# Diagram categories for ${f U}_{ m q}$ -tilting modules at $q^\ell=1$

Or: fun with diagrams!

Daniel Tubbenhauer



Joint work with Henning Haahr Andersen

October 2014

#### The why of diagram categories

- String calculus
- Biadjoint functors
- 2 Categorification of Hecke algebras
  - Hecke algebras and Soergel bimodules
  - Soergel's categorification

#### 3 Let us use diagrams!

- The F<sub>i</sub> are selfadjoint functors
- Diagrammatic categorification

#### What about U<sub>q</sub>-modules at roots of unity?

## String calculus for 2-categories - Part 1

Question: Can we interpret  $Cat^2$  using diagrams? Let us start with  $Cat^1$ :

Instead of

$$\mathcal{C} \xrightarrow{F_1} \mathcal{D}$$

use the Poincaré dual

Composition

$$\mathcal{D} \xrightarrow{F_2} \mathcal{E} \circ \mathcal{C} \xrightarrow{F_1} \mathcal{D} = \mathcal{C} \xrightarrow{F_2 \circ F_1} \mathcal{E}$$

becomes

$$\mathcal{E} \quad \mathcal{F}_2 \quad \mathcal{D} \quad \circ \quad \mathcal{D} \quad \mathcal{F}_1 \quad \mathcal{C} = \mathcal{E} \quad \mathcal{F}_2 \quad \mathcal{D} \quad \mathcal{F}_1 \quad \mathcal{C}$$

Not really spectacular...

## String calculus for 2-categories - Part 2

Let us go to  $Cat^2$  now:

Think of a natural transformations  $\alpha, \beta, \cdots$  as a proceeding in time:



## String calculus for 2-categories - Part 3

#### Compositions? Sure! Vertical:



and horizontal



That looks promising: 2-categories are like 2-dimensional spaces.

#### Definition(Dan Kan 1958)

Two functors  $F: \mathcal{C} \to \mathcal{D}$  and  $G: \mathcal{D} \to \mathcal{C}$  are adjoint iff there exist natural transformations called unit  $\iota: \mathrm{id}_{\mathcal{C}} \Rightarrow GF$  and counit  $\varepsilon: FG \Rightarrow \mathrm{id}_{\mathcal{D}}$  such that

$$F \xrightarrow{\operatorname{id}_F \circ \iota} FGF \xrightarrow{\varepsilon \circ \operatorname{id}_F} F \quad \text{and} \quad G \xrightarrow{\iota \circ \operatorname{id}_G} GFG \xrightarrow{\operatorname{id}_G \circ \varepsilon} G$$

commute. Here F is the left adjoint of G.

#### Example

 $\mathrm{forget} \colon \mathbb{Q}\text{-}\mathsf{Vect} \to \mathsf{Set} \text{ has a left adjoint free} \colon \mathsf{Set} \to \mathbb{Q}\text{-}\mathsf{Vect}.$ 

In words: If you have lost your key, then the only guaranteed solution is to search everywhere.

## Adjoint functors such that I understand

Let us draw sting pictures!



Adjointness is just straightening of the strings



## Biadjoint functors = lsotopies

If F is also the right adjoint of G, then the picture gets topological. Biadjointness is just straightening of the strings! First left



then right



- Categories of modules over finite dimensional symmetric algebras and their derived counterparts have plenty of built-in biadjoint functors (tensoring with certain bimodules).
- Prominent examples are finite groups and induction and restriction functors between them.
- Various categories arising in representation theory of Hecke algebras and category  $\mathcal{O}$  admit lots of biadjoint functor. For example translation functors and Zuckerman functors.
- Every (extended) TQFT 𝔅: Cob<sup>n+2</sup> → Vec<sup>2</sup> gives a bunch of biadjoint functors: (𝔅(M), 𝔅(τ(M))) for any n + 1 manifold M where τ flips M.
- Prominent examples come from commutative Frobenius algebras for n = 2, Witten-Reshetikhin-Turaev TQFT's for n = 3, Donaldson-Floer for n = 4, and way more...
- Other fancy stuff like Fukaya-Floer categories, derived categories of constructible sheaves on flag varieties...

Let us fix n = 3. Then the group ring of the symmetric group  $\mathbb{Q}[S_3]$  has two generators  $s_1, s_2$ . They satisfy

$$s_1^2 = 1 = s_2^2$$
 and  $s_1 s_2 s_1 = s_2 s_1 s_2$ .

Iwahori: The Hecke algebra  $H_3 = H[S_3]$  is a *q*-deformation of  $\mathbb{Q}[S_3]$ .

#### Definition/Theorem(Iwahori 1965)

The Hecke algebra  $H_3$  has generators  $T_1, T_2$  and relations

$$T_1^2 = (q-1)T_{1,2} + q = T_2^2$$
 and  $T_1T_2T_1 = T_2T_1T_2$ .

The classical limit  $q \to 1$  gives  $\mathbb{Q}[S_3]$ .

Nowadays Hecke algebras à la lwahori appear "everywhere", e.g. low dimensional topology, combinatorics, representation theory of  $\mathfrak{gl}_n$  etc.

Recall that primitive idempotents  $e_j \in A$  in any finite dimensional  $\mathbb{Q}$ -algebra A give rise to  $Ae_j$  which is indecomposable.

The group algebra  $\mathbb{Q}[S_3]$  admits "idempotents":  $i_1 = 1 + s_1$  and  $i_2 = 1 + s_2$ , because they satisfy

$$i_1^2 = 2i_{1,2} = i_2^2$$
 and  $i_1i_2i_1 + i_2 = i_2i_1i_2 + i_1$ .

For the Hecke algebra: Set  $t = \sqrt{q}$  and define  $b_{1,2} = t^{-1}(1 + T_{1,2})$  (we see the Hecke algebra over  $\mathbb{Q}[t, t^{-1}]$  now).

The  $b_1, b_2$  satisfy

$$b_1^2 = (t + t^{-1})b_{1,2} = b_2^2$$
 and  $b_1b_2b_1 + b_2 = b_2b_1b_2 + b_1$ .

Only positive coefficients? Suspicious...

### Bimodules do the job?

Take  $R = \mathbb{Q}[X_1, X_2, X_3]$  (with degree of  $X_i = 2$ ) and define the  $s_{1,2}$ -invariants as  $R^{s_1} = \{p(X_1, X_2, X_3) \in R \mid p(X_1, X_2, X_3) = p(X_2, X_1, X_3)\}$ 

and

$$R^{s_2} = \{p(X_1, X_2, X_3) \in R \mid p(X_1, X_2, X_3) = p(X_1, X_3, X_2)\}.$$

For example  $X_1 + X_2 \in R^{s_1}$ , but  $X_1 + X_2 \notin R^{s_2}$ .

The algebra R is a (left and right)  $R^{s_{1,2}}$ -module. Thus,

$$B_1 = R \otimes_{R^{s_1}} R\{-1\}$$
 and  $B_2 = R \otimes_{R^{s_2}} R\{-1\}$ 

are *R*-bimodules. Write short  $B_{ij}$  for  $B_i \otimes_R B_j$ . Funny observation (i = 1, 2):

$$B_{\underline{ii}} \cong B_{\underline{i}} \{+1\} \oplus B_{\underline{i}} \{-1\} \text{ and } B_{\underline{121}} \oplus B_{\underline{2}} \cong B_{\underline{212}} \oplus B_{\underline{1}}.$$

We have seen this before...

## The combinatoric of $S_3$

The bimodule world: Take tensor products  $B_{\underline{i}}$  of the  $B_i$ 's. The atoms of the bimodules world are the indecomposables: All M such that  $M \cong M_1 \oplus M_2$  implies  $M_{1,2} \cong 0$ .

We have  $B_{\emptyset} = R$ ,  $B_1 = B_{\underline{1}}$ ,  $B_2 = B_{\underline{2}}$ ,  $B_{\underline{12}} = B_{12}$  and  $B_{\underline{21}} = B_{21}$  as atoms, but  $B_{121} \cong B_1 \oplus R \otimes_{R^{s_3}} R\{-3\}$  and  $B_{212} \cong B_2 \oplus R \otimes_{R^{s_3}} R\{-3\}$ 



and  $B_{121} = B_{212} = R \otimes_{R^{s_3}} R\{-3\}$  is indecomposable.

There are exactly as many indecomposables as elements in  $S_3$ . Suspicious...

### Definition(Soergel 1992)

Define  $\mathcal{SC}(3)$  to be the category with the following data:

- Objects are (shifted) direct sums  $\oplus$  of tensor products  $B_i$  of  $B_i$ 's.
- Morphisms are matrices of (graded) bimodule maps.

### Theorem(Soergel 1992)

SC(3) categorifies  $H_3$ . The indecomposables categorify the Kazhdan-Lusztig basis elements of  $H_3$ .

Morally: SC(3) is the categorical analogon of  $H_3$ . The morphisms in SC(3) are invisible in  $H_3$ .

Wait: What do you mean by categorify?

If you have a suitable category C, then we can easily collapse structure by totally forgetting the morphisms:

The (split) Grothendieck group  $K_0^{\oplus}(\mathcal{C})$  of  $\mathcal{C}$  has isomorphism classes [M] of objects  $M \in Ob(\mathcal{C})$  as elements together with

$$[M_0] = [M_1] + [M_2] \Leftrightarrow M_0 \cong M_1 \oplus M_2, [M_1][M_2] = [M_1 \otimes M_2] \text{ and } [M\{s\}] = t^s[M].$$

This is a  $\mathbb{Z}[t, t^{-1}]$ -module.

#### Example

We have

$$\mathcal{K}_0^{\oplus}(\mathbb{Q}\operatorname{-}\operatorname{\mathbf{Vect}}_{\operatorname{gr}}) \xrightarrow{\cong} \mathbb{Z}[t, t^{-1}], \qquad [\mathbb{Q}\{s\}] \mapsto t^s \cdot 1.$$

The whole power of linear algebra is forgotten by going to  $K_0(\mathbb{Q}$ -Vect)<sub>gr</sub>.

We have two functors  $F_1 = B_1 \otimes_R \cdot$  and  $F_2 = B_2 \otimes_R \cdot$ . These are additive endofunctors of SC(3). Thus, the introduce an action  $[F_i]$  on  $K_0^{\oplus}(\dot{SC}(3))$ . We have a commuting diagram (we ignore to tensor with  $\mathbb{Q}(t)$ )



Thus, the functors  $F_1$ ,  $F_2$  categorify the multiplication in  $H_3$ ! Said otherwise: They categorify the action of  $H_3$  on itself.

Moreover, the indecomposables give a good basis of  $H_3$ .

The speaker is lost: That was too abstract. Can we understand this topological?

Observation(Elias-Khovanov 2009)

The functors  $F_1$  and  $F_2$  are selfadjoint! Thus, there is a stringy calculus for SC(3).

As before: Well denote compositions like  $F_1F_2F_2F_1F_1$  by



Think: Apply  $F_1F_2F_2F_1F_1$  to R on the right.

## Generators

We have the following one color generators:

$$deg = +1 \quad deg = +1 \quad deg = -1 \quad deg = -1 \qquad deg = 0$$

$$F_1 \Rightarrow id \quad id \Rightarrow F_1 \quad F_1 \Rightarrow F_1F_1 \quad F_1F_1 \Rightarrow F_1 \quad F_1F_2F_1 \Rightarrow F_1F_2F_1$$

$$deg = +1 \quad deg = +1 \quad deg = -1 \qquad deg = -1 \qquad deg = 0$$

$$F_2 \Rightarrow id \quad id \Rightarrow F_2 \quad F_2 \Rightarrow F_2F_2 \quad F_2F_2 \Rightarrow F_2 \quad F_2F_1F_2 \Rightarrow F_2F_1F_2$$





#### $F_2F_2F_1F_2F_2F_1F_1 \Rightarrow F_2F_2F_2F_1F_2F_1F_1$

These Soergel diagrams can get very complicated, but this is an information completely invisible in  $H_3$ .

We need some additional relations to make the story work. Some are combinatorial (which we do not recall), but, due to biadjointness, some are topological.



Some are really topological: There is more than planar isotopies. The functors  $F_1$  and  $F_2$  are Frobenius. This gives



### Definition(Elias-Khovanov 2009)

Define  $\mathcal{DC}(3)$  to be the category with the following data:

- Objects are (shifted) formal direct sums  $\oplus$  of sequences of the form  $F_2F_2F_2F_1F_2F_1F_1$ .
- Morphisms are matrices of (graded) Soergel diagrams module the local relations.

### Theorem(Elias-Khovanov 2009)

There is an equivalence of graded, monoidal,  $\mathbb{Q}$ -linear categories

 $\mathcal{DC}(3) \cong \mathcal{SC}(3).$ 

Conclusion: The (seemingly very rigid) Hecke algebra  $H_3$  has an overlying topological counterpart!

- No restriction to  $S_3$ : Any Coxeter system works.
- Diagrammatic categorification is "low tech". Playing with diagrams is fun, easy and the topological flavour gives new insights. For example, Elias and Williamson's algebraic proof that the Kazhdan-Lusztig polynomials have positive coefficients for arbitrary Coxeter systems was discovered using the diagrammatic framework.
- New insights into topology:
  - Elias used the topological behaviour to give a new categorification of the Temperley-Lieb algebra.
  - Rouquier produced a braid group action on (chain complexes of) Soergel diagrams. This is functorial: It also talks about braid cobordisms (these live in dimension 4!).
  - Rouquier's results can be extended to give HOMFLY-PT homology. This still mysterious homology is related to knot Floer homology.
- More is to be expected!

### Non-associative=bad

Recall that  $\mathfrak{sl}_2$  is  $[\cdot, \cdot]$ -spanned by  $F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ ,  $E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$  and  $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ .

**Non-associative**: Take  $U(\cdot)$ : **LieAlg**  $\rightarrow$  **Asso**Q-**Alg** which is the left adjoint of  $[\cdot, \cdot]$ : **Asso**Q-**Alg**  $\rightarrow$  **LieAlg**. Thus, the universal envelope  $U(\mathfrak{sl}_2)$  is the free, associative Q-algebra spanned by symbols  $E, F, H, H^{-1}$  modulo

$$HH^{-1} = H^{-1}H = 1$$
,  $HE = EH$  and  $HF = FH$ .  
 $EF - FE = H$ .

By magic:  $\mathfrak{sl}_2$ -Mod  $\cong$  U( $\mathfrak{sl}_2$ )-Mod.

Naively quantize:  $\mathbf{U}_q(\mathfrak{sl}_2) = \mathbf{U}_q$  is the free, associative  $\mathbb{Q}(q)$ -algebra spanned by symbols E, F and  $K, K^{-1}$  (think:  $K = q^H, K^{-1} = q^{-H}$ ) modulo

$$KK^{-1} = K^{-1}K = 1, \quad EK = q^2KE \text{ and } KF = q^{-2}FK.$$
$$EF - FE = \frac{K - K^{-1}}{q - q^{-1}} \quad (\text{think: } \frac{q^H - q^{-H}}{q - q^{-1}} \xrightarrow{q \to 1} H).$$

#### Fact of life

If q is an indeterminate, then  $\mathbf{U}_q$  has the "same" representation theory as  $\mathfrak{sl}_2$ . In particular,  $\mathbf{U}_q$ -**Mod**<sub>fin</sub> is semisimple: Atoms are the irreducibles.

If  $q^{\ell} = 1$ , then this totally fails:  $U_q$ -Mod<sub>fin</sub> is far away to be semisimple.

Why do we want to study something so nasty?

- Magic: Many similarities to the representation theory of a corresponding almost simple, simply connected algebraic group *G* modulo *p*.
- Many similarities to the representation theory of a corresponding affine Kac-Moody algebra.
- It provides ribbon categories (link invariants) which can be "semisimplified" to provide modular categories (2 + 1-dimensional TQFT's).

It turns out that the "right" atoms are the so-called indecomposable  $U_q$ -tilting modules. The corresponding category  $\mathfrak T$  is what we want to understand.

### Principle(Bernstein-Gelfand-Gelfand 1970)

Do not study representations explicitly: That is too hard. Study the combinatorial and functorial behaviour of their module categories!

So let us adopt the BGG principle from category  $\mathcal{O}!$ 

In particular, there are two endofunctors  $\Theta_s$ ,  $\Theta_t$  of  $\mathfrak{T}_{\lambda}$  (there is a decomposition of  $\mathfrak{T}$  into blocks  $\mathfrak{T}_{\lambda}$ ) called translation through the *s*, *t*-wall. These are selfadjoint Frobenius functors with combinatorial behaviour governed by the  $\infty$ -dihedral group  $D_{\infty} = \{s, t \mid s^2 = 1 = t^2\}$ :

$$\Theta_s \Theta_s \cong \Theta_s \oplus \Theta_s$$
 and  $\Theta_t \Theta_t \cong \Theta_t \oplus \Theta_t$ .

We have seen something similar before: There should be a diagram category (inspired by the corresponding one for  $H(D_{\infty})$ ) that governs  $\mathfrak{T}$  and p**End**( $\mathfrak{T}$ ).

### Definition/Theorem(Elias 2013)

There is a diagram category  $\mathfrak{D}(\infty)$  that categorifies  $H(D_{\infty})$  (that is what we are looking for!). The indecomposables categorify the Kazhdan-Lusztig basis elements of  $H(D_{\infty})$ .

#### Definition/Theorem

There is are diagram categories  $\mathfrak{QD}(\infty)$  and  $Mat_{\infty}^{fs}(\widehat{\mathfrak{QD}}(\infty))_c$  for  $\mathfrak{T}$  and  $pEnd(\mathfrak{T})$ . The diagram categories are naturally graded which introduce a non-trivial grading on  $\mathfrak{T}$  and  $pEnd(\mathfrak{T})$ .

We have  $\mathcal{K}_0^{\oplus}(\mathfrak{T}_{\lambda}^{\mathrm{gr}}) \cong \mathcal{B}_{\infty}$ : Thus,  $\mathfrak{T}_{\lambda}^{\mathrm{gr}}$  categorifies the Burau representation  $\mathcal{B}_{\infty}$  of the braid group  $B_{\infty}$  in  $\infty$ -strands (cut-offs are possible). The action of  $B_{\infty}$  is categorified using certain chain complexes of truncations of  $\Theta_s, \Theta_t$ .

We have  $\mathcal{K}_0^{\oplus}(\mathsf{pEnd}(\mathfrak{T}_{\lambda}^{\mathrm{gr}})) \cong \overline{\mathcal{TL}}_{\infty}^q$ : Thus,  $\mathsf{pEnd}(\mathfrak{T}_{\lambda}^{\mathrm{gr}})$  categorifies (a certain summand of) the Temperley-Lieb algebra in  $\infty$ -strands (cut-offs are possible).

## Elias' dihedral cathedral

The category  $\mathfrak{D}(\infty)$  is almost as before, but easier: No relations among the "colors" red *s* and green *t*:



Our  $\mathfrak{Q}\mathfrak{D}(\infty)$  looks similar plus some extra relations.

- Question: What is the non-trivial grading (purely a root of unity phenomena) trying to tell us about the link and 3-manifold invariants deduced from  $\mathfrak{T}$ ?
- Question: Similarly, what is the non-trivial grading (purely a root of unity phenomena) trying to tell us about algebraic groups modulo *p*?
- We argue that each block  $\mathfrak{T}_{\lambda}^{\mathrm{gr}}$  separately can be used to obtain invariants of links and tangles there are very explicit relations to (sutured) Khovanov homology and bordered Floer homology.
- Hence, each block  $\mathfrak{T}_{\lambda}^{gr}$  separately yields information about link and tangle invariants in the non-root of unity case, while the ribbon/modular structure of  $\mathfrak{T}$  yields the Witten-Reshetikhin-Turaev invariants. Question: What is going on here?
- As in the  $H(S_n)$  case: Question: Is there a "cobordism" theory that explains the grading and the Frobenius structure topological?

There is still much to do...

Thanks for your attention!