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Clifford, Munn, Ponizovskii, Green ~1942+4. Finite semigroups or monoids.

Example. N, Aut({1,...,n}) =5, C T, = End({1, ..., n}), groups, groupoids,
categories, any - closed subsets of matrices, “everything” , etc.

The cell orders and equivalences:

x<pyedziy=2zx, x~ye (x<py)A(y < x),
xRy 3y =xZ, x~ry e (x <pY) Ay < ),
x<iry©3z,7:y=2x2', x~iry e (x<irYy)A(y <ir X).

Left, right and two-sided cells: Equivalence classes.

Example (group-like). The unit 1 is always in the lowest cell —e.g. 1 <; y

because we can take z = y. Invertible elements g are always in the lowest cell — i.e.

g <, y because we can take z = yg~!.
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Clifford, Munn, Ponizovskii, Green ~1942+4. Finite semigroups or monoids.

Example (the transformation semigroup T3). Cells — left £ (columns), right R

(rows), two-sided J (big rectangles), H = L NR (small rectangles).

Tiowest (123), (213), (132) H~S,
(231), (312), (321)

(122), (221) | (133),(331) | (233), (322)
Tmiddle (121), e12) | (313),(231) | (323), (232) H=S,
(221), (112) | (113),(311) | (223), (332)
jbiggest (111) ‘ (222) ‘ (333) H = 51
Cute facts.

» Each H contains precisely one idempotent e or none idempotent. Each e is

contained in some #(e). (ldempotent separation.)

» Each #(e) is a maximal subgroup. (Group-like.)

» Each simple has a unique maximal J(e) whose H(e) do not kill it. (Apex.)

Daniel Tubbenhauer 2-rep i of Soergel bi September 2019

2/10



Clifford, Theorem. (Mind you;' éroups') eIk
Example There is a one-to-one correspondence ps), right R
(rows), tw
simples with | onetoone | Simples of (any) . 5
Jo apex J(e) H(e) C J(e) = S3
Thus, the maximal subgroups #/(e) (semisimple over C) control
the whole representation theory (non-semisimple; even over C). |
Imidare EZIL R GBL(B) [(929)51257) =5,
(221), (112) | (113),@11) | (223), (332)
jbiggest (111) ‘ (222) ‘ (333) H = 51
Cute facts.

» Each # contains precisely one idempotent e or none idempotent. Each e is
contained in some #(e). (ldempotent separation.)

» Each 7 (e) is a maximal subgroup. (Group-like.)
> Each simple has a unique maximal J(e) whose H(e) do not kill it. (Apex.)
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Clifford, Theorem. (Mind you;' .groups|) monoids.

Example There is a one-to-one correspondence is), right R
(rows), tw
simples with | onetoone | Simples of (any)
Jio apex J(e) H(e) Cc T(e) [ ~ 53

Thus, the maximal subgroups #/(e) (semisimple over C) control

the whole representation theory (non-semisimple; even over C). |

Imidare W22 GE), (B 929252 =5,

221, (112) | 113V @ | (223). (330)
Example. (T3.)

jbiggest H = 51

H(e) = S3, 52,51 gives 3+ 2 + 1 = 6 associated simples.

Cute facts.

» Each # contains precisely one idempotent e or none idempotent. Each e is
contained in some #(e). (ldempotent separation.)

» Each 7 (e) is a maximal subgroup. (Group-like.)
> Each simple has a unique maximal J(e) whose H(e) do not kill it. (Apex.)
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Clifford, Theorem. (Mind you;' .groups|) monoids.

Example There is a one-to-one correspondence is), right R
(rows), tw
simples with | onetoone | Simples of (any)
Jio apex J(e) H(e) C T(e) [ = S3

Thus, the maximal subgroups #/(e) (semisimple over C) control

the whole representation theory (non-semisimple; even over C). |

Imidare W22 GE), (B 929252 =5,

221, (112) | 113V @ | (223). (330)
Example. (T3.)

jbiggest H = 51

H(e) = S3, 52,51 gives 3+ 2 + 1 = 6 associated simples.

Cute facts. — : - -
This is a general philosophy in representation theory. _
» Each H| . Each e is
contain|Buzz words. Idempotent truncations, Kazhdan—Lusztig cells,
» Each A quasi-hereditary algebras, cellular algebras, etc.

> Each simple has a unique maximal J(e) whose H(e) do not kill it. (Apex.)
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2-representation theory in a nutshell

categorical module

i AM(1)

F s M (F) a s ()

2-module category functor nat. trafo
| I
categorifies categorifies categorifies
M s M(3) F s M(F)

1-module vector space linear map

categorifies categorifies
o e T i M (1)

-module number
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NY

Examples of 2-categories.
Monoidal categories, module categories Zep(G) of finite groups G,

module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules &, categorified quantum groups, categorified Heisenberg algebras.

P
2-module category functor nat. trafo
categorifies categorifies categorifies
M M(3) F —M(F)
1-module vector space linear map
categorifies categorifies

—r+ i m(i)

0-module AuEr
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Examples of 2-categories.

NY

Monoidal categories, module categories Zep(G) of finite groups G,

module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules &, categorified quantum groups, categorified Heisenberg algebras.

Il 1
Examples of 2-representations.
Categorical modules, functorial actions,

(co)algebra objects, conformal embeddings of affine Lie algebras,

the LLT algorithm, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module.
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Examples of 2-categories.

NY

Monoidal categories, module categories Zep(G) of finite groups G,

module categories of Hopf algebras, fusion or modular tensor categories,

Soergel bimodules &, categorified quantum groups, categorified Heisenberg algebras.

! ]
Examples of 2-representations.
Categorical modules, functorial actions,
(co)algebra objects, conformal embeddings of affine Lie algebras,

the LLT algorithm, cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module.

Applications of 2-representations.
Representation theory (classical and modular), link homology, combinatorics

TQFTs, quantum physics, geometry.
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2-representation theory in a nutshell

categorical module
N i M(1) F s M (F) a— M)

2-
2-module catecor: functor nat trafo

Plan for today.

1) Give an overview of the main ideas of 2-representation theory.

2) Discuss the group-like example Zep(G).

3) Discuss the semigroup-like example . (Time flies: | will be brief.)
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Representation theory is group theory in vector spaces

Let C be a finite-dimensional algebra.

Frobenius ~1895+, Burnside ~1900-+, Noether ~1928-+.
Representation theory is the study of algebra actions

M: C — End(V),

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple.

Maschke ~1899, Noether, Schreier ~1928. All modules are built out of
simples (“Jordan—Hdlder” filtration).

‘ Basic question: Find the periodic table of simples.
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2-representation theory is group theory in categories

Let 6 be a finitary 2-category.

Etingof-Ostrik, Chuang—Rouquier, Khovanov—Lauda, many others
~2000+4. 2-representation theory is the useful? study of actions of 2-categories:

M€ — End(V),

with V being some finitary category. (Called 2-modules or 2-representations.)

The “atoms” of such an action are called 2-simple (“simple transitive").

Mazorchuk—Miemietz ~2014. All 2-modules are built out of 2-simples ("
2-Jordan—Hdlder filtration™).

Basic question: Find the periodic table of 2-simples. ‘
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2-representation theory is group theory in categories

Let 6 be a finitary 2-category.

Etingof—Ostrik, Chuang—Rouquier, Khovanov-Lauda, many others
~2000+4-. 2-representation theory is the useful? study of actions of 2-categories:
Empirical fact.

Most of the fun happens already for monoidal categories (one-object 2-categories);

| will stick to this case for the rest of the talk,

T

but what | am going to explain works for 2-categories.

Mazorchuk—Miemietz ~2014. All 2-modules are built out of 2-simples ("
2-Jordan—Halder filtration™).

Basic question: Find the periodic table of 2-simples. ‘
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A category V is called finitary if its equivalent to C-pMod. In particular:
» It has finitely many indecomposable objects M; (up to =2).
» It has finite-dimensional hom-spaces.
» Its Grothendieck group [V] = [V]z ®z C is finite-dimensional.

A finitary, monoidal category %6 can thus be seen as a categorification of a
finite-dimensional algebra.
Its indecomposable objects C; give a distinguished basis of [€].

A finitary 2-representation of €

» A choice of a finitary category V.
» (Nice) endofunctors .#(C;) acting on V.
» [./(C;)] give N-matrices acting on [V].
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A category V is called finitary if its equivalent to C-pMod. In particular:

» It has finitely many in acamnacahla ahiacte M. (JP to g)

- : . The atoms (decat).
» It has finite-dimension

» lIts Grothendieck grougA C module is called simple jlimensional.

if it has no C-stable ideals.

A finitary, monoidal category %6 can thus be seen as a categorification of a

finite-dimensional algebr3 The atoms (cat).
Its indecomposable objec
A €6 2-module is called 2-simple

A finitary 2-representatio

if it has no ¢ -stable ®-ideals.

of [€].

» A choice of a finitary category V-
» (Nice) endofunctors .#(C;) acting on V.
» [/ (C;)] give N-matrices acting on [V].
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A category V is called finitary if its equivalent to C-pMod. In particular:

» It has finitely many indecomposable objects M; (up to =2).

» It has finite-dimensional hom-spaces.

> It Dictionary.
cat H finitary ‘ finitary+monoidal ‘ fiat ‘ functors
A finit{ decat || vector space | algebra | self-injective | matrices
finite-dimensional algebra.

|ts indecomposab o nhiorte . give 2 dictinauichad hacie nf [£]
Instead of studying C and its action via matrices,

A finitary 2-repre§  study C-pMod and its action via functors.

» A choice of a finitary category V.
» (Nice) endofunctors .#(C;) acting on V.
» [/ (C;)] give N-matrices acting on [V].
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A category V is cal

led finitary if its equivalent to C-pMod. In particular:

~

» It has finitely many indecomposable objects M; (up to =2).

mensional hom-snaceg

» It has finite-di
» Its Grothendie

A finitary, monoida

Example (decat).
nal.
C = C =1 acts on any vector space via A - _
It has only one simple V= C. fication ofia

finite-dimensional
Its indecomposable

Tgcord.

objects C; give a distinguished basis of [€].

A finitary 2

» A choiq6¢ = ¥ec = Zep(1) acts on any finitary category via C ®c _

> (Nice)

Example (cat).

It has only one 2-simple V = Vec.

» [/ (C; )T gve Iv=-Tatrces actiig O[T
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An algebra A = (A, u,¢) in

A A A

Its (right) modules (M, ):

5:M\A, - \W, \_

Example. Algebras in ¥ec are algebras; modules are modules.

Example. Algebras in Zep(G) are discussed in a second.
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An algebra A = (A, i, ¢) in 6:

A

A | | |

The category of (right) A-modules Mod (A )

= is a left € 2-representation. =
L N AN

Its (right) modules (M, 6):

- A - \W’ N-

Example. Algebras in ¥ec are algebras; modules are modules.

Example. Algebras in Zep(G) are discussed in a second.
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An algebra A = (A, p1,¢) in 6:
A A | | |
The category of (right) A-modules Mod« (A «)
= is a left € 2-representation. -
A A 1 [ A A T 1

Theorem (spread over several papers).

Its
( Completeness. For every 2-simple .4 there exists

a simple algebra object A 4 in % (fiat)
such that /# = Mod«(A.«).

Non-redundancy. .# = & if and only if
A 4 and Ay are Morita—Takeuchi equivalent.

Example. Algebras in ¥ec are algebras; modules are modules.

Example. Algebras in Zep(G) are discussed in a second.
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An algebra A = (A, p1,¢) in 6:
A A | | |
The category of (right) A-modules Mod« (A «)
= is a left € 2-representation. -
A A 1 [ A A T 1

Theorem (spread over several papers).

Its
( Completeness. For every 2-simple .4 there exists

a simple algebra object A 4 in % (fiat)
such that /# = Mod«(A.«).

Non-redundancy. .# = & if and only if
A 4 and Ay are Morita—Takeuchi equivalent.

Example.
Exa P

Simple algebra objects in ¥ec are simple algebras.
ExalUp to Morita—Takeuchi equivalence these are just C; and Modyec(C) = Vec.

The above theorem is a vast generalization of this.
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Example (Zep(G)).

v

Let € = Zep(G) (G a finite group).
% is monoidal and finitary (and fiat). For any M\,N € 6, we have MQ N € 6

v

g(m®n) = gm® gn

for all g € G,m € M,n € N. There is a trivial representation 1.
The regular 2-representation .4 : € — &nd(6):

v

M———M®_

fl Jre--

N— N® _

» The decategorification is a N-representation, the regular representation.

v

The associated algebra objectisA 4, =1€ 6.

Daniel Tubbenhauer 2-rep i of Soergel bi September 2019 7/10




Example (Zep(G)).
» Let K C G be a subgroup.
> Rep(K) is a 2-representation of Zep(G), with action
Resg @ _: Rep(G) — &nd(Rep(K)),

which is indeed a 2-action because Res% is a ®-functor.
» The decategorifications are N-representations.
» The associated algebra object is Ay = Zndg(1x) € 6.
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Example (Zep(G)).

» Let i) € H?>(K,C*). Let V(K1) be the category of projective K-modules
with Schur multiplier v, i.e. vector spaces V with p: K — End(V) such that

p(&)p(h) = ¥(g, h)p(gh), for all g, h € K.
» Note that V(K, 1) = Rep(K) and
®: V(K,0) RV(K, ) = V(K, ¢b).
> V(K, ) is also a 2-representation of 6 = Zep(G):

RescXId
—_—

Rep(G) K V(K, 1)) Rep(K) B V(K, 1) 2 V(K, ).

» The decategorifications are N-representations.

» The associated algebra object is Afﬂ =ZIndZ(1k) € 6, but with -twisted
multiplication.
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Example (Zep(G)).

Theorem (folklore?).
- Completeness. All 2-simples of Zep(G) are of the form V(K 1). Ehsat
Non-redundancy. We have V(K, ) = V(K', ")
the subgroups are conjugate and )’ :<:1>,l)g, where ¢ (k, 1) = ¥ (gkg ™, glg ™).
> ‘Nore e T —=—epT e

@1 V(K, ) B V(K, ) = V(K, 60).
> V(K, 1) is also a 2-representation of 6 = Zep(G):

Rep(G) B V(K, ) 22 Ren(K) ® V(K,¥) S V(K, ).

» The decategorifications are N-representations.

» The associated algebra object is Ai,, = ZInd(1k) € 6, but with -twisted
multiplication.
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Example (Zep(G)).

Theorem (folklore?).
- Completeness. All 2-simples of Zep(G) are of the form V(K 1). Ehsat
Non-redundancy. We have V(K, ) = V(K', ")
the subgroups are conjugate and )’ :<:1>/)g, where ¢ (k, 1) = ¥ (gkg ™, glg ™).
> ‘Noretrat o T —~epr e
Note that Zep(G) has only finitely many 2-simples.
b V(K, 1) is broeee—repreatiis is N0 coincidence,

Rep(G) B V(K, ) 22 Ren(K) ® V(K,¥) S V(K, ).

» The decategorifications are N-representations.

» The associated algebra object is Af,, — Tnd(1k) € €6, but with 9-twisted
multiplication.
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Example (Zep(G)).

Theorem (folklore?).
Completeness. All 2-simples of Zep(G) are of the form V(K, ).

Non-redundancy. We have V(K, ) = V(K', ")
=

the subgroups are conjugate and v’ = 1€, where ¢&(k, ) = 1 (gkg ™", glg™").

hat

> TNOUTT TTTdt V\I\, J.} — /\A,l)\!\) drma

b V(K, 1) is breocrerepreet s is N0 coincidence. |

Note that Zep(G) has only finitely many 2-simples.

T

» Thg

» Thg
mul

Theorem (Etingof-Nikshych—Ostrik ~2004); the group-like case. |

If € is fusion (fiat and semisimple),
then it has only finitely many 2-simples.

This is false if one drops the semisimplicity.

twisted
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Example (Zep(G)).

Group-like; semisimple.

» Let v € H?(K,(
with Schur mult

jective K-modules

There are not many interesting actions "5 £nd(V) such that

of groups on additive/abelian categories.
Examples. ¥ec, Zep(G), Zep(Uq(g))>, = K.

fusion or modular categories etc.
> Note that V(K by—recprrey e &

®: V(K, ) KV(K, ) = V(K, ¢1).

> Semigroup-like; non-semisimple.

There are many interesting actions
of semigroups on additive/abelian categories.

> Examples. Functors acting on categories, projective functors on category O,
» |Soergel bimodules, categorified quantum groups and their Schur quotients etc. fed

multiplication.
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Kazhdan—Lusztig ~1979, Mazorchuk—Miemietz ~2010, many others.
Additive categories are like semigroups.

Example. Bima — the 2-category of projective bimodules over some
finite-dimensional algebra. Take e.g. A with primitive idempotents e; + e; + e3 = 1,
then 9Bimu has ten indecomposable 1-morphisms A and Ae; ®c gA.

The cell orders and equivalences:

X< Y& TZ:Y@ZX, X~ Yo (X< Y)A(Y LX),
X<pY&IZ:Ya@xZ, X~prY¥& (X<pY)A(Y<grX),
X<irY& I2,2:Y@ZXZ, X~pYe X< Y)A(Y <rX).

Left, right and two-sided cells: Equivalence classes.

Example (group-like). The monoidal unit 1 is always in the lowest cell — e.g.
1 <, y because we can take Z =Y. Semisimple 1-morphisms G with dual are
always in the lowest cell — i.e. G <; Y because we can take Z = YG*.
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Kazhdan—Lusztig ~1979, Mazorchuk—Miemietz ~2010, many others.
Additive categories are like semigroups.

Example (Bimy for A as before). Cells — left £ (columns), right R (rows),
two-sided 7 (big rectangles), H = L NR (small rectangles).

H = Vec

Aey ®c e3A H =Y ec

t7|0WeSt A

Ae; ®c 1A | Ae; ®c A | Ae; ®¢c esA
Joiggest  Ae, 9c 1A |G Do EA

Aes®c e1A | Aes @c esA | Aes @c esA

If €6 is finitary, then each 2-simple has a unique maximal J not killing it. (Apex.)
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Kazhdan—

usztio ~1979. Mazarchuk—Miemietz ~2010. manv others.

Additive ca

Example (
two-sided

u7|owe
jbigg

Theorem (Mackaay—Mazorchuk—Miemietz—Zhang ~2017).

If € is fiat, then there is a one-to-one correspondence

}_

apex J Gn

{2—simp|es With} . {Z—Simples of (any)
—
%+ is a certain 2-category supported on .

Thus, the H-cells control

the whole 2-representation theory.

L (rows),

£ Vec

¥ Vec

If 6 is finitary, then each 2-simple has a unique maximal J not killing it. (Apex.)
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Kazhdan—

usztio ~1979. Mazarchuk—Miemietz ~2010. manv others.

Additive ca Theorem (Mackaay—Mazorchuk—Miemietz—Zhang ~2017).
Example ( If € is fiat, then there is a one-to-one correspondence b (rows),
two-sided J 2-simples with | onetoone | 2-simples of (any)
— .
7 apex J Gn L
lowd %6 is a certain 2-category supported on . - ree
Tbige Thus, the H-cells control F Vec
the whole 2-representation theory.
Example. (#Bima.)

If 6" is finitary, H = Vec twice gives 1 + 1 = 2 associated 2-simples. illing it. (Apex.)

Daniel Tubbenhauer 2-rep i of Soergel bi September 2019 8/10




Kazhdan—lLusztioc ~1979. Mazarchuk—Miemietz ~2010. manv others.

Additive ca Theorem (Mackaay—Mazorchuk—Miemietz—Zhang ~2017).
Example ( If € is fiat, then there is a one-to-one correspondence b (rows),
two-sided J 2-simples with | onetoone | 2-simples of (any)
— .
7 apex J G L e
lowd %6 is a certain 2-category supported on . - ree
Tbige Thus, the H-cells control F Vec
the whole 2-representation theory.
Example. (#Bima.)

If 6" is finitary, H = Vec twice gives 1 + 1 = 2 associated 2-simples. illing it. (Apex.)

Problem.

64 is rarely semisimple,
left aside group-like.
Counterexample. Taft category.

We need to work harder.
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Kazl Example (group-like).

Addi

Fusion categories, e.g. Zep(G), have only one cell. Zep(G)x is everything.

Example (Bimy for A as before). Cells — left £ (columns), right R (rows),
two-sided 7 (big rectangles), H = L N'R (small rectangles).

u7|owest A
Ae; ®c e1A | Ae; Q¢ esA | Ae; @c esA
Tbiggest Aey @c A | Aey R &A | Ae; ®c e3A
Aes ®c e1A | Aes ®c A | Aes ®¢ esA

H = YVec

H = Vec

If € is finitary, then each 2-simple has a unique maximal J not killing it. (Apex.)

of Soergel bi

Daniel Tubbenhauer
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Kazl Example (group-like).
Addi

Fusion categories, e.g. Zep(G), have only one cell. Zep(G)x is everything.
Example (Bim, for A as before). Cells — left £ (columns), right R (rows),

two-sid Example (semigroup-like).
Let Zep(G,K) for K being of prime characteristic. c
The projectives form a two-sided cell. Zep(G,K)y can be complicated.
Jiggest Ae, @c 1A | Aey ®c &A | Aey, Q¢ e3A H=Vec

Aes ®c e1A | Aes Q¢ esA | Aes @¢ esA

If 6 is finitary, then each 2-simple has a unique maximal J not killing it. (Apex.)

September 2019 8/10
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Kazl Example (group-like).
Addi

Fusion categories, e.g. Zep(G), have only one cell. Zep(G)x is everything.
Example (Bimp for A as before). Cells — left £ (columns), right R (rows),

two-sid Example (semigroup-like).
Let Zep(G,K) for K being of prime characteristic. c
The projectives form a two-sided cell. Zep(G,K)y can be complicated.
T T ‘ I =T ‘ T > )
Tbiggest Ao oo DNAVSERN Ao o oA H Ve

Example (Kazhdan—Lusztig ~1979, Soergel ~1990).

& (Sn) for the symmetric group
have cells coming from the Robinson—Schensted correspondence.

If 6 is fin it. (Apex.)

S has one indecomposable object, but is fusion.

September 2019 8/10
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Kazl Example (group-like).
Addi

Fusion categories, e.g. Zep(G), have only one cell. Zep(G)x is everything.
Example (Bimp for A as before). Cells — left £ (columns), right R (rows),

two-sid Example (semigroup-like).
Let Zep(G,K) for K being of prime characteristic. c
The projectives form a two-sided cell. Zep(G,K)y can be complicated.
T T ‘ I =T ‘ T > )
Tbiggest Ao oo DNAVSERN Ao o oA H Ve

Example (Kazhdan—Lusztig ~1979, Soergel ~1990).

F(Sn) for the symmetric group

.. |have cells coming from the Robinson—Schensted correspondence.|.
If 6 is fin € P it. (Apex.)

S has one indecomposable object, but is fusion.

Example (Taft algebra T5).

T>-Mod has two cells — the lowest cell containing the
trivial representation; the biggest containing the projectives.
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Categorify the #-cell theorem — Part Il

Theorem (Lusztig, Elias—Williamson ~2012).
Let H be an H-cell of W. There exists a fusion category .3, such that:

» (1) For every w € H, there exists a simple object A,,.

» (2) The A, for w € H, form a complete set of pairwise non-isomorphic simple
objects.

» (3) The identity object is A4, where d is the Duflo involution.
> (4) .ofy categorifies Ay, (think: the degree-zero part of Hy ) with [A,] = a,
and

Ahy = @zej Yuyhzo vs. CxCy = @zej va(@) h% ,C. + bigger friends.

Here the v are the degree-zero coefficients of the hf |, i.e.
Yy = (VR )(0).
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Categorify the #-cell theorem — Part Il

Theorem (Lusztig, Elias—Williamson ~2012).
Let H be an H-cell of W. There exists a fusion category .3, such that:
» (1) For every w € H, there exists a simple object A,,.

» (2) The A, for w € H, form a complete set of pairwise non-isomorphic simple
objects.

(AN T - . P

Examples in type A;; coinvariant algebra.

Q

1 = C[x]/(x*) and Cs = C[x]/(x*) ® C[x]/(x?). (Positively graded, but non-semisimple.)

Ay =C and A, = C® C. (Degree zero part.)

Here the v are the degree-zero coefficients of the hf |, i.e.
Yy = (VR )(0).
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Categorify the #-cell theorem — Part Il

Theorem.
For any finite Coxeter group W and any H C J of W, there is an injection

©: ({2-simples of .af} / =) — ({graded 2-simples of . with apex J}/ =)

» We conjecture © to be a bijection.

» We have proved (are about to prove) the conjecture for almost all H, e.g.
those containing the longest element of a parabolic subgroup of W.

» If true, the conjecture implies that there are finitely many equivalence classes
of 2-simples of <.

» For almost all W, we would get a complete classification of the 2-simples.
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Categorify the #-cell theorem — Part Il

Theorem.
For any finite Coxeter group W and any H C J of W, there is an injection

©: ({2-simples of .y} / =) — ({graded 2-simples of & with apex J} /=)
Takeaway messages.

(1) Group-like categories are easy, but slightly boring.
(2) Semigroup-like categories are hard, but interesting.

(3) Try to reduce the semigroup-like case to the group-like case using Green's theory.

(4) This does not work in general ~ use a positive grading.
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Totality iativity Identity ibility C

Semigroupoid Unneeded  Required  Unneeded  Unneeded | Unneeded
Small
Unneeded Required  Required  Unneeded =~ Unneeded
Category

Groupoid Unneeded Required  Required Required | Unneeded
uired  Unneeded Unneeded Unnee

Quasigroup | Required B3 Required  Unneeded
Required Unneeded Required Requie

Semigroup Required Required Unneeded Unneeded  Unneeded

I

MVErS€  pequired  Required Unneeded Required | Unneeded

Semigroup

Monoid  Required  Required  Required | Unneeded | Unneeded

Group  Required Required  Required Required | Unneeded
Abeli
e1aN  pequired  Required  Required Required Required
group

Picture from https://en.wikipedia.org/wiki/Semigroup.

» There are zillions of semigroups, e.g. 1843120128 of order 8. (Compare: There
are 5 groups of order 8.)

» Already the easiest of these are not semisimple — not even over C.

» Almost all of them are of wild representation type.

Is the study of semigroups hopeless?

| Green & co: No! |



https://en.wikipedia.org/wiki/Semigroup

It may then be asked why, in a book which professes to leave
all applications on one side, a iderable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that
could be most directly obtained by the consideration of grou
of linear transformations.

ERY considerable advances in the theory of groups of
finite order have been made since the appearance of the
first edition of this book. In particular the theory of groups
of linear substitutions has been the subject of numerous and

important investigations by several writers; and the reason
given in the original preface for omitting any account of it no
longer holds good.

In fact it is now more true to say that for further advances

in the abstract theory one must look largely to the representa-
tion of a group as a group of linear substitutions. There is

Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).



It may then be asked why, in a book which professes to leave
all applications on one side, a iderable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that

|Nowadays representation theory is pervasive across mathematics, and beyond.|

‘7ERY considerable advances in the theory of groups of

[But this wasn't clear at all when Frobenius started it.]

of linear substitutions has been the subject of numerous and
important investigations by several writers; and the reason
given in the original preface for omitting any account of it no
longer holds good.

In fact it in now more true to say that for further advances
in the abstract theory one must look largely to the representa-
tion of a group as a group of linear substitutions. There is

Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).



G = S3, S4 and Ss, # of their subgroups (up to conjugacy), Schur multipliers H?
and ranks rk of their 2-simples.

22z | 232 | 5 k| 1]zpz|znz|zme| @eze|s| oo | A | s

# 1 1|1 #11] 2 1 1 2 1] 1 1 1

H? 1 1 1 H || 1 1 1 1 Z/2Z 1| Z/2Z | ZJ2Z | Z/2Z

& 2 3 |3 w1 2 3 4 41 | 3] 52 43|53

Rep(Ss)

K | 1 [ zpez | zse | wan | @pzp | zse | s |2z | oo | 05 | A | b |eans) | s | A | s
# 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1
H? 1 1 1 1 Z/QZ 1 1 1 Z/QZ Z/27 Z/ZZ Z/2Z 1 Z/27, Z/ZZ Z/QZ
w1 2 3 4 41 5 | 3] 6 | 52| 42| 43|63 5 53 | 54 | 7.5

This is completely different from their classical representation theory. But:

This is a numerical problem.




G = S3, S4 and Ss, # of their subgroups (up to conjugacy), Schur multipliers H?
and ranks rk of their 2-simples.

Example (G = S3, K = S3); the N-matrices.

e |=n| & | d
oo || oo H E
B B |coegef | B
H E H oo
G ~ 100) G ~ (010) G @ N@ (001)
= 010 o~ 111 = 010 J.
%esK(D:D) LLL e (001 ,%esK(Bj) H:‘W 010 IS “\Too
H2 || 1 1 1 1 7./27, 1 1 1 | Z/22 | 2)27 | )27 | Z/2Z 1 7.2 | 7.)27. | 7./27
wll 1] 2 3 4 41 5 | 3] 6 [ 52|42 43|63 5 53 | 54 | 7.5

This is completely different from their classical representation theory. But:

This is a numerical problem.




G = S3, S4 and Ss, # of their subgroups (up to conjugacy), Schur multipliers H?
and ranks rk of their 2-simples.

Example (G = S3, K = S3); the N-matrices.

e |mo| B |
oo || oo H E
H | B | ool | B
H] 8] & oo

c ~ 100) c ~ (010) GE E@ (001)
el () >0~ (314). Resk @) =~ (311) #k(g) =5~ (83
[l v [t ] ‘Z/QZ‘ ‘1‘ 1 ‘Z/QZ‘Z/ZZ‘Z/ZZ‘Z/ZZ‘ 1 ‘Z/ZZ‘Z/ZZ‘Z

Example (G = S3, K = Z/2Z = S,); the N-matrices.
1 | D= H

M| @™| H
B B| =
R (D) = - (3), Ak (D) 2o f -~ (1), #esk () =H- 30

H?




The Taft Hopf algebra:
T, =Clg,x)/(g> =1, x> =0, gx = —xg) = C[Z/2Z]&C[x]/(x?).
Ty-pMod is a non-semisimple fiat category.

.m=+
&:m m indecomposables : {Py, P_1}.
x.m=0,

simples : {Sp, S_1} {

Tensoring with the projectives Py or P_; gives a 2-representation of T-pMod
which however can be twisted by a scalar A € C. The algebra objects are

C[Z/27) ® C[x]/(x* = A) and C[1]® C[x]/(x* = )).

This gives a one-parameter family of non-equivalent 2-simples of Ty-pMod.



The Taft Hopf algebra:

Tz = Clg, x)/(82 = 1, 2 =0, gx = —xg) = CIZ/2Z]ACIX]/(x?).

Classical result (decat).

Ty-pMod is a non-semig

C has only finitely many simples.
. = ==1m
simples : {So, S_1} {i ol '
Wrong result (cat).

indecomposables : {Pg, P_1}.

Tensoring with the projd € has only finitely many 2-simples. intation of T»-pMod
which however can be twisted by a scalar A € C. The algebra objects are

C[Z/2Z] @ C[x]/(x* — A) and C[1] ® C[x]/(x* — \).

This gives a one-parameter family of non-equivalent 2-simples of T>-pMod.



The Taft Hopf algebra:

T2 = Clg, x)/(g2 = 1, 2 =0, gx = —xg) = CIZ/2ZJACIX|/(x?).

Classical result (decat).

Ty-pMod is a non-semig

C has only finitely many simples.

. TIT= =71,
simples : {So,S5_1} {i -

Wrong result (cat).

indecomposables : {Pg, P_1}.

Tensoring with the projq € has only finitely many 2-simples.intation of To-pMod
which however can be twisted by a scalar A € C. The algebra objects are

C[Z/“W O /(.2 A NEalih| Vil S W4 2_/\)
One crucial problem. ’

o There can be infinitely many categorifications.
This gives a one-p{The decategorifications [.#;'] are all the same.pf T2-pMod.




All you need to know about Soergel bimodules for today. Let W be a Coxeter
group and H the associated Hecke algebra.

Theorem (Soergel-Elias—Williamson ~1990,2012).
There exists a monoidal category & such that:
> (1) For every w € W, there exists an indecomposable object C,,.

» (2) The C,, for w € W, form a complete set of pairwise non-isomorphic
indecomposable objects up to shifts.

» (3) The identity object is C1, where 1 is the unit in W.

» (4) €6 categorifies H with [C,,] = ¢, with ¢, being the Kazhdan-Lusztig basis
of H.

» (5) Cell theory of & is Kazhdan—Lusztig cell theory.

> (6) ‘5’ is positively graded with respect to the C,,.




Example. (Soergel bimodules of type A;.) Let R = C[x], deg(x) =2 and

W =S, = {1,s}. The geometric representation of W is given by s.x = —x. The
invariants are RY = C[x?], the coinvariants are Ry = C[x]/(x?).

We have two Ry-bimodules By = Ry and Bs = Ryy ®@zw Rwy.

& is the additive Karoubi closure of the full subcategory of %Bimpg, generated by
B; and Bs. In this case By = C; and By = Cg, i.e. they are the indecomposable
objects. They satisfy
[al] ¢
Ci || G Cs
Cs || Cs | (1+ v?)Cs

Here (1 + v?) is the graded dimension of Ryy. Thus:
\7|owest Cy H = Vec
Tbiggest Cs H ¥ Vec



Example- (Cn . 1 hivvnadilac af v A N 1o+ D 0[] A () 2 and
= , but
W=S5,= Fhy = Vec, bu = —x. The
invariants ar S, % Vec.
We have tw
Why? Because you can not easily rescale quasi-idempotents.
& is the ad cenerated by
B; and B,. | Think. You can not rescalg a-a=2aover N. posable
objects. They satisfy
[&] G
Ci || C1 Cs
Cs || Cs | (1+ v?)Cs
Here (1 + v?) is the graded dimension of Ry. Thus:
n.7|owest Cy H = Vec
jbiggest Cs H 7% YVec



; Cane 1 hivvnadilac af v A N 1o+ D 0[] A () 2 and
SETTE (| S, = Vec, but
W=35= k = —x. The
invariants ar P, % Vec.
We have tw

Why? Because you can not easily rescale quasi-idempotents.
& is the ad cenerated by
B; and B,. | Think. You can not rescale a- a = 23 over N. posable

objects. They satisfy | Main observation |

The degree zero part of Sy, is Vec.
Cs || Cs | (T+v?)Cs

Here (1 + v?) is the graded dimension of Ry. Thus:
n.7|owest Cl H = Vec
jbiggest Cs H 7% YVec



EXam Ie_ Ca 1 hivvnadilac af v A N 1o+ D 0[] A () 2 and

p ( i, = Vec, but

W=S5,= = —x. The
Invariants ar P, £ Vec.
We have twi

Why? Because you can not easily rescale quasi-idempotents.

& is the ad cenerated by
By and B.. | Think. You can not rescale a - a = 2a over N. posable

objects. They satisfy Main observation

The degree zero part of Sy, is Vec.

c 1o Tii.2¢c
Maybe we should categorify the following classical fact.

Herg
A positively graded algebra A and its degree-zero part Ag
have the same associated simples.

Example. Ry = C[x]/(x*) has one simple; the same number as (Rw)o = C.
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