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Motivation

Motivation

Notation: k = k field of characteristic p > 0.

Long-standing open problems in modular representation theory (for p > 0):

What are the characters of ...
I modular irreducible modules of Sr over k for p 6 r?
I indecomposable tilting modules of GLn over k?

The following basis contains the answer to these questions...
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The p-canonical basis

Idea for the p-canonical basis
Notation (for G ⊇ B ⊇ T a split, sc alg. group /k with Borel and max. torus):

I the affine Weyl group W := Wf n ZΦ as a Coxeter system (W , S),
I kH the Hecke category (defined over k of characteristic p),
I H the Hecke algebra assoc. to (W , S) over Z[v, v−1] .

Theorem (Elias-Williamson, Soergel, Kazhdan-Lusztig, . . . )
There exists an isomorphism of Z[v, v−1]-algebras:

ch : [kH] −→ H, [Bs] 7−→ H s for s ∈ S

where [kH] denotes the split Grothendieck group of kH.

Definition
The p-canonical basis of H is given by:

{pH w | w ∈W } = ch({self-dual indecomposable objects in kH}/∼=).
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The p-canonical basis

Properties of the p-canonical basis

Instead of precisely stating its properties, we give the following slogans:

I The p-canonical basis is a positive characteristic analogue of the
Kazhdan-Lusztig basis.

I The p-canonical basis loses many of the combinatorial properties of the
KL basis, but preserves its positivity properties (as stated in the
Kazhdan-Lusztig positivity conjectures).

I The KL-basis (and the KL-polynomials) are ubiquitous in representation
theory (e.g. in the KL-conjectures relating characters of Verma and
simple modules for a semisimple Lie algebra), the p-canonical basis is
expected to play a similar role in modular representation theory.
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Back to motivation

p-Canonical basis in type Ã1 for p = 3

3H s = H s
3H st = H st
3H sts = H sts
3H stst = H st + H stst
3H ststs = H s + H ststs
3H ststst = H ststst
3H stststs = H ststs + H stststs
3H stststst = H stst + H stststst

Figure: The 3-canonical basis in terms of the Kazhdan-Lusztig basis
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Figure: The multiplicities of ∆(m) in
T(n) for p = 3
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Back to motivation

p-Cells

p-Cells give a first approximation of the multiplication in the p-canonical basis.

Definition
Define a pre-order

p
6
R

on W via:

x
p
6
R

y ⇔ ∃h ∈ H : pH x occurs with non-zero coefficient in pH yh

The equivalence classes w.r.t.
p
6
R

are called right p-cells. The left p-cell (resp.

two-sided) p-cell preorder
p
6
L

(resp.
p
6
LR

) as well as left (resp. two-sided)
p-cells are defined similarly.
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Back to motivation

Right p-cells in type Ã2 and p = 5

••
••

•
•
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Back to motivation

p-Cells in finite type A

In finite type An+1, we can explicitly describe p-cells via the
Robinson-Schensted correspondence which establishes a bijection between the
symmetric group Sn and pairs of standard tableaux with n boxes mapping
w ∈ Sn to (P(w), Q(w)). Following Ariki’s work we can prove:

Theorem
For x, y ∈ Sn we have:

x p∼
L

y ⇔ Q(x) = Q(y),

x p∼
R

y ⇔ P(x) = P(y),

x p∼
LR

y ⇔ Q(x) and Q(y) have the same shape.

In particular, Kazhdan-Lusztig cells and p-cells of Sn coincide.
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