The Diagrammatic Theory part V

Soergel's Categorification Theorem

Plan

PART 1

Last time, we constructed a functor \mathscr{F} from the diagrammatic category \mathscr{H}_{BS} to $\mathbb{B}S$ Bim . By constructing an explicit basis for the R – linear category \mathscr{H}_{BS} , we can study the subcategory $\mathscr{F}(\mathscr{H}_{BS})$ of $\mathbb{B}S$ Bim, which will turn out to be full and faithful.

PART 2

We have seen that $Kar(\mathbb{B}SBim) = SBim$.

In the section, we will look at something like $Kar(\mathcal{H}_{BS})$ and hope for the best!

Recall: The Bruhat Order

Given a Coxeter system(W, S), and two elementsx and y such that l(x) < l(y) and $\exists t \in W$ such that x = y

We denote this partial relation between x and y by $y \rightarrow y$.

This partial relation gives W the structure of a directed tree, and we can extended transitively by following \rightarrow

Also recall U_0, U_1, D_0, D_1 and the defect of a subexpression:

Given a subexpression $\underline{e} = (e_1, ..., e_n)$ of $\underline{w} = (s_1, ..., s_n)$, where each $e_i = 0$ or 1 we can decorate \underline{e} with a sequence of length n of elements from $\{U_0, U_1, D_0, D_1\}$ as follows: if $s_1...s_i > s_1...s_{i-1}$, we put U_{e_i} in the ith position, otherwise we put D_{e_i} .

The defect is defined to be# $U_0 - \#D_0$

Example:

Consider the sequence (s, s, s) and the subexpressions (1,0,0) and (1,0,1). then the corresponding decorations $are(U_1,D_0,D_0)$ and (U_1,D_0,D_1) repectively.

Overview of Rex Moves:

Definition: The rex graph corresponding to $w \in W$ is the graph whose vertices are the distinct reduced expressions of w, such that two vertices are connected by an edge if they are related by braid relations.

Remark: By Matsumoto's Theorem, all rex graphs are connected.

Definition: A rex move corresponding to a path in the rex graph of $w \in W$ is defined to be the composition of the corresponding morphisms in the diagrammatic category \mathcal{H}_{BS} .

In other words, it is the sequence of $2m_{st}$ -valent morphisms in \mathcal{H}_{BS} corresponding to the braid relations appearing in the given path.

Example 10.23. Suppose $W = \langle s, u, t \rangle$ with Coxeter graph

$$S \infty t \infty u$$

Here we give the rex graph for the element w = sutsu:

This is an example of a disjoint cycle, emerging from the application of two disjoint braid relations. Note that $(s, u, t, u, s) \rightarrow (s, u, t, s, u) \rightarrow (u, s, t, s, u)$ and $(s, u, t, u, s) \rightarrow (u, s, t, u, s) \rightarrow (u, s, t, s, u)$ are two distinct paths in the rex graph from (s, u, t, u, s) to (u, s, t, s, u).

A quick detour:

Given $w \in W$, where W is a rank3finite Coxeter group, then there is a cycle in the rex graph of the longest element.

We call such a cycle a Zamolodchikov cycle

Slogan: No need for 4-color relations

Libedinsky's light leaves

Given an expression \underline{w} and a subexpression \underline{e} with target $\underline{w}^{\underline{e}} = x$, we will construct a morphism $LL_{\underline{w},\underline{e}} \in \mathcal{H}_{BS}$ from \underline{w} to \underline{x} , where \underline{x} is a reduced expression for \underline{x} . Moreover, $\deg(LL_{\underline{w},\underline{e}})$ will be the defect of \underline{e} .

Given such a morphism $LL_{\underline{w},\underline{e}} \in \mathcal{H}_{\mathit{BS}}$, one can flip the diagram to get a morphism

$$\overline{LL}_{\underline{w},\underline{e}} \in \mathcal{H}_{BS}$$

Now if $\underline{e} \subseteq \underline{w}$ and $\underline{f} \subseteq \underline{y}$ such that $\underline{w}^{\underline{e}} = \underline{y}^{\underline{f}} = x$,

$$\text{we define} \mathbb{L}^{x}_{\underline{f},\underline{e}} \colon = \overline{LL}_{\underline{y},\underline{f}} \circ LL_{\underline{w},\underline{e}} \in \mathscr{H}_{\mathit{BS}}, \mathsf{taking}_{\underline{w}} \to \underline{y} \,.$$

$$\mathbb{L} \mathbb{L}_{\underline{f},\underline{e}}^{x} = \underbrace{\frac{\overline{LL}_{\underline{y},\underline{f}}}{LL_{\underline{w},\underline{e}}}}_{\underline{w}}^{\underline{y}}$$

Actual construction of the leaves

Step 0: We start by defining $LL_{\emptyset,\emptyset}$ to be the identity in R.

Step k: assuming we know how LL_{k-1} maps $\underline{w}_{\leq k-1} \to \underline{x}_{k-1}$, we will define LL_k as a morphism $\underline{w}_k \to \underline{x}_k$ by:

 LL_k : = $\phi_k \circ (LL_{k-1} \otimes id_s)$, where ϕ_k will be defined in the next slides.

Describing ϕ_k

 ϕ_k depends on the decoration given to e_k . it is given diagrammatically as follows:

Case $1:U_0$

Case $2:U_1$

-Both α 's appearing in the diagrams are rex moves

-They come from the fact that although $x_{k-1} = x_k$, we don't necessarily have $\underline{x}_{k-1} = \underline{x}_k$.

Case $3:D_0$

Case $4:D_1$

Examples

Examples Continued

Let(s, s, ..., s) be of length m, then any light leaf is of the form:

 $A_1 \otimes ... \otimes A_k \otimes B$, where each A_i is of type 1 and B is of type 1 or 2.

Moreover, we need to have $m = \#\{\text{sources in}B\} + \sum_{i} \#\{\text{sources in}A_i\}$.

Is not a light leaf!

Theorem: (Double leaves are a basis)

Fix expressions \underline{w} , \underline{y} in (W,S). Let $\mathbb{L}_{\underline{w},\underline{y}}$ denote the collection $\{\mathbb{L}\mathbb{L}_{\underline{f},\underline{e}}^x\}_{((\underline{w},\underline{e}),(\underline{y},\underline{f}),x)}$ such that the triples satisfy $\underline{w}^{\underline{e}} = \underline{y}^{\underline{f}} = x$, then the family $\mathbb{L}\mathbb{L}_{\underline{w},\underline{y}}$ is a basis for $\mathbb{H}_{\mathcal{B}S}(\underline{w},y)$ as a right (or left) module.

An Exercise:

The Soergel Hom formula together with results form the earlier sections show that

$$\underline{\mathsf{rk}\mathsf{Hom}}^{\bullet}(\mathsf{BS}(\underline{w}),\mathsf{BS}(\underline{y})) = |\mathbb{LL}_{\underline{w},\underline{y}}|$$

Theorem 5.27 (Soergel Hom formula [167]). For any two Soergel bimodules B, B', the graded Hom space $\operatorname{Hom}_{\operatorname{SBim}}^{\bullet}(B, B')$ is free as a left graded R-module with graded rank $(\operatorname{ch}(B), \operatorname{ch}(B'))$:

$$\underline{\operatorname{rk}} \operatorname{Hom}_{\operatorname{\mathbb{S}Bim}}^{\bullet}(B, B') = (\operatorname{ch}(B), \operatorname{ch}(B')). \tag{5.30}$$

Here, (-,-) denotes the standard form on H (see Definition 3.13), and \underline{rk} denotes the graded rank (see the end of Sect. 4.1). It is also free as a right graded R-module with the same graded rank.

Corollary:

The previously defined functor \mathcal{F} from the diagrammatic category $\mathcal{H}_{\mathit{BS}}$ to \mathbb{BSBim} is an equivalence of categories!!

Missing ingredient for a proof:

 $-\mathcal{F}$ is faithful

A proof of this is implicit in the proof of the previous theorem!

$Constructing \mathcal{H}$

A graded category, is on in which all Hom's are Z-graded and such that:

$$\mathsf{Hom}^i(Y,Z) \circ \mathsf{Hom}^j(X,Y) \subseteq \mathsf{Hom}^{i+j}(X,Z)$$

To a pre-additive category \mathscr{C} with a shift functor(1), one can constuct a graded category \mathscr{C}^{gr} by defining the new Hom's to be:

$$\mathsf{Hom}^{\bullet}(X,Y) := \bigoplus_{k \in \mathbb{Z}} \mathsf{Hom}^k(X,Y), \text{ where} \mathsf{Hom}^k(X,Y) := \mathsf{Hom}_{\mathscr{C}}(X,Y(k))$$

The functor $(-)^{gr}$ has a left adjoint! It can be defined as follows:

Objects in \mathscr{C}^{sh} are formal objects X(n) and morphisms are

$$\mathsf{Hom}_{\mathscr{C}^{\mathit{sh}}}(X(n),Y(m)) := \mathsf{Hom}_{\mathscr{C}}^{m-n}(X,Y)$$

Now we can construct \mathcal{H} from \mathcal{H}_{BS} in three steps:

- 1) Apply $(-)^{sh}$ to \mathcal{H}_{BS}
- 2) Take the additive closure
- 3) Take the Karoubian envelope

Definition: (The Diagrammatic Hecke Category)

 ${\mathcal H}$ is taken to be the resulting category.

Theorem 11.1 (Soergel categorification theorem).

- 1. For each reduced expression \underline{w} the object $\underline{w} \in \mathcal{H}$ has a unique indecomposable direct summand $B_{\underline{w}}$ which does not occur as a direct summand in any shorter expression.
- 2. Let $w \in W$. If \underline{w} and \underline{w}' are reduced expressions for w, then $B_{\underline{w}}$ and $B_{\underline{w}'}$ are isomorphic. We denote the isomorphism class of $B_{\underline{w}}$ by B_{w} .
- 3. Up to shift, any indecomposable object of \mathcal{H} is isomorphic to some B_w .
- 4. The map $b_s \mapsto [s]$ for $s \in S$ induces a $\mathbb{Z}[v^{\pm 1}]$ -algebra isomorphism

$$c: \mathbf{H} \to [\mathcal{H}]_{\oplus}$$
 (11.1)

5. (Soergel Hom formula) For any two objects X, Y of \mathcal{H} , let $x, y \in \mathcal{H}$ be the elements for which c(x) = [X] and c(y) = [Y]. Then the graded Hom space \mathcal{H} is free as a left graded R-module with graded rank (x, y).

Theorem 11.1 (Soergel categorification theorem).

- 1. For each reduced expression \underline{w} the object $\underline{w} \in \mathcal{H}$ has a unique indecomposable direct summand $B_{\underline{w}}$ which does not occur as a direct summand in any shorter expression.
- 2. Let $w \in W$. If \underline{w} and \underline{w}' are reduced expressions for w, then $B_{\underline{w}}$ and $B_{\underline{w}'}$ are isomorphic. We denote the isomorphism class of $B_{\underline{w}}$ by B_w .
- 3. Up to shift, any indecomposable object of \mathcal{H} is isomorphic to some B_w .
- 4. The map $b_s \mapsto [s]$ for $s \in S$ induces a $\mathbb{Z}[v^{\pm 1}]$ -algebra isomorphism

$$c: \mathbf{H} \to [\mathcal{H}]_{\oplus}$$
 (11.1)

5. (Soergel Hom formula) For any two objects X, Y of \mathcal{H} , let $x, y \in H$ be the elements for which c(x) = [X] and c(y) = [Y]. Then the graded Hom space $Hom_{\mathcal{H}}^{\bullet}(X, Y)$ is free as a left graded R-module with graded rank (x, y).

Theorem 5.24 (Soergel's Categorification Theorem [167]). Under the technical assumptions to be discussed in Sect. 5.6, we have the following results.

1. There is a $\mathbb{Z}[v^{\pm 1}]$ -algebra homomorphism

$$c: \mathbf{H} \to [\mathbb{S}\mathbf{Bim}]_{\oplus} \tag{5.27}$$

sending $b_s \mapsto [B_s]$ for all $s \in S$.

2. There is a bijection between W and the set of indecomposable objects of SBim up to shift and isomorphism:

$$W \stackrel{1:1}{\longleftrightarrow} \{ indec. \ objects \ in \ \mathbb{S}Bim \}/\simeq, (1)$$

$$w \longleftrightarrow B_w. \tag{5.28}$$

The indecomposable object B_w appears as a direct summand of the Bott–Samelson bimodule $BS(\underline{w})$ for a reduced expression of w. Moreover, all other summands of BS(w) are shifts of B_x for x < w in the Bruhat order.

3. The character function $ch = ch_{\Delta}$ defined above descends to a $\mathbb{Z}[v^{\pm 1}]$ -module homomorphism

$$ch: [SBim]_{\oplus} \to H \tag{5.29}$$

which is the inverse to c. Thus, both are isomorphisms.

Theorem 5.27 (Soergel Hom formula [167]). For any two Soergel bimodules B, B', the graded Hom space $\operatorname{Hom}_{\operatorname{SBim}}^{\bullet}(B, B')$ is free as a left graded R-module with graded rank $(\operatorname{ch}(B), \operatorname{ch}(B'))$:

$$\underline{\operatorname{rk}}\operatorname{Hom}_{\operatorname{\mathbb{S}Bim}}^{\bullet}(B,B') = (\operatorname{ch}(B),\operatorname{ch}(B')). \tag{5.30}$$

Here, (-,-) denotes the standard form on H (see Definition 3.13), and \underline{rk} denotes the graded rank (see the end of Sect. 4.1). It is also free as a right graded R-module with the same graded rank.