ∼= 1

H ∼= 1

H ∼= 1

Ji = diagrams with through-degree i .

Back More

There is an antiinvolution (flip pictures),
so J -cells are squares

and H-cells are diagonal.

Note that H-cells are group-like, e.g.

◦ = δ ,

so up to rescaling by 1/δ,

is the unit in the trivial group.

Corollary (of Green’s theorem).

{
simples of

TLn(δ)

}
one-to-one←−−−−→

{
possible

through-degrees

}
.

TLn(δ)-smodJi ' 1-smod .

Classification of simples of the Brauer algebra – in real time

One cell of Br4(δ) (the dimension of Br4(δ) is 105 and I wasn’t able to fit the
whole thing on the slide...), with the circle value δ 6= 0.

J2 H ∼= S2

In general, H-cells in Ji are Si .

Back More

There is an antiinvolution (flip pictures),
so J -cells are squares

and H-cells are diagonal.
Moreover, H-cells are group-like.

Corollary (of Green’s theorem – here over C).

{
simples of

Brn(δ)

}
one-to-one←−−−−→

{
partitions of

n, n−2, n−4, ...

}
.

Brn(δ)-smodJi ' Si -smod .

Exercise.

Do the same for the partition algebra.

Classification of simples of the type A Hecke algebra – cheating a bit

Cells of H( 1 2 3 ), with bw being the Kazhdan–Lusztig (KL) basis.

b12321

b121 b1321 b21321

b1232 b232 b12132

b1213 b2321 b12321

b13 b213

b132 b2132

b1 b21 b321

b12 b2 b32

b123 b23 b3

b∅

J(4)

J(3+1)

J(2+2)

J(2+1+1)

J(1+1+1+1)

H ∼= 1

H ∼= 1

H ∼= 1

H ∼= 1

H ∼= 1

In general, J -cells are indexed by partitions, and H-cells are the trivial group.

Back

There is an antiinvolution (bar involution),
so J -cells are squares

and H-cells are diagonal.
Moreover, H-cells are group-like, e.g. b12321b12321 = [3]!b12321 + bigger friends.

Corollary (of Green’s theorem).

{
simples of

H(Sn)

}
one-to-one←−−−−→

{
partitions of

n

}
.

H(Sn)-smodJi ' 1-smod .

Warning.

Outside of type A you need to take a different basis, the KL basis doesn’t work.

Mazorchuk–Miemietz and others ∼2010++. Green’s theory in categories.

Example (H( 41 2), but now Soergel bimodules over C with their

indecomposables).

B1212

B1,B121 B21

B12 B2,B212

B∅

Jw0

Jmiddle

J∅

SH“'”V ect
SH“'”V ectZ/2Z

SH ' V ect

We count the correct number of 2-simples , namely 1 + 2 + 1 = 4.

L-cells ! left modules / left ideals.
R-cells ! right modules / right ideals.
J -cells “L ⊗K R” ! bimodules / ideals.
H-cells “R⊗S L” ! subalgebras.

To make the “'” above precise is a whole paper...but it works.

For example, B1212B1212 ∼= pB1212 for p = [2][4] ∈ N[v, v−1] being a shift.
So B1212 is a pseudo-idempotent, but you can’t easily rescale on the categorical level.

H-reduction ∼2018.

There is a one-to-one correspondence

{
2-simples with

apex J

}
one-to-one←−−−−→

{
2-simples with apex H

of (any) SH

}
.

Strong H-reduction ∼2020.

S -stmodJ ' SH-stmodH.

stmod means the category of 2-simples.

A direct application.

For (Schur quotients of) 2-Kac–Moody algebras, SH“'”V ect,
and J -cells are indexed by dominant integral weights.

The associated 2-simples are the categorifications of simple
g -modules (à la Chuang–Rouquier & Khovanov–Lauda).

H-reduction implies that there are no other 2-simples.

A trickier application.

We can classify 2-simples of Soergel bimodules
of any finite Coxeter type except for one apex in type H4.
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A finite, pivotal (multi)tensor category S :
I Basics. S is K-linear and monoidal, ⊗ is K-bilinear. Moreover, S is abelian

(this implies idempotent complete).
I Involution. S is pivotal, e.g. F?? ∼= F.

I Finiteness. Hom-spaces are finite-dimensional, the number of simples is

finite, finite length, enough projectives.
I Categorification. The abelian Grothendieck ring gives a finite-dimensional

algebra with involution.

A monoidal (multi)fiat category S :
I Basics. S is K-linear and monoidal, ⊗ is K-bilinear. Moreover, S is additive

and idempotent complete.
I Involution. S is pivotal, e.g. F?? ∼= F.
I Finiteness. Hom-spaces are finite-dimensional, the number of

indecomposables is finite.

I Categorification. The additive Grothendieck ring gives a finite-dimensional
algebra with involution.

Back Further

Warning.

We only formulate the precise statements for the additive setting,
but then at least for 2-categories.

The crucial difference...

...is what we like to consider as “elements” of our theory:

Abelian prefers simples,
additive prefers indecomposables.

This is a huge difference – for example in the fiat case there is no Schur’s 2-lemma.

Abelian examples.

H-Mod for H a finite-dimensional Hopf algebra. (Think: KG , G finite.)
Finite Serre quotients of G -Mod for G being a reductive group.

Abelian and additive examples.

H-Mod for H a finite-dimensional, semisimple Hopf algebra. (Think: CG , G finite.)
V ectG for G graded K-vector spaces, e.g. V ect = V ect1.

Additive examples.

H-P roj for H a finite-dimensional Hopf algebra. (Think: KG , G finite.)
Finite quotients of G -T ilt for G being a reductive group.

Why I like the additive case.

All the example I know from my youth are not abelian, but only additive:

Diagram categories, 2-Kac–Moody algebras
and their Schur quotients, Soergel bimodules,

tilting module categories etc.

And these only fit into the fiat and not the tensor framework.

Example (G -Mod, ground field C).

I Let K ⊂ G be a subgroup.

I K -Mod is a S -module, with action

ResGK ⊗ : G -Mod→ EndC
(
K -Mod

)
,

M //

f

��

ResGK (M)⊗

ResGK (f )⊗
��

N // ResGK (N)⊗

.

which is indeed an action because ResGK is a ⊗-functor.

I All of these are 2-simple.

I The decategorifications are K0(S )-modules.

Back

Mazorchuk–Miemietz and others ∼2010++. Green’s theory in categories.

Examples.

I Cells in S give ⊗-ideals.

I If S is semisimple, then XX? and X?X both contain the identity, so cell
theory is trivial.

I For Soergel bimodules cells are Kazhdan–Lusztig cells.

I For 2-Kac–Moody algebras you can push everything to cyclotomic KLR
algebras, and H-cells are of size one.

L-cells ! left modules / left ideals.
R-cells ! right modules / right ideals.
J -cells “L ⊗K R” ! bimodules / ideals.
H-cells “R⊗S L” ! subalgebras.

To make the “'” above precise is a whole paper...but it works.

For example, B1212B1212 ∼= pB1212 for p = [2][4] ∈ N[v, v−1] being a shift.
So B1212 is a pseudo-idempotent, but you can’t easily rescale on the categorical level.

H-reduction ∼2018.

There is a one-to-one correspondence

{
2-simples with

apex J

}
one-to-one←−−−−→

{
2-simples with apex H

of (any) SH

}
.

Strong H-reduction ∼2020.

S -stmodJ ' SH-stmodH.

stmod means the category of 2-simples.

A direct application.

For (Schur quotients of) 2-Kac–Moody algebras, SH“'”V ect,
and J -cells are indexed by dominant integral weights.

The associated 2-simples are the categorifications of simple
g -modules (à la Chuang–Rouquier & Khovanov–Lauda).

H-reduction implies that there are no other 2-simples.

A trickier application.

We can classify 2-simples of Soergel bimodules
of any finite Coxeter type except for one apex in type H4.
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There is still much to do...

Thanks for your attention!
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Picture from https://en.wikipedia.org/wiki/Semigroup.

I There are zillions of semigroups, e.g. 1843120128 of order 8. (Compare: There
are 5 groups of order 8.)

I Already the easiest of these are not semisimple – not even over C.

I Almost all of them are of wild representation type.

Is the study of semigroups hopeless?

Green & co: No!

Back

https://en.wikipedia.org/wiki/Semigroup


Classification of simples of the Temperley–Lieb algebra – in real time

Cells of TL4(δ), with the circle value δ 6= 0.

J0

J2

J4

H ∼= 1

H ∼= 1

H ∼= 1

Ji = diagrams with through-degree i .

Back More

There is an antiinvolution (flip pictures),
so J -cells are squares

and H-cells are diagonal.

Note that H-cells are group-like, e.g.

◦ = δ ,

so up to rescaling by 1/δ,

is the unit in the trivial group.

Corollary (of Green’s theorem).

{
simples of

TLn(δ)

}
one-to-one←−−−−→

{
possible

through-degrees

}
.

TLn(δ)-smodJi ' 1-smod .



Classification of simples of the Temperley–Lieb algebra – in real time

Cells of TL4(δ), with the circle value δ 6= 0.

J0

J2

J4

H ∼= 1

H ∼= 1

H ∼= 1

Ji = diagrams with through-degree i .

Back More

There is an antiinvolution (flip pictures),
so J -cells are squares

and H-cells are diagonal.

Note that H-cells are group-like, e.g.

◦ = δ ,

so up to rescaling by 1/δ,

is the unit in the trivial group.

Corollary (of Green’s theorem).

{
simples of

TLn(δ)

}
one-to-one←−−−−→

{
possible

through-degrees

}
.

TLn(δ)-smodJi ' 1-smod .



Classification of simples of the Temperley–Lieb algebra – in real time

Cells of TL4(δ), with the circle value δ 6= 0.

J0

J2

J4

H ∼= 1

H ∼= 1

H ∼= 1

Ji = diagrams with through-degree i .

Back More

There is an antiinvolution (flip pictures),
so J -cells are squares

and H-cells are diagonal.

Note that H-cells are group-like, e.g.

◦ = δ ,

so up to rescaling by 1/δ,

is the unit in the trivial group.

Corollary (of Green’s theorem).

{
simples of

TLn(δ)

}
one-to-one←−−−−→

{
possible

through-degrees

}
.

TLn(δ)-smodJi ' 1-smod .



Classification of simples of the Temperley–Lieb algebra – in real time

Cells of TL4(δ), with the circle value δ 6= 0.

J0

J2

J4

H ∼= 1

H ∼= 1

H ∼= 1

Ji = diagrams with through-degree i .

Back More

There is an antiinvolution (flip pictures),
so J -cells are squares

and H-cells are diagonal.

Note that H-cells are group-like, e.g.

◦ = δ ,

so up to rescaling by 1/δ,

is the unit in the trivial group.

Corollary (of Green’s theorem).

{
simples of

TLn(δ)

}
one-to-one←−−−−→

{
possible

through-degrees

}
.

TLn(δ)-smodJi ' 1-smod .



Classification of simples of the Brauer algebra – in real time

Cells of Br3(δ), with the circle value δ 6= 0.

, ,

, ,

J1

J3

H ∼= S1

H ∼= S3

Ji = diagrams with through-degree i .

Back More

There is an antiinvolution (flip pictures),
so J -cells are squares

and H-cells are diagonal.
Moreover, H-cells are group-like.

Corollary (of Green’s theorem – here over C).

{
simples of

Brn(δ)

}
one-to-one←−−−−→

{
partitions of

n, n−2, n−4, ...

}
.

Brn(δ)-smodJi ' Si -smod .

Exercise.

Do the same for the partition algebra.



Classification of simples of the Brauer algebra – in real time

Cells of Br3(δ), with the circle value δ 6= 0.

, ,

, ,

J1

J3

H ∼= S1

H ∼= S3

Ji = diagrams with through-degree i .

Back More

There is an antiinvolution (flip pictures),
so J -cells are squares

and H-cells are diagonal.
Moreover, H-cells are group-like.

Corollary (of Green’s theorem – here over C).

{
simples of

Brn(δ)

}
one-to-one←−−−−→

{
partitions of

n, n−2, n−4, ...

}
.

Brn(δ)-smodJi ' Si -smod .

Exercise.

Do the same for the partition algebra.



Classification of simples of the Brauer algebra – in real time

One cell of Br4(δ) (the dimension of Br4(δ) is 105 and I wasn’t able to fit the
whole thing on the slide...), with the circle value δ 6= 0.

J2 H ∼= S2

In general, H-cells in Ji are Si .

Back More

There is an antiinvolution (flip pictures),
so J -cells are squares

and H-cells are diagonal.
Moreover, H-cells are group-like.

Corollary (of Green’s theorem – here over C).

{
simples of

Brn(δ)

}
one-to-one←−−−−→

{
partitions of

n, n−2, n−4, ...

}
.

Brn(δ)-smodJi ' Si -smod .

Exercise.

Do the same for the partition algebra.



Classification of simples of the Brauer algebra – in real time

One cell of Br4(δ) (the dimension of Br4(δ) is 105 and I wasn’t able to fit the
whole thing on the slide...), with the circle value δ 6= 0.

J2 H ∼= S2

In general, H-cells in Ji are Si .

Back More

There is an antiinvolution (flip pictures),
so J -cells are squares

and H-cells are diagonal.
Moreover, H-cells are group-like.

Corollary (of Green’s theorem – here over C).

{
simples of

Brn(δ)

}
one-to-one←−−−−→

{
partitions of

n, n−2, n−4, ...

}
.

Brn(δ)-smodJi ' Si -smod .

Exercise.

Do the same for the partition algebra.



Classification of simples of the type A Hecke algebra – cheating a bit

Cells of H( 1 2 3 ), with bw being the Kazhdan–Lusztig (KL) basis.

b12321

b121 b1321 b21321

b1232 b232 b12132

b1213 b2321 b12321

b13 b213

b132 b2132

b1 b21 b321

b12 b2 b32

b123 b23 b3

b∅

J(4)

J(3+1)

J(2+2)

J(2+1+1)

J(1+1+1+1)

H ∼= 1

H ∼= 1

H ∼= 1

H ∼= 1

H ∼= 1

In general, J -cells are indexed by partitions, and H-cells are the trivial group.

Back

There is an antiinvolution (bar involution),
so J -cells are squares

and H-cells are diagonal.
Moreover, H-cells are group-like, e.g. b12321b12321 = [3]!b12321 + bigger friends.

Corollary (of Green’s theorem).

{
simples of

H(Sn)

}
one-to-one←−−−−→

{
partitions of

n

}
.

H(Sn)-smodJi ' 1-smod .

Warning.

Outside of type A you need to take a different basis, the KL basis doesn’t work.
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A finite, pivotal (multi)tensor category S :
I Basics. S is K-linear and monoidal, ⊗ is K-bilinear. Moreover, S is abelian

(this implies idempotent complete).
I Involution. S is pivotal, e.g. F?? ∼= F.

I Finiteness. Hom-spaces are finite-dimensional, the number of simples is

finite, finite length, enough projectives.
I Categorification. The abelian Grothendieck ring gives a finite-dimensional

algebra with involution.

A monoidal (multi)fiat category S :
I Basics. S is K-linear and monoidal, ⊗ is K-bilinear. Moreover, S is additive

and idempotent complete.
I Involution. S is pivotal, e.g. F?? ∼= F.
I Finiteness. Hom-spaces are finite-dimensional, the number of

indecomposables is finite.

I Categorification. The additive Grothendieck ring gives a finite-dimensional
algebra with involution.

Back Further

Warning.

We only formulate the precise statements for the additive setting,
but then at least for 2-categories.

The crucial difference...

...is what we like to consider as “elements” of our theory:

Abelian prefers simples,
additive prefers indecomposables.

This is a huge difference – for example in the fiat case there is no Schur’s 2-lemma.

Abelian examples.

H-Mod for H a finite-dimensional Hopf algebra. (Think: KG , G finite.)
Finite Serre quotients of G -Mod for G being a reductive group.

Abelian and additive examples.

H-Mod for H a finite-dimensional, semisimple Hopf algebra. (Think: CG , G finite.)
V ectG for G graded K-vector spaces, e.g. V ect = V ect1.

Additive examples.

H-P roj for H a finite-dimensional Hopf algebra. (Think: KG , G finite.)
Finite quotients of G -T ilt for G being a reductive group.

Why I like the additive case.

All the example I know from my youth are not abelian, but only additive:

Diagram categories, 2-Kac–Moody algebras
and their Schur quotients, Soergel bimodules,

tilting module categories etc.

And these only fit into the fiat and not the tensor framework.
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Example G = Z/2Z×Z/2Z (Klein four group).

If K is not of characteristic 2, KG is semisimple and additive=abelian. So let us
have a look at characteristic 2, where we have KG ∼= K[X ,Y ]/(X 2,Y 2)

First, abelian:

I X and Y have to act as zero on each simple, so KG has just K as a simple.

I KG -Mod has just one element.

Then additive:

I Only X 2 and Y 2 have to act as zero on each indecomposable, and one can
cook-up infinitely many, e.g.

• • • • • ... • •YX YX X Y X

I KG -Mod has infinitely many elements.

Back

Theorem (Higman ∼1953).

For char(K) = p, KG -Mod is...

...always a finite, pivotal tensor category.

... monoidal fiat if and only if (p - |G | or the p-Sylow subgroup of G is cyclic).
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Abelian. A S -module M:

I Basics. M is K-linear and abelian. The action is a monoidal functor
M: S → EndK,lex(M) (K-linear, left exactness).

I Finiteness. Hom-spaces are finite-dimensional, the number of simples is

finite, finite length, enough projectives.

I Categorification. The abelian Grothendieck group gives a finite-dimensional
G0(S )-module.

Additive. A S -module M:

I Basics. M is K-linear, additive and idempotent complete. The action is a
monoidal functor M: S → EndK(M) (K-linear).

I Finiteness. Hom-spaces are finite-dimensional, the number of

indecomposables is finite.

I Categorification. The additive Grothendieck group gives a finite-dimensional
K0(S )-module.

Back Further

The easiest of such modules are called
simple transitive (2-simple for short)

and they satisfy a Jordan–Hölder theorem.

By definition, these are those S -modules
without S -stable ideals on the morphism level.

This categorifies the definition of a simple having no
S-stable subspaces.

Example.

For 2-Kac–Moody algebras the minimal
categorifications of the g -simples in the
sense of Chuang–Rouquier are 2-simple.



Abelian. A S -module M:

I Basics. M is K-linear and abelian. The action is a monoidal functor
M: S → EndK,lex(M) (K-linear, left exactness).

I Finiteness. Hom-spaces are finite-dimensional, the number of simples is

finite, finite length, enough projectives.

I Categorification. The abelian Grothendieck group gives a finite-dimensional
G0(S )-module.

Additive. A S -module M:

I Basics. M is K-linear, additive and idempotent complete. The action is a
monoidal functor M: S → EndK(M) (K-linear).

I Finiteness. Hom-spaces are finite-dimensional, the number of

indecomposables is finite.

I Categorification. The additive Grothendieck group gives a finite-dimensional
K0(S )-module.

Back Further

The easiest of such modules are called
simple transitive (2-simple for short)

and they satisfy a Jordan–Hölder theorem.
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Example (G -Mod, ground field C).

I Let S = G -Mod, for G being a finite group. As S is semisimple,
abelian=additive. Simples are simple G -modules.

I For any M, N ∈ S , we have M⊗ N ∈ S :

g(m ⊗ n) = gm ⊗ gn

for all g ∈ G ,m ∈ M, n ∈ N. There is a trivial module C.

I The regular S -module M: S → EndC(S ):

M //

f

��

M⊗
f⊗
��

N // N⊗

.

I The decategorification is the regular K0(S )-module.

Back



Example (G -Mod, ground field C).

I Let K ⊂ G be a subgroup.

I K -Mod is a S -module, with action

ResGK ⊗ : G -Mod→ EndC
(
K -Mod

)
,

M //

f

��

ResGK (M)⊗

ResGK (f )⊗
��

N // ResGK (N)⊗

.

which is indeed an action because ResGK is a ⊗-functor.

I All of these are 2-simple.

I The decategorifications are K0(S )-modules.

Back
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