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Exercises 2

1. Diagram algebras andH-reduction
Recall the arguably most important diagram monoids:

Fix some field K. In all cases, the respective algebras are obtained by evaluating floating components
to a fixed � ∈ K. (If that doesn’t make sense to you, then I have messed up: my bad...)
a) Classify the simple modules for your favorite(s) of these diagram algebras.
b) (’) If you know the quantum versions of these algebras, such as the BMW algebra, then try those

as well.

2. Finite fun with dihedral groups – classical
Let ∅ denote the unit and let Dn = ⟨1, 2|12 = 22 = (12)n = ∅⟩ be the dihedral group of the n gon.

D4 ↭

a) Use e.g. the Magma online calculator (see below) to guess the classification of simpleDn-modules
over ℂ. You can use the code

n:=5;
CharacterTable(DihedralGroup(n))

n = 4∶ , n = 5∶

and vary n.
b) Show that your guessed classification is true.
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c) (*) What happens for general fields?

3. Infinite fun with dihedral groups – à la KL
Retain the notation from Exercise 2. For a field K consider the group algebra S = K[D∞] ofthe infinite dihedral group D∞ = ⟨1, 2|12 = 22 = ∅⟩. Every element of D∞ has a unique reduced

expression. We write k, 1, 2 and k, 2, 1 for the reduced expressions…12 and…21 in k symbols.
The algebra S has a KL basis {bw|w ∈ D∞} (whose precise definition does not matter) with identity

b∅. Set b0,a,b = 0. The nonidentity multiplication rules are given by the Clebsch–Gordan formula:
bk,1,2bj,1,2 =

{2b
|k−j|+1,1,2 +⋯ + 2b

|k+j|−1,1,2 j,1,2=2. . . 12,
b
|k−j|,1,2 + 2b

|k−j|+2,1,2 +⋯ + 2b
|k+j|−2,1,2 + b|k+j|,1,2 j,1,2=1. . . 12.

There are also similar formulas with bj,2,1 on the right or bk,1,2 on the left.
For example:

b1212b21212 = 2b12 + 2b1212 + 2b121212 + 2b12121212,
b1212b121212 = b12 + 2b1212 + 2b121212 + 2b12121212 + b1212121212.

a) Compute the cell structure of S with respect to the KL basis {bw|w ∈ D∞} for char(K) ≠ 2. Skip
the identification of the nontrivial S for now.

b) (’) Compare the nontrivial S of S to the Grothendieck algebra of complex finite dimensional
SO3(ℂ)-representations.c) What happens in characteristic two?

4. Finite fun with dihedral groups – à la KL
Retain the notation from Exercise 3. Let S = Dn = ⟨1, 2|12 = 22 = (12)n = ∅⟩ be the dihedral

group of the n gon. The longest element is w0 = n, 1, 2 = n, 2, 1.
With respect to the KL basis and its multiplication rules, the only change compare to D∞ is that

expressions of the form (here d > 0)
bn−d,1,2 + bn+d,1,2⟼2bw0

, bn−d,2,1 + bn+d,2,1⟼2bw0
.

are replaced as indicated. This is the truncated Clebsch–Gordan formula.
For example, for n = 6 one gets:

b1212b21212 = 2b12 + 2b1212 + 2b121212 + 2b12121212 = 2b12 + 6b121212,

b1212b121212 = b12 + 2b1212 + 2b121212 + 2b12121212 + b1212121212 = 8b121212.

a) Compute the cell structure of S with respect to the KL basis {bw|w ∈ Dn} for K = ℂ and odd n.
Skip the identification of the nontrivial S for now.

b) (’) In Exercise 3 we have seen that the representation theory of the infinite dihedral group for the
middle cell is controlled by SO3(ℂ). Show that the same is true in finite type when working with
an appropriate semisimplification of SO3(ℂ)-representations.c) (*) What are the nontrivial S explicitly?

d) What is the difference between odd and even n?
e) (*) What happens over general fields?

∙ There might be typos on the exercise sheets, my bad. Be prepared.
∙ Star exercises are a bit trickier; prime exercises use notions I haven’t explained.
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Exercises - hints and remarks 2

SageMath online calculator https://sagecell.sagemath.org/ with the relevant material sum-
marized on

https://doc.sagemath.org/html/en/thematic_tutorials/lie/weyl_character_ring.html
Magma online calculator http://magma.maths.usyd.edu.au/calc/

Hints for Exercise 2
The one dimensional representations are easy to construct. For the two dimensional representations use

1⟼
(

1 0
0 −1

)

, 2⟼
(

cos(2�k∕n) − sin(2�k∕n)
− sin(2�k∕n) − cos(2�k∕n)

)

.

Via easy calculations (seriously: these are 2x2 matrices!) one verifies: The matrices satisfy the relations
of Dn and have no common eigenvector, so the associated representations are simple. They are also
nonconjugate for k ∈ {1,… , ⌊ n−1

2
⌋}. Finally, the sum of the squares of their dimensions is 2n, so we

are done.
In general, Dn ≅ ℤ∕nℤ⋊ ℤ∕2ℤ, and one can use 12 and 1 as the generators of the two groups in

this semidirect product. Now induce from those two groups and hope for the best.

Hints for Exercise 3
Unless the characteristic of K is two, the picture should look like

b1, b121,… b12, b1212,…
b21, b2121,… b2, b212,…

b∅

m
∅

S ≅s K[ℤ]

S ≅ K

The Grothendieck algebra (abelian or additive, that does not make a difference) of SO3(ℂ) can becomputed via the SageMath online calculator, see above, with the code
A=WeylCharacterRing(A1,style=coroots);
k=5;
j=4;
A(2*k,0)*A(2*j,0)

You need to vary k and j, and identify b121 with A(2) = A(2, 0) up to scaling. Neither b121 nor A(2)satisfy any polynomial relation, but both generate the respective algebras.

Hints for Exercise 4
Unless the characteristic of K is nonzero and small, the picture for n being odd should look like

n odd∶
bw0

b1, b121,… b12, b1212,…
b21, b2121,… b2, b212,…

b∅

m

∅

w0

S ≅s K[ℤ∕
n−1
2
ℤ]

S ≅ K

S ≅ K

That the diagonal S have pseudo idempotents is clear by b1b1 = 2b1. For the off-diagonal elements
let us take n = 7 and b = b12 − b1212 + b121212. Then the multiplication table
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b12 −b1212 b121212
b12 2b12 + b1212 −b12 − 2b1212 − b121212 b1212 + b121212

−b1212 −b12 − 2b1212 − b121212 2b12 + 2b1212 + b121212 −b12 − b1212
b121212 b1212 + b121212 −b12 − b1212 b12

verifies that b2 = b. The general case is similar. (Note that b would be an infinite alternating sum for
n = ∞, and that is why the off-diagonal S do not have pseudo idempotents in the infinite case.)
The isomorphism S ≅s K[ℤ∕

n−1
2
ℤ] for nonsilly K can be verified as follows. Let U 3

k (X) be the
(Chebyshev-like multiplication by quantum three) polynomial defined via U 3

0 (X) = 1, U 3
1 (X) = X and

U 3
k (X) = (X − 1)U 3

k−1(X) − U 3
k−2(X).

This polynomial is the defining polynomial for SO3(ℂ) in the sense that U 3
k (X) corresponds to the

highest weight summand in the tensor product (X = ℂ3)⊗k. Here is some SageMath code:
A=WeylCharacterRing(A1,style=coroots);
gen=A(2,0);
k=7;
def U(n,x):
if n == 0:
return 1
elif n == 1:
return x
else:
return (x-1) * U(n-1,x) - U(n-2,x)
print(U(k,gen))

Now U 3
m(b121) = 0 for m = n−1

2
, so S ≅s K[X]∕(U 3

m(X)). Since U 3
m(X) has distinct roots, we can then

rescale K[X]∕(U 3
m(X)) to K[X]∕(Xm − 1) ≅ K[ℤ∕mℤ].

That was the case of SO3(ℂ), so you need to argue why this implies the same for the KL basis of the
finite dihedral group.
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