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SOME ALGEBRAIC NOTATIONS

Some algebraic notations




DEFINITION: A Z-graded vector space is a vector space M with decomposition M := @;c;M*
into subspaces M'.The M' are the graded pieces of M.

DEFINITION: A homogeneous element with degree i is an element m € M that is contained in
some M.

DEFINITION: Given a graded object M and i € Z, define M (i) with graded pieces M(iy = M.

DEFINITION: A graded submodule of M is a submodule of M which is generated by
homogeneous elements.

DEFINITION: A graded R-module M is free, if it has an R-basis that consists of homogeneous
elements of M.

Some algebraic notations



DEFINITION: A Coxeter system (W, S) is a group W and a finite set S CWV. Its geometric
representation V over R is a real vector space with basis {a;|s € S}

DEFINITIONS: The basis elements a; are called simple roots.

LEMMA: V has dimension |S| and is equipped with symmetric bilinear form (a,, a;) = — cos ml,
st

m:S X S — N U {oo} a symmetric function
mg, = 1 forall s € S.
Fors #t € S,m, = my € {2,3,...} U {0}
W = (s € S|(st)™st = id for any s, t € S with my < o0)

DEFINITION: Define an action W — V where the elements are s € S by
s(ay) = a; — 2(ag, ap)ag

Some algebraic notations



DEFINTION: LetI c S.Then the standard parabolic subgroup W; :=(I) c V.
DEFINTION: If that parabolic subgroup W; is a finite group, then [ is finitary.

DEFINTION: Let R be the symmetric algebra of V.This means that
R = Sym(V) = ®jez. , Sym' (V)

DEFINTION: The ring of W,-invariants of R, (denoted by R/) is:
RI={f€R|lw-f=fforallw e W,}

Then R® are the invariants under the entire Coxeter group.

We write RS instead of RS},

Some algebraic notations



CHEVALLEY-SHEPHARD-TODD THEOREM (CST)

Chevalley-Shephard-Todd theorem (CST)




THEOREM (Chevalley-Shephard-Todd, CST):
For I c S finitary, R! is a polynomial ring. R then is a graded free module of finite rank over R'.

The ring of invariants of a finite group is a polynomial ring
& group generated by pseudoreflections.

DEFINITION: A pseudoreflection is an invertible linear transformation g of V with finite order
and such that V9 = {v € V|gv = v} is a subspace of dimension n — 1.

CST is an algebraic foundation upon which the theory of Soergel bimodules is built.

CST is a generalization of the theory of symmetric polynomials.

Chevalley-Shephard-Todd theorem (CST)




EXAMPLE:
Let W = Sc which acts on R[xq, ..., xc].Let I = {54, 3,54}
Then we have
R! = R[zy, ..., z5| = R[x1 + x5, X1%5, X3 + X4 + X5, X3X4 + X3X5 + X4 X5, X3X4Xc ]

= R! has 5 algebraically independent generators (in different degrees)

= R! is a polynomial ring.

Chevalley-Shephard-Todd theorem (CST)



DEMAZURE OPERATOR

Demazure Operator




RECALL: s(a;) = a; — 2(ag, ap)ag, with (ag, a;) = — cosT:: :
st

LEMMA: Let (W,S).Then Vs € S, RS is generated by a and a, + (COSL) ag forallt € S\ {s}.

Mgt
Hence R = R® @ R« is a splitting of R into s-invariants and s-antiinvariants.
DEFINITION: An element is said to be s-invariant if sf = f and s-antiinvariant if sf = —f.

DEFINITION: Let s € S.The Demazure operator d; is a graded map
f—=s(f)

As

0s:R — R°(—2),f —

The s-antiinvariants are generated by a; (because R = R® @ R’ ay)
f — s(f) is divisible by a

d, is well defined.

Demazure Operator



f=s(f) .

LEMMA: The fraction is S-invariant

LEMMA: For any f € R, d(fay) = L2209 = £ 4 5(f) (1
and a0 (f) = f—s(f) ()
(1) = s(F): 05 (fay) — f = s(f) (1)
() = (1): asd5(f) = f — 05(Fars) + f V)

V) = f:f =85 (£ ) + 2 05()
= Isomorphism R = R®* @ R3(—2), f — (65 (f%) ) as(f)) with inverse given by (g,h) — g + h%.

— Demazure operator can be used to make the R®*-module splitting R into the direct sum of R® and R® - a.

Demazure Operator



DEFINITION: An expression of w € W is aword w = (54, ..., Sp,).
DEFINITION: An expression w is reduced if the length of w is n (#(w) = n)

DEFINITION: Demazure operator for w € W with reduced expression w = (s, ..., Sp,):
dy, = asl asn

LEMMA: Let s € S.

d is an R®-bimodule map

Ssods =0, and 05 0o s = — 0q

02 =0

Twisted Leibniz rule: For f, g € R,we have d.(fg) = d,(f)g + s(f)d;(g)

{1,%} is a basis for R over R*, with dual basis {%, 1}, because of (f,g)s — 9,(fg)

Met

Braid relations: s,t € S distinct with mg; < ©.Then 0,0,0; ... = 0;040; ...

Demazure Operator




PROOF OF 2.): [sods =05 and 0505 = — 05 ]

Sodg = S(as(f)) _ S(f—S(f)) _ _aiss(f —S(f)) =_s§£) _I_S(S;g)) _ f=s() _ 9,

s(as) = —ag
s(f +8) =s(f) +s(9)
s(s(N) =s(=N=-s(f)=f
3 o5 = 0,(s()) = sN=s(6P) _ sD-f _ _F=5D _ 5

A A ag

PROOF OF 3.): [82 =0 ]

2 f=s(f) f_ass(f)_s(f_ofif)) f=s(f) | s(f=s(N)
07 = 35(05(F)) = 0, (L) = == — = 2 I=D L D) g

As s Ug as

s(f=s(f) =~f +s(f)

Demazure Operator



PROPOSITION: d,,(f) = 0 & f is w-invariant (w - f = f)
EXAMPLE: Let W = St act on R[xq, ..., x5].Let | = {54, 53,54}

R' = Rlzy, 25, 23, 24, Z5] = R[x; + X3, X1 X5, X3 + X4 + X5, X3X4 + X3X5 + X4Xs5, X3X4X5]

Here: ag = x1 — X3, 5, = X3 — X3

For' Z1 = X1 +x2:

B, (x1 + x3) = B, (x7) + 05, () = L=1tn)

For' Zy = X1X9.

xX1—S2(x1) Xo—S5(x5) X1—X
s, (X1x2) = 05, (x1)x7 + 52(x1)0s,(x2) = %xz + 5, (1) = az 2= 2, +x,

+ X2—51(x3) _ x1—51(%1) X2—51(x2) — X1—X2 X2—Xq =1+ (_1) =0
Usq Usq X1—X2 X1—X2 X1—X2 X1—X2
Xo2—X1 _ 0 _ 0
So so X2—X3 X2—X3 X2—X3

For z; = x5 + x4 + xs:

653 (.X'3 + i + XS) — 653 (Xg) + 653 (X4) + 653 (xs) — x3—S3(x3) + X4—S3(x4) + x5—5s3(x5) — X3+Xx4+x5—53(x3)—s3(x4)—53(x5) ~0

X3—X4 X3—X4

Prop.

= 0,,(z;) = 0 foralli € {1,23,4,5} = [[}-, 95, = 0= R’ is

Demazure Operator

X3—X4

S-invariant

X3—X4




BOTT-SAMELSON BIMODULES

Bott-Samelson bimodules



DEFINITION: For s € S, B, is the graded R-bimodule B, := R Qs R(1)

B, belongs to R-gbim.
DEFINITION: R-gbim is the category of graded R-bimodules.

shift factor (n) for each integer n which sends M — M (n).

tensor product — @Qpr —, hence the category of graded R-bimodules is per definition a monoidal category.
LEMMA: Tensor product and grading shift commute.

For graded R-bimodules M and N and n € Z we have the following canonical identifications:
(M) ®r N = M@g(N(n)) = (M@:N) (1)
MN = M®r N

Bott-Samelson bimodules



DEFINITION: An element in B can be represented as

2i i ® 9i = 2 filsgi for some appropriate f;, g; € R
LEMMA: f|;1 = 1|;f © f is s-invariant.
1|51 has degree —1 and 1|, 1|, 1[5, -+ |5, 1 is of degree —{’(w).
B, is graded free as a left respectively right R-module and its graded rank is (v + v~1)!

DEFINITION: The Bott-Samelson bimodule corresponding to w = (sy, ..., S,,) is the graded R-
bimodule

BS(w) = Bq,Bs, ...B;, = Bs, ® B;, ® - ® Bs_
Canonical isomorphism:BS(m) =R ®ps1 R Qpgsz2 - Qpsn R (f(y))
DEFINITION: An element of BS(w) is of the form
2:/i® g ® - Qh; =2 fils,gi ls, -+ |5, hifor some fi, gi,... h; € R

Bott-Samelson bimodules




EXAMPLE: Let W = A,.

Then the BS (Slszsl) decomposes into the direct sum B ¢ s ®Bs;, = B; Bs Bs ,
Bs 5,5, = R ®zw R(3) is the submodule generated by 1Q1®1.

More generally: If W is a dihedral group generated by (s, t) and [(w') < [(w) where w' = sw,
then B;B,,» = B,,®B,,,

SOME PROPERTIES (Bott-Samelson-bimodules)
Let u, v be two expressions.Then BS(E)BS(E) = BS(@) (closed under tensor product)
fg1®RSi1gz®RSiz ®Rsingn — 91®R5i192®R5i2 ®Rsingnf for f € RV

= every Soergel bimodule is an R@Q wR-module.

Bott-Samelson bimodules




EXAMPLE: Product of two Bott-Samelson-bimodules. Using that

R = RS®RSa, = RS®RS(=2)

BsB; = RQpsR®psR = RQgs(RSBRS(—2))®gsR = Bs(1)DBs(—1).

This is analogous to the relation: b? = (v + v~1)bg, where by is an element of the Kazhdan-Lusztig-basis
LEMMA: Bott-Samelson bimodules are not closed under taking grading shifts or direct sums.

B, = R®Rs(RS€BRS(—2))(1) ~ R(1)DR(—1) = By is graded free as a left R-module (resp as a right R-
module).

LEMMA: Any Bott-Samelson bimodule is graded free of finite rank as a left respectively right R-
module.

Bott-Samelson bimodules




EXAMPLE: Consider c;; := 1®1 of degree —1 and ¢, := %(as ®1+ 1Qa) of degree 1.
— These elements form a basis of Bs as a left (or right) R-module.
LEMMA:Forany f ER,f -cs=c¢s* f
LEMMA: Forany f €ER,f : cijqg = Ciq + S(f) + ¢5 - 95(f) (Polynomial forcing relation)
PROOF:
fraa=f-1®1)
and

Cid'S(f)+Cs'as(f)=(1®1)-S(f)+%(as®1+1®as).f%(f)=(1@1).S(f)+2a5(1®1).f—S(f)

20

=1®D s(H+AD - f-ARDs(H=f-(1®D)

Bott-Samelson bimodules



SOERGEL BIMODULES

Soergel bimodules




DEFINITION: A Soergel bimodule is a finite direct sum of shifts of summands of Bott-Samelson
bimodules in BSBim (category of Bott-Samelson bimodules)

LEMMA: Soergel bimodules are closed under grading shifts.

DEFINITION: The category of Bott-Samelson bimodules BSBim is the monoidal category
(category equipped with the tensor product of R-bimodules)

DEFINITION: The category of Soergel bimodules SBim is the strictly full subcategroy of R-
gbim consisting of Soergel bimodules

Is the smallest strictly full subcategory of R-gbim containing R and B; for all s € S that is closed under tensor
product, direct sums, direct summands and shifts.

DEFINITION: SBim is strictly full if it is closed under isomorphisms.

Soergel bimodules




LEMMA: Soergel Bimodules are closed under tensor products: SBim,, &, SBim,, = SBimy,

LEMMA: For a graded left R-module M (free of finite rank), any graded summand N of M is also
graded free.

LEMMA:

Any Bott-Samelson bimodule is graded free of finite rank as a left respectively right R-module.

Any Soergel bimodule is graded free as a left respectively right R-module.

Soergel bimodules




DEFINITION: An object M of an additive category is called indecomposable if it cannot be
expressed as a direct sum M'@M"’ for nonzero subobjects M', M".

LEMMA: Suppose that M is a graded R-bimodule which is generated as an R-bimodule by a
homogeneous element m € M. This then implies that M is indecomposable.

EXAMPLE: R and B, = R Qs R(1) are indecomposable

LEMMA: The category of Soergel bimodules is an additive category such that every object is
isomorphic to a direct sum of indecomposable objects and such decomposition is unique up to
isomorphism and permutation of summands.

Soergel bimodules




EXAMPLES

Examples



Symmetric group S3, R = R[x, y, z]

s interchanges x and y:s - f(x,y,z) = f(y,x,z) 2 R’ = R[x + y,xy, Z]

r interchanges y and z:s - f(x,v,z) = f(x,z,y) 2 R" = R|x,y + z,yz|
= RS' = R[x+ vy + 2z, xy + xz + yz,xyz]

Grading: x,y and z in degree 2, x* and xy in degree 4, 3xy“z’ in degree 20.

Define the ring R shifted down by one R(1) = x is in degree 1, x? in degree 3 and 3xy?z’ in degree 19.
SOME EASY EXAMPLES:

R and B; := R Qs R(1)

B,, = B, ®x B, and B, = R ®psr R(3).

In S5, the category of Soergel bimodules the indecomposable set is {R, B, By, Bg;, Byg, Bsrs}

Examples



COMPARISON: Hecke algebra < Soergel bimodules

B, BsB,., B¢ are analogous objects to the elements by, bg,- and b g, respectively in the Hecke algebra.

The product (resp. direct sum) between Soergel bimodules as an analogue of product (resp. sum) in the Hecke
algebra.

Shifting the degree of a Soergel bimodule by one can be seen as multiplying the corresponding element in the
Hecke algebra by v.

RECALL: Hecke algebra H (S3) is free over Z[v, v~1] with basis {1, b, b,-, bsy, byg, bsrs}.

Examples



R, B and B,: distinct and indecomposable.

R is generated by the subrings R® and R" = BB, = RQgrs RQzrR(2) and B, B
= RQrr RQrsR(2)

both are generated by 1®81®1 — B and B, are not isomorphic — B, := B;B, * B,B; =: B,
B;B, and B,.B; are indecomposables
Isomorphism B;B; = B,(1)®B,(—1) = BB is clearly decomposable. (B;B; is decomposable)
Look at the possibility By, = R Qgsr R(3) = add By, to our indecomposables
generated by 1®1 in degree —3.
Isomorphism B¢B,Bs; = BB, = B, actually is in SBim.

B;Bg,s = Bsys(1)®Bs,(—1) = B,.Bg-s = Bg,¢ is not isomorphic to any grading shift of
indecomposables

List of distinct indecomposables up to grading shift is complete and is given by the set
{Rl BS' BT" BST" BT'S' BST'S}'

Examples



EXAMPLE: Category of Soergel bimodules in S5 is stable under product

If p € R,thenp —s-p € (y — x)R5,
For example if p = 3xy?z” + yz,p — s -p = 3xy?z’ + yz — 3yx*z” + xz = (y — x)(3xyz’ + z).
true because the polynomial p — s - p vanishes in the hyperplane defined by the equation y = x.

same result forr:p —r-p € (z—y)R".

Define ag := y — x and a,- := z — y. Define P,(p) = m% € R® and d,(p) = pz_s'p € R®.

as
= Then p = P,(p) + a,0,(p) = isomorphism of graded R*-bimodules R = R°@R°(—2).
BB, = R®ps RQgsR(2) = R®psR(2) ®R®psR = B.(1)®B,(~1) (& b.b, = vh, + v~1by)
BsBsrs = RQpsRQgsR(4) = Bgrs(1)®Bgr5(—1) (& bsbsys = vbg + v_lbsrs)

Same comparison for all products of elements of the set {R, B, B;, Bs, Byg, Bsys }-

Examples
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