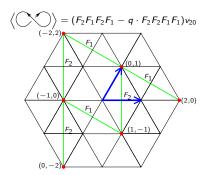
$\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$ -highest weight theory governs \mathfrak{sl}_n -link homology

Daniel Tubbenhauer

The m is not a typo!

May 2014



Daniel Tubbenhauer May 2014

- Motivation: The celebrated Jones polynomial
 - The Jones revolution
 - Its categorification
- 2 The quantum groups $\mathbf{U}_q(\mathfrak{sl}_m)$
 - A reminder on quantum weight-representations
 - The category $\mathbf{Rep}(\mathbf{U}_q(\mathfrak{sl}_2))$
- A diagrammatic presentation
 - \mathfrak{sl}_2 -webs
 - Connection to $\mathbf{Rep}(\mathbf{U}_q(\mathfrak{sl}_2))$
 - How can one prove the graphical representation?
- 4 Connection to the \mathfrak{sl}_n -link polynomials
 - The Howe dual of Reshetikhin-Turaev
 - Links as F's
 - Categorification? Sure!

Daniel Tubbenhauer May 2014

The famous Jones polynomial

Theorem(Jones 1984)

There is exactly one polynomial $J(\cdot)$ from the set of oriented link diagrams $\{L_D\}$ to $\mathbb{Z}[q,q^{-1}]$ with $J(\mathsf{Unknot})=1$ that satisfies the skein relations

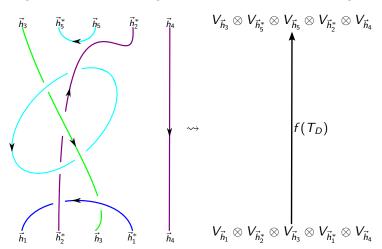
$$q^2 J(\chi) - q^{-2} J(\chi) = (q + q^{-1}) J(\chi).$$

It is invariant under the three Reidemeister moves. Thus, it gives rise to a map from the set of all oriented links in S^3 to $\mathbb{Z}[q,q^{-1}]$: The Jones polynomial.

- Before Jones there was only one link polynomial: The Alexander polynomial.
- After Jones there where whole families of link polynomials.
- It was also extended to other set-ups.
- Nowadays the Jones polynomial is known to be related to different fields of modern mathematics and physics, e.g. the Witten-Reshetikhin-Turaev invariants of 3-manifolds originated from the Jones polynomial.
- Thus, we need to understand this better!

A tangle is an intertwiner

Let \mathfrak{g} be any classical Lie algebra. Denote by \vec{h}_i the $\mathbf{U}_q(\mathfrak{g})$ -representation $V_{\vec{h}_i}$ of highest weight \vec{h}_i . Let T_D be a diagram of a, \vec{h}_i -colored, oriented tangle.



Representation theory does the trick!

Definition/Theorem(Reshetikhin-Turaev 1990)

Given the set-up from before we define a certain $\mathbf{U}_q(\mathfrak{g})$ -intertwiner

$$f(T_D): V_{\vec{h}_1} \otimes \cdots \otimes V_{\vec{h}_k} \to V_{\vec{h}_{k+1}} \otimes \cdots \otimes V_{\vec{h}_l}.$$

The $\mathbf{U}_q(\mathfrak{g})$ -intertwiner $f(T_D)$ is an invariant of T_D .

In the case of colored, oriented links L_D we have

$$f(L_D) \colon \bar{\mathbb{Q}} \to \bar{\mathbb{Q}}, \ 1 \mapsto P_{\mathsf{RT}}(L_D) \in \mathbb{Z}[q,q^{-1}],$$

that is each configuration as above gives a polynomial invariant of oriented links! Restriction to \mathfrak{sl}_2 and the vector representation $\bar{\mathbb{Q}}^2$ gives the Jones polynomial.

Today: I will explain the "dual" of this.

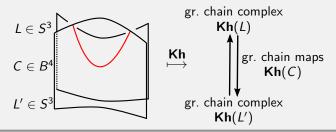
Its categorification

Theorem(Khovanov 1999)

There is a chain complex $\mathbf{Kh}(\cdot)$ of graded vector spaces whose homotopy type is a link invariant. Its graded Euler characteristic gives the Jones polynomial.

Theorem(Khovanov, Bar-Natan, Clark-Morrison-Walker,...)

The $\mathbf{Kh}(\cdot)$ can be extended to a functor from the category of links in S^3 to the category chain complexes of graded vector spaces.



History repeats itself

- Khovanov's construction can be extended to different set-ups.
- Rasmussen obtained from the homology an invariant that "knows" the slice genus and used it to give a combinatorial proof of the Milnor conjecture.
- Rasmussen also gives a way to combinatorial construct exotic \mathbb{R}^4 .
- Kronheimer and Mrowka showed that Khovanov homology detects the unknot. This is still an open question for the Jones polynomial.
- Even better: Hedden-Ni and Batson-Seed proved that it detects unlinks. This is known to be false for the Jones polynomial.
- Before I forget: It is a strictly stronger invariant.

After Khovanov lots of other homologies of "Khovanov-type" were discovered. So we need to understand this better (I do not go into details today).

The quantum algebra $\mathbf{U}_q(\mathfrak{sl}_m)$

Definition

For $m \in \mathbb{N}_{>1}$ the quantum special linear algebra $\mathbf{U}_q(\mathfrak{sl}_m)$ is the associative, unital $\bar{\mathbb{Q}}(q)$ -algebra generated by $K_i^{\pm 1}$ and E_i and F_i , for $i=1,\ldots,m-1$ subject the following relations.

$$\begin{split} K_{i}K_{j} &= K_{j}K_{i}, \quad K_{i}K_{i}^{-1} = K_{i}^{-1}K_{i} = 1, \\ E_{i}F_{j} - F_{j}E_{i} &= \delta_{i,j}\frac{K_{i}K_{i+1}^{-1} - K_{i}^{-1}K_{i+1}}{q - q^{-1}}, \\ K_{i}E_{j} &= q^{(\epsilon_{i},\alpha_{j})}E_{j}K_{i}, \\ K_{i}F_{j} &= q^{-(\epsilon_{i},\alpha_{j})}F_{j}K_{i}, \\ E_{i}^{2}E_{j} - [2]E_{i}E_{j}E_{i} + E_{j}E_{i}^{2} = 0, & \text{if} \quad |i - j| = 1, \\ E_{i}E_{j} - E_{j}E_{i} &= 0, & \text{else}, \\ F_{i}^{2}F_{j} - [2]F_{i}F_{j}F_{i} + F_{j}F_{i}^{2} &= 0, & \text{if} \quad |i - j| = 1, \\ F_{i}F_{j} - F_{j}F_{i} &= 0, & \text{else}. \end{split}$$

Weyl beautiful theory of highest weights

Recall that a weight representation $V=\bigoplus_{ec{k}\in\mathbb{Z}^m}V_{ec{k}}$ of $\mathbf{U}_q(\mathfrak{sl}_m)$ is such that

$$V_{\vec{k}} = \{ v \in V \mid K_i v = q^{(\vec{k}_i - \vec{k}_{i+1})} v \}.$$

Moreover, E_i , F_i jump around in the weight spaces, i.e.

$$E_i, F_i \cdot V_{\vec{k}} \subset V_{\vec{k}'}, \quad \vec{k}' = \vec{k} \pm (\dots, \underbrace{1, -1}_{\text{pos}, i}, \dots).$$

A vector $v_{\vec{h}} \in V$ is called highest weight vector of highest weight \vec{h} , if

$$E_i v_{\vec{h}} = 0$$
 for all i and $v_h \in V_{\vec{h}}$ and $\mathbf{U}_q^-(\mathfrak{sl}_m) v_{\vec{h}} = V$.

If $V_{\vec{h}}$ has a $v_{\vec{h}}$, then $V_{\vec{h}}$ is called highest weight representation. Magic:

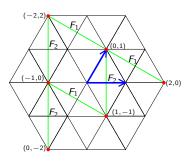
Theorem(In finite dimensions!)

Two highest weight representations $V_{\vec{h}}, V_{\vec{h}'}$ are isomorphic iff $\vec{h} = \vec{h}'$. All $V_{\vec{h}}$ are irreducible and every irreducible $\mathbf{U}_q(\mathfrak{sl}_m)$ -representation is isomorphic to a $V_{\vec{h}}$.

Exempli gratia

The weight lattice of \mathfrak{sl}_m has rank m-1. Thus, to picture weight representations it is better to use $\vec{k}=(\vec{k}_1-\vec{k}_2,\ldots,\vec{k}_{m-1}-\vec{k}_m)$.

Then the $\mathbf{U}_q(\mathfrak{sl}_3)$ -representation of highest weight $\vec{h}=(2,0,0)\mapsto \vec{h}=(2,0)$ is



The category $\mathbf{Rep}(\mathbf{U}_q(\mathfrak{sl}_2))$

Definition

The representation category $\operatorname{Rep}(\mathbf{U}_q(\mathfrak{sl}_2))$ is the monoidal, $\bar{\mathbb{Q}}(q)$ -linear 1-category consisting of:

- The objects are finite tensor products of the $\mathbf{U}_q(\mathfrak{sl}_2)$ -representations $\Lambda^k \bar{\mathbb{Q}}^2$. Denote them by $\vec{k} = (k_1, \dots, k_m)$ with $k_i \in \{0, 1, 2\}$.
- The 1-cells $w \colon \vec{k} \to \vec{k}'$ are $\mathbf{U}_q(\mathfrak{sl}_2)$ -intertwiners.
- ullet Composition of 1-cells is composition of intertwiners and \otimes is the ordered tensor product.

Morally this category is enough: Every irreducible $\mathbf{U}_q(\mathfrak{sl}_2)$ -representation $V_{\vec{h}}$ appears as a direct summand of an object of $\mathbf{Rep}(\mathbf{U}_q(\mathfrak{sl}_2))$. In fancier words:

$$\mathsf{Kar}(\mathsf{Rep}(\mathsf{U}_q(\mathfrak{sl}_2))) \cong \mathsf{Rep}_{\mathsf{all}}(\mathsf{U}_q(\mathfrak{sl}_2))$$
 (naturally).

Exempli gratia

Example: $\mathbf{U}_q(\mathfrak{sl}_2)$ -vector representation

Consider \mathbb{Q}^2 with basis $x_{-1}=(0,1), x_{+1}=(1,0)$. These are called the weights -1 and +1 and K acts on them by $q^{\mp 1}$. The vector representation of $\mathbf{U}_q(\mathfrak{sl}_2)$ is:

Think:
$$K = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 $(0,1)$ $E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ $F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$

It is worth noting that $\Lambda^0 \bar{\mathbb{Q}}^2 = \bar{\mathbb{Q}}$ is the trivial $\mathbf{U}_q(\mathfrak{sl}_2)$ -representation, $\Lambda^2 \bar{\mathbb{Q}}^2 \cong \bar{\mathbb{Q}}$ its dual and $\Lambda^1 \bar{\mathbb{Q}}^2 = \bar{\mathbb{Q}}^2$ is the (self-dual) $\mathbf{U}_q(\mathfrak{sl}_2)$ -vector representation above.

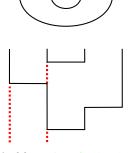
A $\mathbf{U}_q(\mathfrak{sl}_2)$ -intertwiner is for example

$$\text{cup} \colon \underbrace{\Lambda^2 \bar{\mathbb{Q}}^2 \otimes \Lambda^0 \bar{\mathbb{Q}}^2}_{\cong \bar{\mathbb{Q}}} \to \underbrace{\Lambda^1 \bar{\mathbb{Q}}^2 \otimes \Lambda^1 \bar{\mathbb{Q}}^2}_{\cong \bar{\mathbb{Q}}^2 \otimes \bar{\mathbb{Q}}^2}, \ 1 \mapsto x_{+1} \otimes x_{-1} - q^{-1} \cdot x_{-1} \otimes x_{+1}.$$

Think topological but write algebraical

Think:

Write:



Advantage: Decomposition à la Morse into basic pieces.

Ignore dotted red lines: We used them to solve sign issues (functoriality of Khovanov homology for example). They encode the fact for quantum groups the antipode (dual representations) comes with a sign.

May 2014

The (rigid) \mathfrak{sl}_2 -webs - the objects

Definition - Part I

The (rigid) \mathfrak{sl}_2 -web spider $\mathbf{Sp}(\mathbf{U}_q(\mathfrak{sl}_2))$ is the monoidal, $\bar{\mathbb{Q}}(q)$ -linear 1-category consisting of the following.

The objects are *m*-tuples

$$\vec{k} = (k_1, \dots, k_m)$$
 such that $\sum_{j=1}^m k_j = d, k_j \in \{0, 1, 2\}.$

Example:

$$d = 10$$
: $\vec{k}_1 = (2, 2, 0, 1, 2, 0, 1, 2, 0, 0)$ and $\vec{k}_2 = (2, 2, 2, 2, 2, 0, 0, 0, 0, 0)$

The (rigid) \mathfrak{sl}_2 -webs - the generating 1-morphisms

Definition - Part II

The generating 1-cells are $w: \vec{k} \to \vec{k}'$ are edge-labeled graphs with labels from the set $\{0,1,2\}$ (We do not draw 0-edges and 2-edges dotted) such that

• The generators are either identities

$$\begin{vmatrix} k_1 & k_2 & k_3 & k_4 \\ k_1 & k_2 & k_3 & k_4 & & For example: & 1 & 0 & 1 & 2 \\ k_1 & k_2 & k_3 & k_4 & & 1 & 0 & 1 & 2 \\ k_1 & k_2 & k_3 & k_4 & & 1 & 0 & 1 & 2 \\ k_1 & k_2 & k_3 & k_4 & & 1 & 0 & 1 & 2 \\ k_1 & k_2 & k_3 & k_4 & & 1 & 0 & 1 & 2 \\ k_1 & k_2 & k_3 & k_4 & & 1 & 0 & 1 & 2 \\ k_1 & k_2 & k_3 & k_4 & & 1 & 0 & 1 & 2 \\ k_1 & k_2 & k_3 & k_4 & & 1 & 0 & 1 & 2 \\ k_1 & k_2 & k_3 & k_4 & & 1 & 0 & 1 & 2 \\ k_1 & k_2 & k_3 & k_4 & & & 1 & 0 & 1 & 2 \\ k_1 & k_2 & k_3 & k_4 & & & 1 & 0 & 1 & 2 \\ k_1 & k_2 & k_3 & k_4 & & & & 1 & 0 & 1 \\ k_1 & k_2 & k_3 & k_4 & & & & & 1 \\ k_1 & k_2 & k_3 & k_4 & & & & & & 1 \\ k_1 & k_2 & k_3 & k_4 & & & & & & & & & \\ k_1 & k_2 & k_3 & k_4 & & & & & & & & & \\ k_1 & k_2 & k_3 & k_4 & & & & & & & & & \\ k_1 & k_2 & k_3 & k_4 & & & & & & & & & \\ k_1 & k_2 & k_3 & k_4 & & & & & & & & \\ k_1 & k_2 & k_3 & k_4 & & & & & & & \\ k_2 & k_3 & k_4 & & & & & & & & \\ k_1 & k_2 & k_3 & k_4 & & & & & & \\ k_1 & k_2 & k_3 & k_4 & & & & & & \\ k_1 & k_2 & k_3 & k_4 & & & & & \\ k_2 & k_3 & k_4 & & & & & & \\ k_3 & k_4 & k_4 & & & & & & \\ k_4 & k_3 & k_4 & & & & & \\ k_4 & k_4 & k_4 & k_4 & & & & \\ k_1 & k_2 & k_3 & k_4 & & & & \\ k_2 & k_3 & k_4 & & & & & \\ k_3 & k_4 & k_4 & & & & & \\ k_4 & k_4 & k_4 & k_4 & & & \\ k_5 & k_5 &$$

Or ladders

• All 1-cells should be generated by identities and ladders by \circ and \otimes , where the $\bar{\mathbb{Q}}(q)$ -linear composition \circ is stacking (see next page).

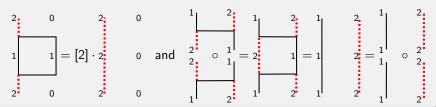
The (rigid) \mathfrak{sl}_2 -webs - and all the rest

Definition - Part III

ullet The monoidal structure \otimes is given by juxtaposition, e.g.

$$\begin{bmatrix} 1 & 0 & 1 & 2 & 2 & 1 \\ 0 & 1 & 2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 2 & 2 & 1 \\ 0 & 1 & 2 & 1 & 2 & 1 \end{bmatrix}$$

• Relations are the circle removals and isotopies, e.g. ([2] = $q + q^{-1}$)



Intertwiner are pictures

Theorem (Kuperberg 1997, n > 3: Cautis-Kamnitzer-Morrison 2012)

The 1-categories $Rep(U_q(\mathfrak{sl}_2))$ and $Sp(U_q(\mathfrak{sl}_2))$ are equivalent.

Example: cup=cup, i.e.

$$\text{cup} \colon \Lambda^2 \bar{\mathbb{Q}}^2 \otimes \Lambda^0 \bar{\mathbb{Q}}^2 \to \Lambda^1 \bar{\mathbb{Q}}^2 \otimes \Lambda^1 \bar{\mathbb{Q}}^2 \quad \mapsto \quad \frac{1}{2} \qquad \qquad \frac{1}{2}$$

Question

How can one prove such a statement?

Finding the generators for $Rep(U_q(\mathfrak{sl}_2))$ is doable, but...

Finding a complete set of relations is very hard!

The idempotented version

Definition(Beilinson-Lusztig-MacPherson)

For each $\vec{k} \in \mathbb{Z}^{m-1}$ adjoin an idempotent $1_{\vec{k}}$ (think: projection to the \vec{k} -weight space!) to $\mathbf{U}_q(\mathfrak{sl}_m)$ and add some relations, e.g.

$$1_{\vec{k}}1_{\vec{k'}} = \delta_{\vec{k},\vec{k'}}1_{\vec{k}}$$
 and $K_{\pm i}1_{\vec{k}} = q^{\pm \vec{k}_i}1_{\vec{k}}$ (no $K's$ anymore!).

and the E's and F's still jump around, e.g.

$$1_{\vec{k}-\overline{\alpha}_i}F_i1_{\vec{k}}=F_i1_{\vec{k}}=1_{\vec{k}-\overline{\alpha}_i}F_i.$$

The idempotented quantum special linear algebra is defined by

$$\dot{\mathsf{U}}_q(\mathfrak{sl}_m) = igoplus_{ec{k}, ec{k}' \in \mathbb{Z}^{m-1}} 1_{ec{k}} \mathsf{U}_q(\mathfrak{sl}_m) 1_{ec{k}'}.$$

An important fact: The $\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$ has the "same" representation theory as $\mathbf{U}_q(\mathfrak{sl}_m)$.

An instance of *q*-skew Howe duality

The commuting actions of $\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$ and $\dot{\mathbf{U}}_q(\mathfrak{sl}_2)$ on

$$\bigoplus_{a_1+\dots+a_m=d} (\Lambda^{a_1}\bar{\mathbb{Q}}^2\otimes\dots\otimes\Lambda^{a_m}\bar{\mathbb{Q}}^2) \cong \Lambda^d(\bar{\mathbb{Q}}^m\otimes\bar{\mathbb{Q}}^2) \cong \bigoplus_{a_1+a_2=d} (\Lambda^{a_1}\bar{\mathbb{Q}}^m\otimes\Lambda^{a_2}\bar{\mathbb{Q}}^m)$$

introduce a $\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$ -action on the left side and a $\dot{\mathbf{U}}_q(\mathfrak{sl}_2)$ -action on the right side.

The left and right side are $\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$ - and $\dot{\mathbf{U}}_q(\mathfrak{sl}_2)$ -weight spaces with weights

$$\vec{k}_{\dot{\mathbf{U}}_q(\mathfrak{sl}_m)} = (a_1-a_2,\ldots,a_{m-1}-a_m)$$
 and $\vec{k}_{\dot{\mathbf{U}}_q(\mathfrak{sl}_2)} = (a_1-a_2).$

Here the $\Lambda^k \bar{\mathbb{Q}}_q^l$ are irreducible $\dot{\mathbf{U}}_q(\mathfrak{sl}_l)$ -representations $(l \in \{2, m\})$.

Graphical quantum skew Howe duality

Theorem

There is an $\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$ -action on $\mathbf{Sp}(\mathbf{U}_q(\mathfrak{sl}_2))^m$ (objects of length m)!

$$1_{\vec{k}} \mapsto \begin{bmatrix} k_1 & k_{i-1} & k_i & k_{i+1} & k_{i+2} & k_m \\ k_1 & k_{i-1} & k_i & k_{i+1} & k_{i+2} & k_m \\ k_1 & k_{i-1} & k_i \pm 1 & k_{i+1} \mp 1 & k_{i+2} & k_m \end{bmatrix}$$

$$E_i 1_{\vec{k}}, \ F_i 1_{\vec{k}} \mapsto \begin{bmatrix} k_1 & k_{i-1} & k_{i+1} & k_{i+1} & k_{i+2} & k_m \\ k_1 & k_{i-1} & k_i & k_{i+1} & k_{i+2} & k_m \end{bmatrix}$$

That is, we stack these pictures on top of a given \mathfrak{sl}_2 -web.

Thus, $\operatorname{Sp}(\mathbf{U}_q(\mathfrak{sl}_2))^m$ is a $\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$ -module and not just a $\mathbf{U}_q(\mathfrak{sl}_2)$ -module.

An instance of $\mathbf{U}_q(\mathfrak{sl}_m)$ -highest weight theory

What is the upshot of this?

- "Explains" the $\mathbf{U}_q(\mathfrak{sl}_2)$ -intertwiner as instances of the (well-developed) $\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$ -highest weight theory.
- The action of the F's is explicit and inductive a powerful tool to prove statements.
- All the relations follow from the well-known ones from $\dot{\mathbf{U}}_{\sigma}(\mathfrak{sl}_m)$, e.g.

$$E_1 F_1 v_{20} - \underbrace{F_1 E_1 v_{20}}_{=0} = \underbrace{\frac{K_1 K_2^{-1} - K_1^{-1} K_2}{q - q^{-1}}}_{=[2] \mathbf{1}_{20} \text{ in } \dot{\mathbf{U}}_q(\mathfrak{sl}_m)} v_{20} \Rightarrow 1 \underbrace{\begin{array}{c} 2 & 0 & 2 & 0 \\ E_1 & & \\ & & 1 \\ F_1 & & \\ & & 2 & 0 \end{array}}_{=} = [2] \cdot 2 \quad \mathbf{1}_{20} \quad 0$$

• Even better: $\dot{\mathbf{U}}_{a}^{-}(\mathfrak{sl}_{m})$ suffices for everything!

Kauffman's formulation

Let L_D be a diagram of an oriented link. Set $[2] = q + q^{-1}$ and

$$n_+ =$$
 number of crossings \nearrow $n_- =$ number of crossings \nearrow

Definition/Theorem(Jones 1984, Kauffman 1987)

The bracket polynomial of the diagram L_D (without orientations) is a polynomial $\langle L_D \rangle \in \mathbb{Z}[q,q^{-1}]$ given by the following rules.

- $\langle \emptyset \rangle = 1$ (normalization).
- $\langle \times \rangle = \langle \rangle$ ($\rangle q \langle \times \rangle$ (recursion step 1).
- $\langle \bigcirc \coprod L_D \rangle = [2] \cdot \langle L_D \rangle$ (recursion step 2).
- $[2]J(L_D) = (-1)^{n_-}q^{n_+-2n_-}\langle L_D\rangle$ (Re-normalization).

The polynomial $J(\cdot) \in \mathbb{Z}[q, q^{-1}]$ is an invariant of oriented links.

Crossings measure the difference between F_iF_{i+1} and $F_{i+1}F_i$

Observation(Reshetikhin-Turaev 1990)

We can read the right side of

$$\langle \rangle \rangle = \langle \rangle \langle \rangle - q \langle \rangle \rangle$$

as certain $\mathbf{U}_{q}(\mathfrak{sl}_{2})$ -intertwiners.

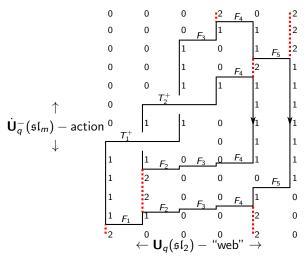
$$T_{1}^{+} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & F_{2} & 1 \\ 0 & 1 & -q \cdot 0 & 2 & 0 & \frac{1}{\text{dual}} & F_{1}F_{2}v_{110} - q \cdot F_{2}F_{1}v_{110}. \\ 0 & 1 & 1 & 0 & 0 \end{bmatrix}$$

Note: It is a $\dot{\mathbf{U}}_{a}(\mathfrak{sl}_{m})$ -highest weight module: No E's are needed!

Exercise: Do the negative X.

$\dot{\mathbf{U}}_{q}^{-}(\mathfrak{sl}_{m})$ knows link diagrams

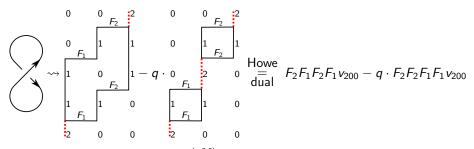
Using these T_k^+ and T_k^- together with the F's we can write link diagrams as

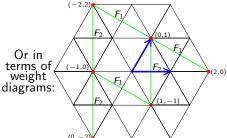


$$\mathsf{qH}(\textbf{Hopf}) = F_4^{(2)} F_4 F_3 F_5 F_4 T_2^+ T_1^+ F_4 F_3 F_2 F_5 F_4 F_3 F_2 F_1 F_4^{(2)} F_3^{(2)} F_2^{(2)} v_{220000}.$$

Daniel Tubbenhauer Links as F's May 2014

Jumping from a highest to a lowest weight

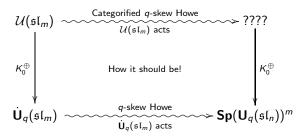




The \mathfrak{sl}_n -link polynomials using \mathfrak{sl}_m -symmetries

Let us summarize the connection between (colored) \mathfrak{sl}_n -link polynomials and the $\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$ - $\dot{\mathbf{U}}_q(\mathfrak{sl}_n)$ -skew Howe duality.

- Reshetikhin-Turaev: The \mathfrak{sl}_n -link polynomials $P_{\mathsf{RT}}^n(\cdot)$ are $\mathbf{U}_q(\mathfrak{sl}_n)$ -intertwiner.
- $\mathbf{U}_q(\mathfrak{sl}_n)$ -intertwiner are vectors in hom's between $\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$ -weight spaces.
- Only F's: $\dot{\mathbf{U}}_q^-(\mathfrak{sl}_m)$ suffices. Conclusion: The (colored) \mathfrak{sl}_n -link polynomials $P_{\mathsf{RT}}^n(\cdot)$ are instances of $\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$ -highest weight theory!
- Even better: There exists a fixed m for each link L such that $\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$ -highest weight theory governs all the \mathfrak{sl}_n -polynomials of L.
- If L_D is a link diagram, then $P_{\mathsf{RT}}^n(L_D)$ is obtained by jumping via F's from a highest $\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$ -weight v_h to a lowest $\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$ -weight v_l !
- Guess: Should work in the types B, C, D as well.



This is how it should be: There is an $\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$ -action on the \mathfrak{sl}_n -web spiders (for us it was mostly the case n=2)

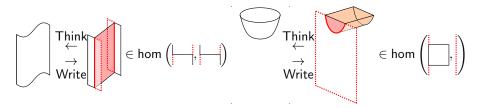
On the left side: There is Khovanov-Lauda's categorification $\mathcal{U}(\mathfrak{sl}_m)$ of $\dot{\mathbf{U}}_q(\mathfrak{sl}_m)$.

Conclusion: There should be a 2-action of $\mathcal{U}(\mathfrak{sl}_m)$ on the top right - a suitable 2-category of "natural transformations" between $\mathbf{U}_q(\mathfrak{sl}_n)$ -intertwiners!

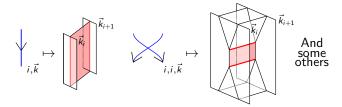
Daniel Tubbenhauer Categorification? Sure! May 2014

And it works: Categorified q-skew Howe duality

The top left is the (rigid) \mathfrak{sl}_2 -foam 2-category **Foam**₂.



On 2-cells: We define an 2-action



And play the same story again on a "higher" level...

The \mathfrak{sl}_n -homologies using \mathfrak{sl}_m -symmetries

Let us summarize the connection between \mathfrak{sl}_n -homologies and the higher q-skew Howe duality.

- Khovanov, Khovanov-Rozansky and others: The \mathfrak{sl}_n -link homology can be obtained using certain " \mathfrak{sl}_n -foams".
- Only F's: The (cyclotomic) KL-R suffices.
- Conclusion: The \mathfrak{sl}_n -link homologies are instances of highest $\mathcal{U}(\mathfrak{sl}_m)$ -weight representation theory!
- Or in short: It is the usual "higher representation theory Yoga", aka replace weight spaces by weight categories, actions by functors and add the natural transformations.
- Guess: Should work in the types *B*, *C*, *D* as well.
- Guess: Should be honestly computable.
- Guess: The *m* is fixed! Stabilizing effects?

There is still much to do...

Thanks for your attention!