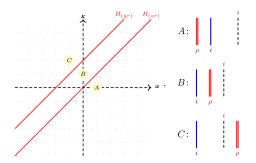
On weighted KLRW algebras

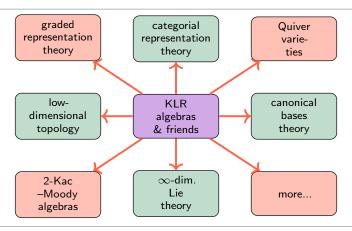
Or: Diagrammatic interpolation

Daniel Tubbenhauer

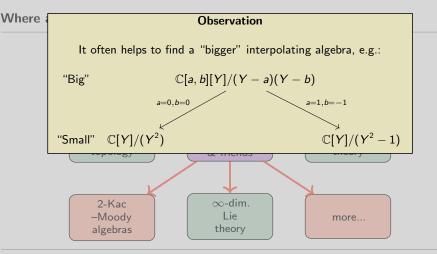


Joint with Andrew Mathas

Where are we?



- ▶ Khovanov–Lauda–Rouquier \sim 2008 + many others (including BIT) KLR algebras are at the heart of categorical representation theory
- ► Similarly for quiver Schur algebras and diagrammatic Cherednik algebras
- ► Problem All of these are actually really complicated!



- ▶ Khovanov–Lauda–Rouquier \sim 2008 + many others (including BIT) KLR algebras are at the heart of categorical representation theory
- ▶ Similarly for quiver Schur algebras and diagrammatic Cherednik algebras
- ▶ Problem All of these are actually really complicated!

Where

Observation

It often helps to find a "bigger" interpolating algebra, e.g.:

$$\mathbb{C}[a,b][Y]/(Y-a)(Y-b)$$

"Small" $\mathbb{C}[Y]/(Y^2)$

Today

How to play the interpolation game using planar geometry?

As an upshot we get an algebra interpolating between various algebras · Kh appearing in categorical representation theory

The takeaway keyword: Distance!

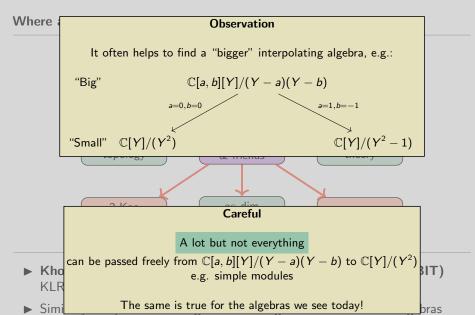
Problem All of these are actually really complicated!

Daniel Tubbenhauer

KL

ras

IT)



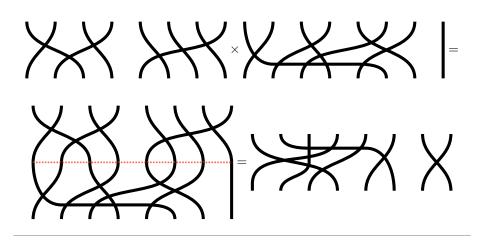
▶ Problem All of these are actually really complicated!

String diagrams - the baby case

Connect eight points at the bottom with eight points at the top:

or

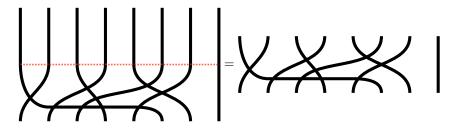
We just invented the symmetric group S_8 on $\{1,...,8\}$



My multiplication rule for gh is "stack g on top of h"

String diagrams - the baby case

- ▶ We clearly have g(hf) = (gh)f
- lacktriangle There is a do nothing operation 1g=g=g1



► Generators—relations (the Reidemeister moves)

gens:
$$\times$$
, rels: $=$

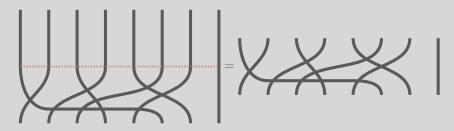
String diagrams -

The bait

► We clearly have

In diagram algebras relations, properties, etc.
become visually clear

▶ There is a do nothing operation 1g = g = g1



► Generators—relations (the Reidemeister moves)

gens : X, rels : X = X

String diagrams – The bait

- ▶ We clearly hav
- In diagram algebras relations, properties, etc.
 become visually clear
- ▶ There is a do nothing operation 1g = g = g1

The catch

Diagram algebras are usually "not really" using any planar geometry

For example, the diagrams for symmetric groups are just algebra written differently

► Generators—relations (the Reidemeister moves)

gens: X, rels: = , = =

String diagrams –

The bait

- ▶ We clearly have
- In diagram algebras relations, properties, etc. become visually clear
- ▶ There is a do nothing operation 1g = g = g1

The catch

Diagram algebras are usually "not really" using any planar geometry

For example, the diagrams for symmetric groups are just algebra written differently

▶ Gen

Idea (Webster \sim 2012)

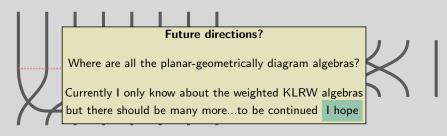
Define a diagram algebra that uses the distance in \mathbb{R}^2

The result is called weighted KLRW algebra

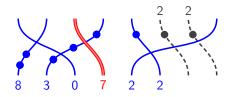
These are "planar-geometrically symmetric group diagram algebras"

String diagrams - the baby case

- ▶ We clearly have g(hf) = (gh)f
- lacktriangle There is a do nothing operation 1g = g = g1



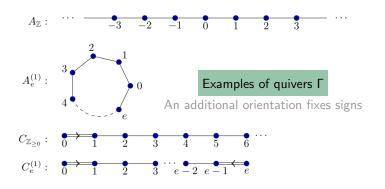
► Generators—relations (the Reidemeister moves)



► Strings come in three types, solid, ghost and red

solid:
$$\int_{i}^{i}$$
, ghost: \int_{i}^{i} , red: \int_{i}^{i}

- ▶ Strings are labeled, and solid and ghost strings can carry dots
- ▶ Red strings anchor the diagram (red strings ← level)
- ▶ Otherwise no difference to symmetric group diagrams



- ▶ The strings are labeled by $i \in I$ from a fixed quiver $\Gamma = (I, E)$
- ▶ The relations (that I am not going to show you ;-)) depend on $e \in E$, e.g.:

"Reidemeister II with error term" :
$$=$$
 $+$ $+$ if $i \rightarrow j$

Daniel Tubbenhauer

I usually never use the number π in a talk ;-)

$$X = (-2\sqrt{3}, -\sqrt{2}, 0.5, \pi, 5) \iff \frac{1}{-2\sqrt{3}} -\sqrt{2} = 0.0.5$$
Weighted quiver
$$0.1$$

$$i$$

$$j$$

$$i$$

$$j$$

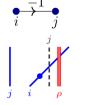
- ▶ Choose endpoints $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^n$, $\rho \in \mathbb{R}^\ell$ for the solid and red strings
- ▶ Choose a weighting $\sigma \colon E \to \mathbb{R}_{\neq 0}$ of the underlying graph $\Gamma = (I, E)$
- ► The weighted KLRW algebra crucially depends on these choices of endpoints! This is very different from "usual diagram algebras"

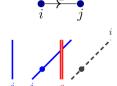
diagram

$$X = (-2\sqrt{3}, -\sqrt{2}, 0.5, \pi, 5) \longleftrightarrow \begin{bmatrix} & & & & & \\ & -2\sqrt{3} & & -\sqrt{2} & & 0.5 \end{bmatrix}$$

Weighted quiver

diagram



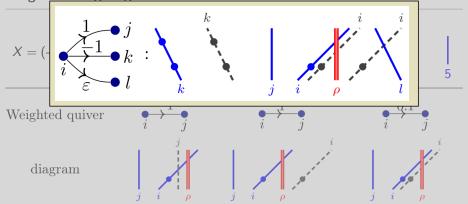




Weighting = ghost shifts

For $\epsilon\colon i\to j, \sigma_\epsilon>0$, all solid i-strings get a ghost shifted $|\sigma_\epsilon|$ units and mimicking it For $\epsilon\colon i\to j, \sigma_\epsilon<0$, all solid j-strings get a ghost shifted $|\sigma_\epsilon|$ units and mimicking it

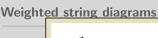
The weight This "asymmetric" definition, always shifting rightwards es of endpoints makes life a bit more convenient but is not essential

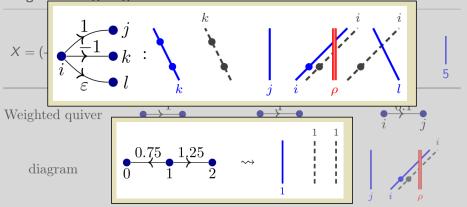


Weighting = ghost shifts

For $\epsilon: i \to j$, $\sigma_{\epsilon} > 0$, all solid *i*-strings get a ghost shifted $|\sigma_{\epsilon}|$ units and mimicking it For $\epsilon: i \to j, \sigma_{\epsilon} < 0$, all solid j-strings get a ghost shifted $|\sigma_{\epsilon}|$ units and mimicking it

▶ The weighted KLRW algebra crucially depends on these choices of endpoints! This is very different from "usual diagram algebras"





Weighting = ghost shifts

For $\epsilon: i \to j$, $\sigma_{\epsilon} > 0$, all solid *i*-strings get a ghost shifted $|\sigma_{\epsilon}|$ units and mimicking it For $\epsilon: i \to j, \sigma_{\epsilon} < 0$, all solid j-strings get a ghost shifted $|\sigma_{\epsilon}|$ units and mimicking it

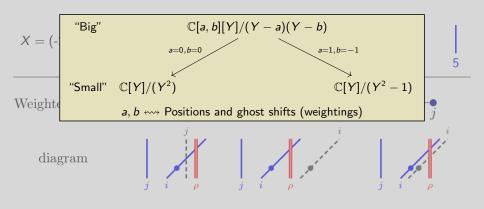
▶ The weighted KLRW algebra crucially depends on these choices of endpoints! This is very different from "usual diagram algebras"

$$X = (-2\sqrt{3}, -\sqrt{2}, 0.5, \pi, 5) \Leftrightarrow$$

The following i and j-strings are not close:

Slogan Ghosts prevent the diagrams from being scale-able as for "usual diagram algebras"

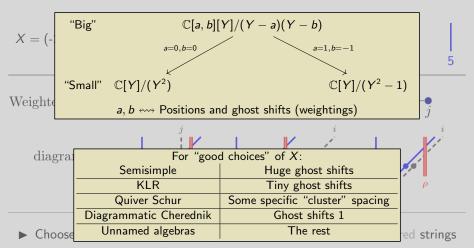
- ▶ Choose endpoints $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^n$, $\rho \in \mathbb{R}^\ell$ for the solid and red strings
- ▶ Choose a weighting $\sigma: E \to \mathbb{R}_{\neq 0}$ of the underlying graph $\Gamma = (I, E)$
- ► The weighted KLRW algebra crucially depends on these choices of endpoints! This is very different from "usual diagram algebras"



- ▶ Choose endpoints $\mathbf{x} = (x_1, ..., x_n) \in \mathbb{R}^n$, $\rho \in \mathbb{R}^\ell$ for the solid and red strings
- Choose a weighting $\sigma \colon E \to \mathbb{R}_{\neq 0}$ of the underlying graph $\Gamma = (I, E)$
- ▶ The weighted KLRW algebra crucially depends on these choices of endpoints! This is very different from "usual diagram algebras"

Daniel Tubbenhauer

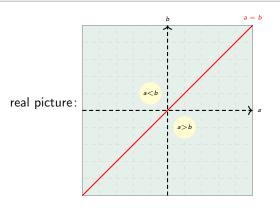
4/8



- lacktriangle Choose a weighting $\sigma\colon E o \mathbb{R}_{\neq 0}$ of the underlying graph $\Gamma = (I,E)$
- ► The weighted KLRW algebra crucially depends on these choices of endpoints! This is very different from "usual diagram algebras"

Daniel Tubbenhauer

Hyperplanes



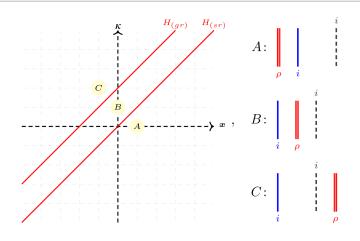
▶ Specializations of $\mathbb{C}[a,b][Y]/(Y-a)(Y-b)$ come in two isomorphism classes:

one double root a = b

& two different roots $a \neq b$

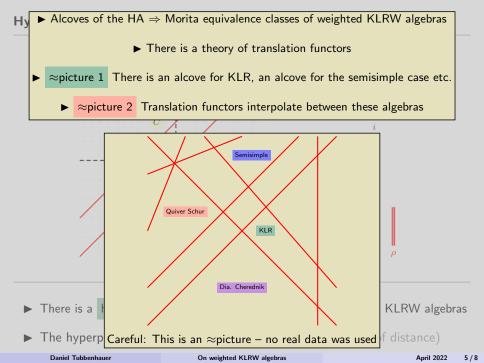
▶ What is the analog picture for weighted KLRW algebras?

Hyperplanes



- ▶ There is a hyperplane arrangment (HA) associated to weighted KLRW algebras
- ► The hyperplanes are defined by "colliding strings" (a form of distance)

Daniel Tubbenhauer



Distance is it!

► Cyclotomic (fin dim) quotients ⇔ bounded regions:

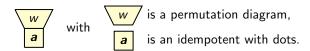
Unsteady: $\bigcap_{\rho} \bigcap_{i} \bigcap_{i} \bigcap_{j} \bigcap_{j} \bigcap_{i} \bigcap_{j} \bigcap_{j} \bigcap_{i} \bigcap_{j} \bigcap_{j} \bigcap_{j} \bigcap_{i} \bigcap_{j} \bigcap_{j}$

► Cellular bases ⇔ minimal regions (I will elaborate momentarily):

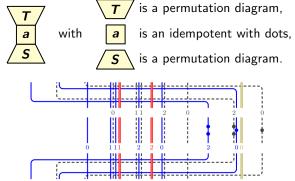
► More properties I won't explain today due to time restrictions...

Distance is it!

▶ Weighted KLRW algebras have standard bases , with the picture:



► Weighted KLRW algebras have "cellular" bases , with the picture:



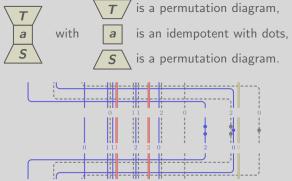
► Standard bases work regardless of the quiver but have no other property despite being a basis

Weigh

► Cellular bases depend on the quiver and give a classification of simple modules

(► Strictly speaking I should write "affine or sandwich" cellular but let us ignore that)

▶ Weighted KLRW algebras have "cellular" bases , with the picture:



- ► Standard bases work regardless of the quiver but have no other property despite being a basis
 - ► Cellular bases depend on the quiver and give a classification of simple modules
- (► Strictly speaking I should write "affine or sandwich" cellular but let us ignore that)
 - ► The overall strategy to construct cellular bases is the same for all types (but the details differ)
- and for the infinite dimensional and the cyclotomic case the construction is also the same
 - ▶ We know that the cellular bases work in types $A_{\mathbb{Z}}$, $A_e^{(1)}$, $B_{\mathbb{N}}$, $C_e^{(1)}$, $A_{2e}^{(2)}$, $D_{e+1}^{(2)}$ other, in particular finite, types are work in progress
 - ▶ The combinatorics is inspired by, but different from, constructions of Bowman \sim 2017, Ariki-Park \sim 2012/2013, Ariki-Park-Speyer \sim 2017

Distance i

- ► Standard bases work regardless of the quiver but have no other property despite being a basis
- Weigh

Daniel Tubbenhauer

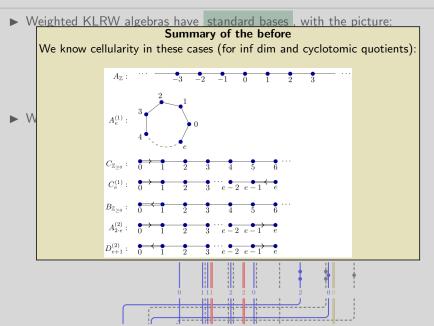
- ► Cellular bases depend on the guiver and give a classification of simple modules
- ► Strictly speaking I should write "affine or sandwich" cellular but let us ignore that)
 - ► The overall strategy to construct cellular bases is the same for all types (but the details differ)
- and for the infinite dimensional and the cyclotomic case the construction is also the same
 - ▶ We know that the cellular bases work in types $A_{\mathbb{Z}}$, $A_e^{(1)}$, $B_{\mathbb{N}}$, $C_e^{(1)}$, $A_{2e}^{(2)}$, $D_{e+1}^{(2)}$ other, in particular finite, types are work in progress
 - ▶ The combinatorics is inspired by, but different from, constructions of Bowman \sim 2017, Ariki-Park \sim 2012/2013, Ariki-Park-Speyer \sim 2017

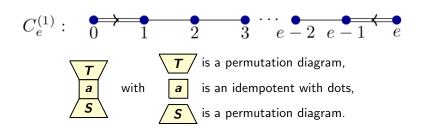
I will now indicate how the construction works in type $C_e^{(1)}$ Why this type?

April 2022

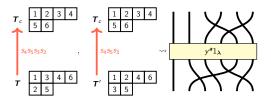
6/8

Because the code I am going to use works best for this type ;-) On weighted KLRW algebras

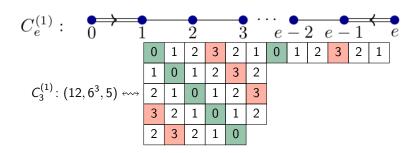




▶ The definition of the permutation follows the usual strategy in this context:



▶ Let me focus on the middle $y^a 1_{\lambda}$



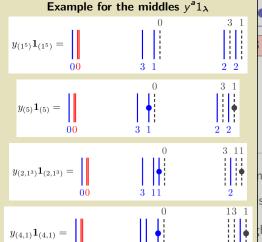
- ▶ Assume the tableaux combinatorics is given (a better statement later!)
- ▶ Place strings inductively as far to the right as possible (this is the order!)
- $lackbox{1}_{\lambda}$ is minimal with respect to placing the strings to the right
- $lackbox{1}_{m{\lambda}}$ stays minimal when dots are put on certain strands \leadsto get $y^a 1_{m{\lambda}}$
- ▶ Done!

Lets ignore the dots for today – I bothered you with too much combinatorics anyway ;-) But they come directly from the Reidemeister II relations, e.g.

- ▶ Place strings inductively as far to the right as possible (this is the order!)
- $lackbox{1}_{\lambda}$ is minimal with respect to placing the strings to the right
- $lackbox{1}_{\lambda}$ stays minimal when dots are put on certain strands \leadsto get $y^a 1_{\lambda}$
- ▶ Done!

$$C_3^{(1)}$$
: (12)

- ► Assume the t
- ► Place strings
- ▶ 1 vis minima
- \blacktriangleright 1_{λ} is minima
- $ightharpoonup 1_{\lambda}$ stays min



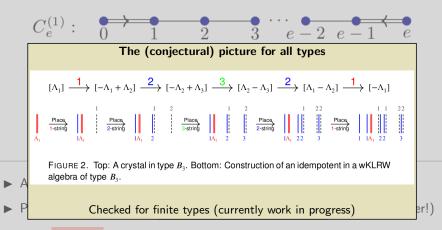
-1 e 2 1

nent later!)

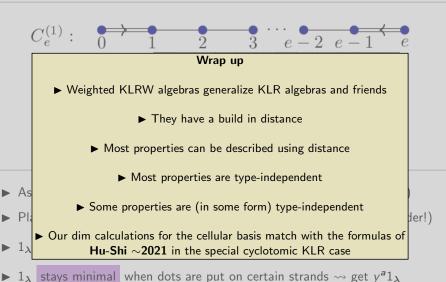
s is the order!)

ht

get $y^{\alpha}1_{\lambda}$



- $lackbox{1}_{\lambda}$ is minimal with respect to placing the strings to the right
- $lackbox{1}_{m{\lambda}}$ stays minimal when dots are put on certain strands \leadsto get $y^a 1_{m{\lambda}}$
- ▶ Done!

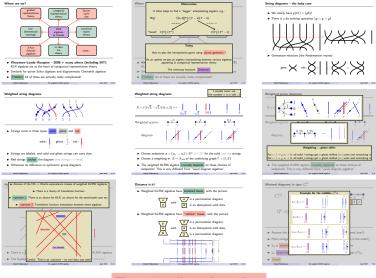


▶ Done!

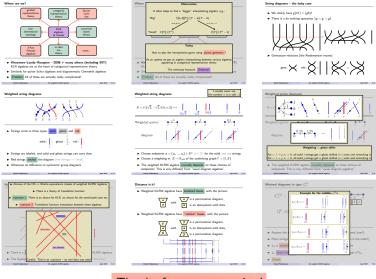
Daniel Tubbenhauer On weighted KLRW algebras

April 2022

7/8



There is still much to do...



Thanks for your attention!