Representation theory of algebras

Or: Cell theory for algebras

Daniel Tubbenhauer

Part 1: Reps of monoids; Part 3: Reps of monoidal cats

Where do we want to go?

► Green, Clifford, Munn, Ponizovskii ~1940++ + many others Representation theory of (finite) monoids

Goal Find some categorical analog

Where do we want to go?

► Green, Clifford, Munn, Ponizovskii ~1940++ + many others Representation theory of (finite) monoids

Goal Find some categorical analog

Where do we want to go?

- ► Today: off track Interlude on *H*-reduction for algebras
- ▶ We will discover the *H*-reduction for algebras in real time!
- Examples we discuss The good, the ugly and the bad

Cell theory for algebras

Representation theory of algebras

The good

Connect 4 points at the bottom with 4 points at the top, potentially turning back:

$$\left\{\{1,-4\},\{2,4\},\{3,-2\},\{-1,-3\}\right\} \longleftrightarrow$$

We just invented the Brauer monoid \textit{Br}_4 on $\{1,...,4\}\cup\{-1,...,-4\}$

Fix some field \mathbb{K} and $\delta \in \mathbb{K}$, evaluate circles to $\delta \Rightarrow$ Brauer algebra $Br_4(\delta)$ The Brauer monoid is the non-linear version of $Br_4(1)$

The good

Clifford, Munn, Ponizovskii ~1940++ H-reduction There is a one-to-one correspondence

$$\left\{ \begin{array}{c} \mathsf{simples with} \\ \mathsf{apex } \mathcal{J}(e) \end{array} \right\} \xleftarrow{\mathsf{one-to-one}} \left\{ \begin{array}{c} \mathsf{simples of (any)} \\ \mathcal{H}(e) \subset \mathcal{J}(e) \end{array} \right\}$$

Reps of monoids are controlled by $\mathcal{H}(e)$ -cells

• $Br_n(\delta)$ is not a monoid \Rightarrow *H*-reduction does not apply

► My favorite strategy Ignore problems and just go for it

Reps of monoids are controlled by $\mathcal{H}(e)$ -cells

- $Br_n(\delta)$ is not a monoid \Rightarrow *H*-reduction does not apply
- ► My favorite strategy Ignore problems and just go for it

The good

Reps of monoids are controlled by $\mathcal{H}(e)$ -cells

- $Br_n(\delta)$ is not a monoid \Rightarrow *H*-reduction does not apply
- ► My favorite strategy Ignore problems and just go for it

The good

Symmetric groups S_n of order n! are the symmetry groups of (n-1) simplices

► Frobenius ~1895++ Their (complex) rep theory is well understood

• They are groups \Rightarrow Green's cell theory is boring

	Cla	ss	T.	1	2	3	4	5			c١	ass	I.	1	2	3	4	5	6	7
<i>S</i> ₄ :	Size Order		i.	1	3 2	6 2	8 3	6			Si	ze		1	10	15	20	30	24	20
				T				4			0r	der	1	1	2	2	3	4	5	6
				1									·							
											р	=	2	1	1	1	4	3	6	4
	p =	=	2	1	1	1	4	2			р	=	3	1	2	3	1	5	6	2
	r		2	1	-	2		-		-	р	=	5	1	2	3	4	5	1	7
	р -	-	5	T	2	5	Т	5	, C	5 :										
											х.	1	+	1	1	1	1	1	1	1
	Χ.1		+	1	1	1	1	1			х.	2	+	1	-1	1	1	-1	1	-1
	Х.2		+	1	1	-1	1	-1			х.	3	+	4	- 2	0	1	0	-1	1
	X.3 X.4 X.5		+ + +	2	2 2 3 - 1	0	-1	0 1			Х.	4	+	4	2	0	1	0	-1	-1
				2		-1	0				Х.	5	+	5	1	1	-1	-1	0	1
				5							х.	6	+	5	-1	1	-1	1	0	-1
				3	-1	1	0	-1			х.	7	+	6	0	-2	0	0	1	0

- ► Kazhdan-Lusztig (KL) ~1979, Lusztig ~1984, folklore Use a J-reduction approach
- Lusztig's approach gives an *H*-reduction way of classifying simple S_n reps
- Aside The character table of S_n is integral \Rightarrow categorification!

The (linear) cell orders and equivalences for fixed basis *B*:

$$x \leq_{L} y \Leftrightarrow \exists z : y \in zx$$
$$x \leq_{R} y \Leftrightarrow \exists z' : y \in xz'$$
$$x \leq_{LR} y \Leftrightarrow \exists z, z' : y \in zxz'$$
$$x \sim_{L} y \Leftrightarrow (x \leq_{L} y) \land (y \leq_{L} x)$$
$$x \sim_{R} y \Leftrightarrow (x \leq_{R} y) \land (y \leq_{R} x)$$
$$x \sim_{LR} y \Leftrightarrow (x \leq_{LR} y) \land (y \leq_{LR} x)$$

- ► *H*-cells = intersections of left and right cells
 - Slogan Cells measure information loss

The (linear) cell orders and equivalences for fixed basis *B*:

$$x \leq_{L} y \Leftrightarrow \exists z : y \in zx$$

$$x \leq_{R} y \Leftrightarrow \exists z' : y \in xz'$$

$$x \leq_{LR} y \Leftrightarrow \exists z, z' : y \in zxz'$$

$$x \sim_{L} y \Leftrightarrow (x \leq_{L} y) \land (y \leq_{L} x)$$

$$x \sim_{R} y \Leftrightarrow (x \leq_{R} y) \land (y \leq_{R} x)$$

$$x \sim_{LR} y \Leftrightarrow (x \leq_{LR} y) \land (y \leq_{LR} x)$$

- H-cells = intersections of left and right cells
 - Slogan Cells measure information loss

Left, right and two-sided cells (a.k.a. L, R and J-cells): equivalence classes

- H-cells = intersections of left and right cells
 - Slogan Cells measure information loss

The (linear) cell orders and equivalences for fixed basis *B*:

$$x \leq_{L} y \Leftrightarrow \exists z : y \in zx$$
$$x \leq_{R} y \Leftrightarrow \exists z' : y \in xz'$$
$$x \leq_{LR} y \Leftrightarrow \exists z, z' : y \in zxz'$$
$$x \sim_{L} y \Leftrightarrow (x \leq_{L} y) \land (y \leq_{L} x)$$
$$x \sim_{R} y \Leftrightarrow (x \leq_{L} y) \land (y \leq_{R} x)$$
$$x \sim_{LR} y \Leftrightarrow (x \leq_{LR} y) \land (y \leq_{LR} x)$$

- ▶ Get algebras $S_{\mathcal{J}}$, $S_{\mathcal{H}}$ by killing higher order terms
- ▶ Pseudo idempotents make $S_{\mathcal{J}}$, $S_{\mathcal{H}}$ unital

Example (cells for $S_2 = \langle 1 \rangle$ and $S_3 = \langle 1, 2 \rangle$ over \mathbb{C} , pseudo idempotent cells colored) \mathcal{J}_{W_0} b_1 $S_{\mathcal{H}} \cong_{s} \mathbb{C}$ b_{\emptyset} $S_{\mathcal{H}} \cong \mathbb{C}$ \mathcal{J}_{\emptyset} \mathcal{J}_{W_0} $S_{\mathcal{H}} \cong_{\varsigma} \mathbb{C}$ b_{121} $b_1 \ b_{12} \ b_{21} \ b_2$ \mathcal{J}_m $S_{\mathcal{H}} \cong_{s} \mathbb{C}$ \mathcal{J}_{\emptyset} $S_{\mathcal{H}} \cong \mathbb{C}$ b_{\emptyset} For B=KL basis b_w , \cong_s = up to scaling (more on the exercise sheets)

▶ Pseudo idempotents make $S_{\mathcal{J}}$, $S_{\mathcal{H}}$ unital

Example (cells for $S_2 = \langle 1 \rangle$ and $S_3 = \langle 1, 2 \rangle$ over $\mathbb{Z}/2\mathbb{Z}$, pseudo idempotent cells colored) \mathcal{J}_{W_0} b1 b_{\emptyset} \mathcal{J}_{\emptyset} $S_{\mathcal{H}} \cong \mathbb{K}$ \mathcal{J}_{W_0} b_{121} *b*₁₂ *b*₂ b_1 b_{21} \mathcal{J}_m $S_{\mathcal{H}} \cong_{s} \mathbb{K}$ Ja bø $S_{\mathcal{H}} \cong \mathbb{K}$ For B = KL basis b_w , $\cong_s = up$ to scaling (more on the exercise sheets)

▶ Pseudo idempotents make $S_{\mathcal{J}}$, $S_{\mathcal{H}}$ unital

Theorem (KL \sim 1979, Lusztig \sim 1984, folklore)

$$x \sim_L y \Leftrightarrow (x \leq_L y) \land (y \leq_L x)$$

 $x \sim_R y \Leftrightarrow (x \leq_R y) \land (y \leq_R x)$
 $x \sim_{LR} y \Leftrightarrow (x \leq_{LR} y) \land (y \leq_{LR} x)$

- Get algebras $S_{\mathcal{J}}$, $S_{\mathcal{H}}$ by killing higher order terms
- ▶ Pseudo idempotents make $S_{\mathcal{J}}$, $S_{\mathcal{H}}$ unital

▶ Pseudo idempotents make $S_{\mathcal{J}}$, $S_{\mathcal{H}}$ unital

$$x \sim_L y \Leftrightarrow (x \leq_L y) \land (y \leq_L x)$$

$$x \sim_L y \Leftrightarrow (x \leq_L y) \land (y \leq_L x)$$

• Dihedral groups D_n of order 2n are the symmetry groups of n gons

► Frobenius ~1895++ Their (complex) rep theory is well understood

• They are groups \Rightarrow Green's cell theory is boring

Class 1 2 3 4 5 Class 1 2 3 4 1 5 Size 1 1 2 2 2 Size 2 2 5 0rder 1 2 2 2 4 0rder 1 2 5 3 p 2 1 1 1 1 2 р 2 1 1 4 = *D*₄ : D_5 : , 5 1 2 1 1 p X.1 + 1 1 1 1 1 X.2 1 1 - 1 1 -1 X.1 1 1 1 1 + + X.3 X.2 1 1 1 -1 -1 1 -1 1 1 + + X.4 1 1 -1 -1 1 X.3 + 2 0 Z1 Z1#2 + X.5 2 - 2 0 X.4 2 0 Z1#2 71 + 00 +

► Kazhdan-Lusztig (KL) ~1979, Lusztig ~1984, folklore Use a *J*-reduction approach

• Lusztig's approach almost gives an *H*-reduction way of classifying simple D_n reps

Aside The character table of D_n is not integral \Rightarrow looks bad for categorification

Cell theory for algebras

Representation theory of algebras

The (linear) cell orders and equivalences for a fixed basis *B*:

$$x \leq_{L} y \Leftrightarrow \exists z : y \in zx$$
$$x \leq_{R} y \Leftrightarrow \exists z' : y \in xz'$$
$$x \leq_{LR} y \Leftrightarrow \exists z, z' : y \in zxz'$$
$$x \sim_{L} y \Leftrightarrow (x \leq_{L} y) \land (y \leq_{L} x)$$
$$x \sim_{R} y \Leftrightarrow (x \leq_{R} y) \land (y \leq_{R} x)$$
$$x \sim_{LR} y \Leftrightarrow (x \leq_{LR} y) \land (y \leq_{LR} x)$$

The (linear) cell orders and equivalences for fixed basis *B*:

$$x \leq_{L} y \Leftrightarrow \exists z : y \in zx$$

$$x \leq_{R} y \Leftrightarrow \exists z' : y \in xz'$$

$$x \leq_{LR} y \Leftrightarrow \exists z, z' : y \in zxz'$$

$$x \sim_{L} y \Leftrightarrow (x \leq_{L} y) \land (y \leq_{L} x)$$

$$x \sim_{R} y \Leftrightarrow (x \leq_{R} y) \land (y \leq_{R} x)$$

$$x \sim_{LR} y \Leftrightarrow (x \leq_{LR} y) \land (y \leq_{LR} x)$$

- ▶ Get algebras $S_{\mathcal{J}}$, $S_{\mathcal{H}}$ by killing higher order terms
- ▶ Pseudo idempotents make $S_{\mathcal{J}}$, $S_{\mathcal{H}}$ unital

The (linear) cell orders and equivalences for fixed basis *B*:

- Get algebras $S_{\mathcal{J}}$, $S_{\mathcal{H}}$ by killing higher order terms
- Pseudo idempotents make $S_{\mathcal{J}}$, $S_{\mathcal{H}}$ unital

- Get algebras $S_{\mathcal{J}}$, $S_{\mathcal{H}}$ by killing higher order terms
- ▶ Pseudo idempotents make $S_{\mathcal{J}}$, $S_{\mathcal{H}}$ unital

J-reduction often doesn't get you far

A middle cell in type E_8 where dim $S_{\mathcal{J}} = 202671840$ and zillions of associated simples:

	7 _{420,420}	$5_{756,420}$	$6_{1596,420}$	${f 5}_{168,420}$	$3_{378,420}$	$4_{1092,420}$	$2_{70,420}$	
	$5_{420,756}$	$8_{756,756}$	$7_{1596,756}$	$\boldsymbol{7}_{168,756}$	$8_{378,756}$	$8_{1092,756}$	$7_{70,756}$	
	$6_{420,1596}$	$7_{756,1596}$	$12_{1596,1596}$	$8_{168,1596}$	$9_{378,1596}$	$13_{1092,1596}$	$11_{70,1596}$	
\mathcal{J}_{23}	$5_{420,168}$	$7_{756,168}$	$8_{1596,168}$	$12_{168,168}$	$7_{378,168}$	$12_{1092,168}$	$12_{70,168}$	
	$3_{420,378}$	$8_{756,378}$	$9_{1596,378}$	${f 7}_{168,378}$	$15_{378,378}$	$14_{1092,378}$	$19_{70,378}$	
	$4_{420,1092}$	$8_{756,1092}$	$13_{1596,1092}$	$12_{168,1092}$	$14_{378,1092}$	$21_{1092,1092}$	$24_{70,1092}$	
	$2_{420,70}$	$7_{756,70}$	$11_{1596,70}$	$12_{168,70}$	$19_{378,70}$	$24_{1092,70}$	$39_{70,70}$	
		•			•			

 $A_{k,l} = H$ -cells of size A arranged in a $(k \times l)$ -matrix

- Get algebras $S_{\mathcal{J}}$, $S_{\mathcal{H}}$ by killing higher order terms
- ▶ Pseudo idempotents make $S_{\mathcal{J}}$, $S_{\mathcal{H}}$ unital

The good, the ugly and the bad – comparison

▶ For monoids all *H*-cells within one *J*-cell are of the same size

- ▶ For the good, the ugly and the odd bad the same is true
- ► For the even bad this is false

Sandwich datum:

- A partial ordered set $\Lambda = (\Lambda, \leq_{\Lambda})$
- finite sets M_{λ} (bottom) and N_{λ} (top) for all $\lambda \in \Lambda$
- an algebra \mathbb{S}_{λ} and a fixed basis B_{λ} of it for all $\lambda \in \Lambda$
- $a \mathbb{K}$ -basis { $c_{D,b,U}^{\lambda} \mid \lambda \in \Lambda, D \in M_{\lambda}, U \in N_{\lambda}, b \in B_{\lambda}$ } of A

$\mathbb{S}_{\lambda} = \mathsf{sandwiched} \ \mathsf{algebras}$

A sandwich cellular algebra A: sandwich datum + some axioms such as

$$xc_{D,b,U}^{\lambda} \equiv \sum_{S \in M_{\lambda}, a \in B} r(S, D) \cdot c_{S,a,U}^{\lambda} + \text{higher order friends}$$

 $\mathsf{Cellular} = \mathsf{all} \ \mathbb{S}_{\lambda} \cong \mathbb{K} = \mathsf{all} \ H\text{-cells are of size one}$

• $a \mathbb{K}$ -basis $\{c_{D,b,U}^{\lambda} \mid \lambda \in \Lambda, D \in M_{\lambda}, U \in N_{\lambda}, b \in B_{\lambda}\}$ of A

$\mathbb{S}_{\lambda} = \mathsf{sandwiched} \ \mathsf{algebras}$

A sandwich cellular algebra A: sandwich datum + some axioms such as

$$xc_{D,b,U}^{\lambda} \equiv \sum_{S \in M_{\lambda}, a \in B} r(S, D) \cdot c_{S,a,U}^{\lambda} + \text{higher order friends}$$

 $\mathsf{Cellular} = \mathsf{all} \ \mathbb{S}_{\lambda} \cong \mathbb{K} = \mathsf{all} \ \textit{H-cells} \ \mathsf{are} \ \mathsf{of} \ \mathsf{size} \ \mathsf{one}$

Cell theory for algebras

Representation theory of algebras

Cellular = all
$$\mathbb{S}_{\lambda} \cong \mathbb{K}$$
 = all *H*-cells are of size one

Cell theory for algebras

Representation theory of algebras

The good, the ugly and the bad – comparison

In spirit of Clifford, Munn, Ponizovskii \sim 1940++ H-reduction There is a one-to-one correspondence (under some conditions on K and S_{λ})

$$\begin{cases} \text{simples with} \\ \text{apex } \lambda \end{cases} \xleftarrow{\text{one-to-one}} \begin{cases} \text{simples of} \\ \mathbb{S}_{\lambda} \end{cases}$$

Reps are controlled by the sandwiched algebras

- ► Each simple has a unique maximal λ ∈ Λ where having a pseudo idempotent is replaced by a paring condition Apex
- ▶ In other words (smod means the category of simples):

$$S\operatorname{-smod}_{\lambda} \simeq \mathbb{S}_{\lambda}\operatorname{-smod}$$

The good, the ugly and the bad – comparison

 $S\operatorname{-smod}_{\lambda} \simeq \mathbb{S}_{\lambda}\operatorname{-smod}$

- ► Each simple has a unique maximal λ ∈ Λ where having a pseudo idempotent is replaced by a paring condition Apex
- ▶ In other words (smod means the category of simples):

 $S\operatorname{-smod}_{\lambda} \simeq \mathbb{S}_{\lambda}\operatorname{-smod}$

▶ In other words (smod means the category of simples):

 $S\operatorname{-smod}_{\lambda} \simeq \mathbb{S}_{\lambda}\operatorname{-smod}$

There is still much to do...

Thanks for your attention!