Exercises 2

1. Diagram algebras and *H*-reduction

Recall the arguably most important diagram monoids:

Fix some field \mathbb{K} . In all cases, the respective algebras are obtained by evaluating floating components to a fixed $\delta \in \mathbb{K}$. (If that doesn't make sense to you, then I have messed up: my bad...)

- a) Classify the simple modules for your favorite(s) of these diagram algebras.
- b) (') If you know the quantum versions of these algebras, such as the BMW algebra, then try those as well.

2. Finite fun with dihedral groups – classical

Let \emptyset denote the unit and let $D_n = \langle 1, 2 | 1^2 = 2^2 = (12)^n = \emptyset \rangle$ be the dihedral group of the *n* gon.

a) Use *e.g.* the Magma online calculator (see below) to guess the classification of simple D_n -modules over \mathbb{C} . You can use the code

n:=5; CharacterTable(DihedralGroup(n))

	Class		1	2	3	4	5		Class		1	2	3	
	Size		1	1	2	2	2		Size		1	5	2	
	0rder	1	1	2	2	2	4		0rder		1	2	5	
n = 4:	p =	2	1	1	1	1	2		p =	2	1	1	4	
								, n = 3.	p =	5	1	2	1	
	X.1	+	1	1	1	1	1							
	X.2	+	1	1	-1	1	-1		X.1	+	1	1	1	
	Х.З	+	1	1	1	-1	-1		X.2	+	1	- 1	1	
	X.4	+	1	1	-1	-1	1		Х.З	+	2	0	Z1	2
	X.5	+	2	-2	0	0	0		X.4	+	2	0	Z1#2	

and vary *n*.

b) Show that your guessed classification is true.

c) (*) What happens for general fields?

3. Infinite fun with dihedral groups – à la KL

Retain the notation from Exercise 2. For a field K consider the group algebra $S = \mathbb{K}[D_{\infty}]$ of the infinite dihedral group $D_{\infty} = \langle 1, 2 | 1^2 = 2^2 = \emptyset \rangle$. Every element of D_{∞} has a unique reduced expression. We write k, 1, 2 and k, 2, 1 for the reduced expressions ... 12 and ... 21 in k symbols.

The algebra *S* has a KL basis $\{b_w | w \in D_{\infty}\}$ (whose precise definition does not matter) with identity b_{\emptyset} . Set $b_{0,a,b} = 0$. The nonidentity multiplication rules are given by the Clebsch–Gordan formula:

$$b_{k,1,2}b_{j,1,2} = \begin{cases} 2b_{|k-j|+1,1,2} + \dots + 2b_{|k+j|-1,1,2} & j,1,2=2\dots 12, \\ b_{|k-j|,1,2} + 2b_{|k-j|+2,1,2} + \dots + 2b_{|k+j|-2,1,2} + b_{|k+j|,1,2} & j,1,2=1\dots 12. \end{cases}$$

There are also similar formulas with $b_{j,2,1}$ on the right or $b_{k,1,2}$ on the left.

For example:

$$b_{1212}b_{21212} = 2b_{12} + 2b_{1212} + 2b_{121212} + 2b_{12121212},$$

$$b_{1212}b_{121212} = b_{12} + 2b_{1212} + 2b_{121212} + 2b_{12121212} + b_{1212121212},$$

- a) Compute the cell structure of S with respect to the KL basis $\{b_w | w \in D_{\infty}\}$ for char(\mathbb{K}) $\neq 2$. Skip the identification of the nontrivial $S_{\mathcal{H}}$ for now.
- b) (') Compare the nontrivial $S_{\mathcal{H}}$ of S to the Grothendieck algebra of complex finite dimensional $SO_3(\mathbb{C})$ -representations.
- c) What happens in characteristic two?

4. Finite fun with dihedral groups – à la KL

Retain the notation from Exercise 3. Let $S = D_n = \langle 1, 2 | 1^2 = 2^2 = (12)^n = \emptyset \rangle$ be the dihedral group of the *n* gon. The longest element is $w_0 = n, 1, 2 = n, 2, 1$.

With respect to the KL basis and its multiplication rules, the only change compare to D_{∞} is that expressions of the form (here d > 0)

$$b_{n-d,1,2}+b_{n+d,1,2}\longmapsto 2b_{w_0}, \quad b_{n-d,2,1}+b_{n+d,2,1}\longmapsto 2b_{w_0}.$$

are replaced as indicated. This is the truncated Clebsch–Gordan formula.

For example, for n = 6 one gets:

$$b_{1212}b_{21212} = 2b_{12} + 2b_{1212} + 2b_{12122} + 2b_{121212} = 2b_{12} + 6b_{121212},$$

$$b_{1212}b_{121212} = b_{12} + 2b_{1212} + 2b_{121212} + 2b_{12121212} + b_{1212121212} = 8b_{12121212}.$$

- a) Compute the cell structure of *S* with respect to the KL basis $\{b_w | w \in D_n\}$ for $\mathbb{K} = \mathbb{C}$ and odd *n*. Skip the identification of the nontrivial $S_{\mathcal{H}}$ for now.
- b) (') In Exercise 3 we have seen that the representation theory of the infinite dihedral group for the middle cell is controlled by $SO_3(\mathbb{C})$. Show that the same is true in finite type when working with an appropriate semisimplification of $SO_3(\mathbb{C})$ -representations.
- c) (*) What are the nontrivial $S_{\mathcal{H}}$ explicitly?
- d) What is the difference between odd and even *n*?
- e) (*) What happens over general fields?
 - There might be typos on the exercise sheets, my bad. Be prepared.
 - Star exercises are a bit trickier; prime exercises use notions I haven't explained.

Exercises - hints and remarks 2

SageMath online calculator https://sagecell.sagemath.org/ with the relevant material summarized on

https://doc.sagemath.org/html/en/thematic_tutorials/lie/weyl_character_ring.html
Magma online calculator http://magma.maths.usyd.edu.au/calc/

Hints for Exercise 2

The one dimensional representations are easy to construct. For the two dimensional representations use

$$1 \longmapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad 2 \longmapsto \begin{pmatrix} \cos(2\pi k/n) & -\sin(2\pi k/n) \\ -\sin(2\pi k/n) & -\cos(2\pi k/n) \end{pmatrix}.$$

Via easy calculations (seriously: these are 2x2 matrices!) one verifies: The matrices satisfy the relations of D_n and have no common eigenvector, so the associated representations are simple. They are also nonconjugate for $k \in \{1, ..., \lfloor \frac{n-1}{2} \rfloor\}$. Finally, the sum of the squares of their dimensions is 2n, so we are done.

In general, $D_n \cong \mathbb{Z}/n\mathbb{Z} \rtimes \mathbb{Z}/2\mathbb{Z}$, and one can use 12 and 1 as the generators of the two groups in this semidirect product. Now induce from those two groups and hope for the best.

Hints for Exercise 3

Unless the characteristic of K is two, the picture should look like

$$\begin{aligned} \mathcal{J}_m & \begin{array}{ccc} b_1, b_{121}, \dots & b_{12}, b_{1212}, \dots \\ b_{21}, b_{2121}, \dots & b_2, b_{212}, \dots \end{array} & \mathcal{S}_{\mathcal{H}} \cong_s \mathbb{K}[\mathbb{Z}] \\ \mathcal{J}_{\emptyset} & \begin{array}{ccc} b_{\emptyset} & \mathcal{S}_{\mathcal{H}} \cong \mathbb{K} \end{aligned}$$

The Grothendieck algebra (abelian or additive, that does not make a difference) of $SO_3(\mathbb{C})$ can be computed via the SageMath online calculator, see above, with the code

You need to vary k and j, and identify b_{121} with A(2) = A(2,0) up to scaling. Neither b_{121} nor A(2) satisfy any polynomial relation, but both generate the respective algebras.

Hints for Exercise 4

Unless the characteristic of \mathbb{K} is nonzero and small, the picture for *n* being odd should look like

$$J_{w_0} \qquad b_{w_0} \qquad S_{\mathcal{H}} \cong \mathbb{K}$$

$$n \text{ odd}: J_m \qquad b_1, b_{121}, \dots \qquad b_{12}, b_{1212}, \dots \qquad S_{\mathcal{H}} \cong_s \mathbb{K}[\mathbb{Z}/\frac{n-1}{2}\mathbb{Z}]$$

$$J_{\emptyset} \qquad b_{\emptyset} \qquad S_{\mathcal{H}} \cong \mathbb{K}$$

That the diagonal $S_{\mathcal{H}}$ have pseudo idempotents is clear by $b_1b_1 = 2b_1$. For the off-diagonal elements let us take n = 7 and $b = b_{12} - b_{1212} + b_{121212}$. Then the multiplication table

	<i>b</i> ₁₂	$-b_{1212}$	<i>b</i> ₁₂₁₂₁₂
<i>b</i> ₁₂	$2b_{12} + b_{1212}$	$-b_{12} - 2b_{1212} - b_{121212}$	$b_{1212} + b_{121212}$
$-b_{1212}$	$-b_{12} - 2b_{1212} - b_{121212}$	$2b_{12} + 2b_{1212} + b_{121212}$	$-b_{12} - b_{1212}$
<i>b</i> ₁₂₁₂₁₂	$b_{1212} + b_{121212}$	$-b_{12} - b_{1212}$	<i>b</i> ₁₂

verifies that $b^2 = b$. The general case is similar. (Note that *b* would be an infinite alternating sum for $n = \infty$, and that is why the off-diagonal $S_{\mathcal{H}}$ do not have pseudo idempotents in the infinite case.)

The isomorphism $S_{\mathcal{H}} \cong_s \mathbb{K}[\mathbb{Z}/\frac{n-1}{2}\mathbb{Z}]$ for nonsilly \mathbb{K} can be verified as follows. Let $U_k^3(X)$ be the (Chebyshev-like multiplication by quantum three) polynomial defined via $U_0^3(X) = 1$, $U_1^3(X) = X$ and

$$U_k^3(X) = (X-1)U_{k-1}^3(X) - U_{k-2}^3(X).$$

This polynomial is the defining polynomial for $SO_3(\mathbb{C})$ in the sense that $U_k^3(X)$ corresponds to the highest weight summand in the tensor product $(X = \mathbb{C}^3)^{\otimes k}$. Here is some SageMath code:

```
A=WeylCharacterRing(A1,style=coroots);
gen=A(2,0);
k=7;
def U(n,x):
if n == 0:
return 1
elif n == 1:
return x
else:
return (x-1) * U(n-1,x) - U(n-2,x)
print(U(k,gen))
```

Now $U_m^3(b_{121}) = 0$ for $m = \frac{n-1}{2}$, so $S_{\mathcal{H}} \cong_s \mathbb{K}[X]/(U_m^3(X))$. Since $U_m^3(X)$ has distinct roots, we can then rescale $\mathbb{K}[X]/(U_m^3(X))$ to $\mathbb{K}[X]/(X^m - 1) \cong \mathbb{K}[\mathbb{Z}/m\mathbb{Z}]$.

That was the case of $SO_3(\mathbb{C})$, so you need to argue why this implies the same for the KL basis of the finite dihedral group.