The Diagrammatic Theory part V

Soergel’s Categorification Theorem




Last time, we constructed a functor#from the diagrammatic category# ,;toBSBim .
By constructing an explicit basis for theR — linear category# ¢, we can study
the subcategoryF (# 5)ofBSBim, which will turn out to be full and faithful .

We have seen that Kar(BSBim) = SBim.
In the section, we will look at something like Kar(# z,)and hope for the best !




Recall: The Bruhat Order

Given a Coxeter system(W, S), and two elementsxandysuch that
[(x) < l[(y)and3r € Wsuch thatxr =y

We denote this partial relation betweenxandybyx — .

This partial relation givesWthe structure of a directed tree,
and we can extended transitively by following —




Also recall U, U,, D,, D;and the defect of a subexpression:

Given a subexpressione = (ey, ..., e,)0fw = (sy, ..., s,), where eache; = Oorl

we can decorateewith a sequence of lengthnof elements from{U,, U,, D,, D, }as follows:

ifs)...s; > s,...5,_, we putU, in thei"position, otherwise we putD, .

The defect is defined to be#U, — #D,

Example:

Consider the sequence(s, s, s)and the subexpressions(1,0,0)and(1,0,1).
then the corresponding decorations are(U,, Dy, Dy)and(U,, D,, D,)repectively.




Overview of Rex Moves:

Definition: The rex graph corresponding to w € W

is the graph whose vertices are the distinct reduced expressions of

w, such that two vertices are connected by an edge if they are related
by braid relations.

Remark: By Matsumoto’s Theorem, all rex graphs are connected.

Definition: A rex move corresponding to a path in the rex graph of we W

is defined to be the composition of the corresponding morphisms in the
diagrammatic category ..

In other words, it is the sequence of2m_ -valent morphisms in#
corresponding to the braid relations appearing in the given path.




Example 10.23. Suppose W = (s,u,t) with Coxeter graph
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Here we give the rex graph for the element w = sutsu:

(s,u,t,s,u)

N

(u,s,t,s,u)  (s,u,t,u,s)

NS

(u,s,t,u,s)

This is an example of a disjoint cycle, emerging from the application of two
disjoint braid relations. Note that (s,u,t,u,s) — (s,u,t,s,u) — (u,s,t,s,u) and

(s,u,t,u,s) — (u,s,t,u,s) — (u,s,t,s,u) are two distinct paths in the rex graph from
(s,u,t,u,s)to (u,s,t,s,u).




A quick detour:

Givenw € W, whereWis a rank3finite Coxeter group,
then there is a cycle in the rex graph of the longest element.

We call such a cycle a Zamolodchikov cycle

Slogan: No need for 4-color relations




Libedinsky’s light leaves

Given an expressionwand a subexpressionewith targetwe = x,
we will construct a morphism  LL,,, € # pifromwtox, where
xis a reduced expression forx. Moreover, deg(LL,, ,)will be the defect ofe .

Given such a morphismLL,,, € # s, one can flip the diagram to get a morphism
Ll &0

Now ife € wandf C ysuch thatwe = y/ = x

we defineﬂ_ﬂ_]_’gg: =LLyyseLL

€ # s, takingw — y.

w.e




Actual construction of the leaves

Step 0: We start by definingLL, to be the identity inR.

Step k: assuming we know howLL,_;mapsw

T

we will defineLL,as a morphismw, — x by:

LL,: = ¢, (LL,_; ® idy), whereg,will be defined in the next slides.




Describingg,

¢, depends on the decoration given toe, . it is given diagrammatically as follows:

Case 1:U,

bk =

-Botha'sappearing in the diagrams are rex moves

-They come from the fact that althoughyx,_, = x;,, we don't necessarily havex, = x, .







Examples

‘S,fjs,btjf;“-/t)
('lll')ll'll/_!)




Examples Continued

Let(s, s, ..., s)be of length m, then any light leaf is of the form:

A ®... @A, ® B,where eachA s of type 1 andBis of type 1 or 2.

Moreover, we need to havem = #{sources inB} + Z #{sources inA,} .

l




Is not a light leaf!




Theorem: (Double leaves are a basis)
Fix expressionsw, yin(W, S) . LetlL, denote the collection{Ung}((M)’(w,x)

such that the triples satisfywe = y/ = x, then the familyLL,, is a basis

forHomg, (w, y)as a right (or left) module .

An Exercise:

The Soergel Hom formula together with
results form the earlier sections show that

tkHom'(BS(w), BS(») = |LL,,, |

Theorem 5.27 (Soergel Hom formula [167]). For any two Soergel bimodules B, B,
the graded Hom space Homgy, (B, B') is free as a left graded R-module with graded
rank (ch(B),ch(B’)):

rk Homgg. (B, B”) = (ch(B),ch(B’)). (5.30)

Here, (—,—) denotes the standard form on H (see Definition i3.] 3), and 1Kk denotes the
graded rank (see the end of Sect.|4.1). It is also free as a right graded R-module with
the same graded rank.




Corollary:

The previously defined functor#from the diagrammatic category# ;,toBSBim

is an equivalence of categories!!

Missing ingredient for a proof:

— Zis faithful

A proof of this is implicit in the proof of the previous theorem!




Constructing#

A graded category, is on in which all Hom sareZ-graded and such that:

Hom'(Y, Z) - Hom’(X, Y) € Hom'¥(X, Z)

To a pre-additive category@with a shift functor(1), one can constuct a graded category
€4'by defining the new Hom's to be:

Hom'(X,Y): = @Homk(x, Y), whereHom*(X, Y): = Hom(X, Y(k))
keZ

The functor( — )$’has a left adjoint! |t can be defined as follows:

Obijects in&*"are formal objectsX(n)and morphisms are

Homgw(X(n), Y(m)): = Homg (X, Y)




Now we can constructZfrom# yn three steps:

1) Apply( — )"0 s

2) Take the additive closure

3) Take the Karoubian envelope

Definition :(The Diagrammatic Hecke Category)
Z1s taken to be the resulting category .




Theorem 11.1 (Soergel categorification theorem).

1. For each reduced expression w the object w € ‘H has a unique indecomposable
direct summand B,, which does not occur as a direct summand in any shorter
expression.

. Letw € W. If w and w’ are reduced expressions for w, then B,, and B, are
isomorphic.E We denote the isomorphism class of By, by B,,.

. Up to shift, any indecomposable object of H is isomorphic to some B,,.

. The map bs — [s] for s € S induces a Z[v*']-algebra isomorphism

¢c:H-> [H]s . (11.1)

5. (Soergel Hom formula) For any two objects X,Y of H, let x,y € H be the elements
Jor which ¢(x) = [X] and c(y) = [Y]. Then the graded Hom space Hom? (X,Y)
is free as a left graded R-module with graded rank (x,y).




Theorem 11.1 (Soergel categorification theorem).

1. For each reduced expression w the object w € ‘H has a unique indecomposable
direct summand B,, which does not occur as a direct summand in any shorter
expression.

. Letw € W. If w and w' are reduced expressions for w, then B,, and B, are
isomorphic.E We denote the isomorphism class of By, by B,,.

. Up to shift, any indecomposable object of H is isomorphic to some B,,.

. The map by +— [s] for s € S induces a Z[v*']-algebra isomorphism

c:H—- [H]s . (11.1)

5. (Soergel Hom formula) For any two objects X,Y of H, let x,y € H be the elements
Jor which ¢(x) = [X] and c(y) = [Y]. Then the graded Hom space Hom3 (X,Y)
is free as a left graded R-module with graded rank (x, y).

Theorem 5.24 (Soérgel’s Categorification Theorem [167]). Under the technical
assumptions to be discussed in Sect.|5.6, we have the following results.
1. There is a Z[v*']-algebra homomorphism

¢ :H — [SBim]g (5.27)

sending bs +— [Bg] for all s € S.

. There is a bijection between W and the set of indecomposable objects of SBim Theorem 5.27 (Soergel Hom formula [167]). For any two Soergel bimodules B, B,

up to Shl'ff and isomorphism . the graded Hom space Homgy, (B, B') is free as a left graded R-module with graded
rank (ch(B),ch(B’)):

W { indec. objects in SBim } /=, (1) (5.28) A5 = (L) -

W — Bw . Here, (—,—) denotes the standard form on H (see Definition 3.13), and 1k denotes the
graded rank (see the end of Sect.|4.1). It is also free as a right graded R-module with
the same graded rank.

The indecomposable object B,, appears as a direct summand of the Bott—Samelson
bimodule BS(w) for a reduced expression of w. Moreover, all other summands
of BS(w) are shifts of By for x < w in the Bruhat order.
. The character function ch = chy defined above descends to a Z[v*']-module
homomorphism
ch: [SBim]g — H (5.29)

which is the inverse to c. Thus, both are isomorphisms.




