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Let C be a generalised Cartan matrix of type Agl) or Ax:

Fix A € P™ and define Q-polynomials and x-polynomials by:

(u—v)(v—u) ifis],
u—v, if i —
Qj(u,v) = v—u, ifi«—j and ki(u) = uthiN
1, if i)
0 if =

Then Z) = @,cqr %), where Z)) is generated by
{Lliel*}u{¢, |1 <r<n}U{y|1<r<n}
with relations
o kiy(y1)Li=0, Llj=6;l, Dliceli=1 L= 15,
o v 1i =1Ly, Yry:t = Yi¥r, ¢31i = Qi,,i,+1(}/r7}/r+1)1i
o Yyt =ybrifsErr+1, by =), if [r—t|>1
° (wryr—i-l - err)li = 6/',,i,+1 1i = (}/r—l—lwr - Q/Jr)/r)]-i
o (¢r+1¢rwr+1 - ¢r¢r+1¢r)1i = 8Qi,,i,ﬂ,irﬂ (Yrv)/r+17)/r+1)1i
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© Quiver Hecke algebras and categorification

e Basis theorems for quiver Hecke algebras
o Categorification of U,(g)
o Categorification of highest weight modules

© The Brundan-Kleshchev graded isomorphism theorem
e Seminormal forms and semisimple KLR algebras
e Lifting idempotents
o Cellular algebras
© The Ariki-Brundan-Kleshchev categorification theorem
o Dual cell modules
e Graded induction and restriction
e The categorification theorem
Q Recent developments
o Consequences of the categorification theorem
o Webster diagrams and tableaux
o Content systems and seminormal forms
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Fix £ € k such that e is minimal with 14 ¢2 4 ... 4 ¢2(e=1) =
Fix integers k1, ..., k¢ such that for all i € /,
#{1<I1</l|k =i (mode)}=(h;,N)

For m € N and define the £&-quantum integer [m] = [m]¢ = 2_mj

Definition
The cyclotomic Hecke algebra of type A is the unital associative k-algebra
AN = A#N€) with generators Ty,..., To1, L1,..., L, and relations
Myl — ) =0, (T, —&(Tr+€1) =0, Lile=Lel,
TsTsi1Ts = Ts41TsTsy1, T, Ts=TsT,if|r—s|>1
T,.Le=LT,ift#r,r+1, Ly1=T.LT,+T,

When &2 #, 5N is an Ariki-Koike algebra, which is a deformation of the

group algebra of Z /(7.1 &,,. If €2 =1 then s£) is a degenerate Ariki-Koike

algebra. If £ =1 and ¢ = 1 then SN 2 k&,,.

Theorem (Ariki-Koike) The algebra .7 is free as a k-module with basis
{LF*... [T, |0<ax<fland w e &, },

In particular, 2" is free of rank £"n! = #(Z /(7.1 G,)
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Theorem (Brundan-Kleshchev, Rouquier)

Suppose that k is a field. Then N = %"\

Remarks

@ This theorem is only true when k is a field. For example, both algebras
are defined over Z[£] but in general the theorem is false over this ring

o As a consequence, JZ" is a Z-graded algebra

@ Brundan and Kleshchev prove this by constructing two explicit
maps Z) — N and # — % and then checking the
relations on both sides: nice result, ugly proof

@ The aim for today is to prove half of this theorem, concentrating
on k&,. At the same time, we will try to understand the KLR
relations

Suppose that k is a field and that £, &' € k are elements with e > 1
minimal such that [e]¢ = 0 = [e]¢. Then JNE) = M)
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A partition of n is a weakly decreasing sequence \;y > A\p > --- > 0 of
non-negative integers that sum to n. Identify A\ with its Young diagram
[\l ={(r,c)|1<c <A\ }, whichis an array of boxes in the plane.

Let P? be the set of partitions of n

Example The diagram of (3,2) is ’:l

A A-tableau is a function t:[A] —{1,2,..., n}, which we think of as a
labelled diagram. A A-tableau is standard if its entries increase along rows
and down columns.

Let Std()\) be the set of standard A-tableaux and Std(P}) = Unepn Std(A)
Example The standard (3, 2)-tableaux are:

123], [124) [125], [134 [135
45 35 34 25 2 4
Remark If £ > 1 then partitions get replaced by /-tuples of partitions and

standard tableau get replaced by /-tuples of tableaux whose entries increase
along rows and down columns in each component.
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The presentation of " includes the Jucys-Murphy elements Ly, ..., L,
In the case of the symmetric group (or their lwahori-Hecke algebra),
Ly=(1,k)+(2,k)+---+(k—1,k) (an “averaging operator”)

Definition

The Gelfand-Zetland subalgebra of S£" is 2N = (Ly, ..., L)

Okounkov and Vershik have given a beautiful account of the semisimple
representation theory of &, by showing that
IN={z€kB,|zh=hzforall he k&, 1}

They use . to show that the restriction of any irreducible C& ,-module is
multiplicity free and from this deduce that every irreducible C&,-module
has a basis of simultaneous eigenvectors for the elements of . and they
deduce what the eigenvalues are.

Let k be a field. Then ) is (split) semisimple if and only if £ is (split)
semisimple
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The content of a node (r,c) is ¢ — r and if t is standard and 1 < m <n
then the content of min tis cpy(t) =c—r, if t(r,c) =m
Example If A = (4,3,3,2) then the contents in [\] are:

Contents increase along rows, decrease down columns and are constant on
the diagonals of . The addable nodes of A\ have distinct contents

Let s € Std()\) and t € Std(p). Then s =t if and only if c;m(s) = cm(t)
for 1 < m < n. Consequently, if 1 < r < n then cy(t) = cm(t) for
r#m,m-+1ifandonly ifs =t ors = st

Proof Follows easily by induction because addable nodes have distinct
contents
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Theorem (Young's seminormal form, 1901)

Let X be a partition. Define the Specht module S* to be the Q& ,-module

with basis { vy |t € Std(\) } and where the & ,-action is determined by

_ 1 pr(t)+1
SrVi = o (%) Ve + or Vs, t,

where p,(t) = cr+1(t) — cr(t) and vs,v = 0 if s,t ¢ Std(\)

Key point Let t € Std(A) and 1 < m < n. Then L,v = cpm(t)w (1)

Assume only (1) and write s,vy = > _ asg Vs

If m#r,r+1then ) _cm(s)astVs = LmSrve = SrLmve = cm(t)sr vy
— axw#0onlyifs=tors=st

Let s = st and write s,vy = ave + Bvs and s, v = o' vs + v,
— (1) vy = (o + BB + (o — &) Bvs
— (2) ac(t)vi + Bere1(t)ve = Lrs;ve = (SpLrp1 — Dwe

_ 1 _ 1 r_ 1 1 _ (e(8)=1)(p(t)+1)
— S e~ am A =1 ohp = R
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The action of k&,, on the seminormal basis {fs} is given by
Lifse = c(s)fse  and s fop = ﬁfst + Br(s)fut, where u = s,

As the L,'s are acting by scalars they are essentially irrelevant. Indeed, the
action of fr/,\ on the seminormal basis is determined by F,fsy = dsvfst

We can “simplify” the action of s, by defining
br= Y. FmE-—am)F = Ufa=fu
veStd(Ph)
Change notation: standard tableaux are determined by their contents so
let's replace t with its content sequence

C(t) = (Cl(t)a C2(t)7 000y Cn(t))
Let | ={z-1x € Z|—-n<z <n}. Thenc(t) € I". Generalising the
definition of Fy, for c € I define

n

— Lr_dr
Fc - H cr—d;
r=1 del”

cr#£dy

Acting on {f}, Fc # 0 if and only if c = c(t), for some t € Std(P2)
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For t a standard tableau define F, = H H Lr—cr(s)

cr(t)—cr(s)
r=1 s standard
& (E)#a(t)

Theorem

Suppose that k is a field of characteristic p > n. Then:
© { Fi|t a standard tableau of size n} is a complete set of pairwise
orthogonal idempotents
@ If)\ € PN and t € Std()\) then S =2 k&, F,
© {S | \cP)} isa complete set of pairwise non-isomorphic
k& ,-modules
Q Asan (L), ZM)-bimodule, kG, = @ (kS,)st, where
(kSp)st ={ac kS, |Lra=c(s)aand al, = c,(t)a}
is one dimensional for all s, t € Std()\), A € P}

By part (4), k&, has a basis { ot | (s,t) € Std*(PM) } with £ € (kSp)st
—>  fatfyy = OevYifey, for some v, €k — F = %ﬁct
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Theorem

The algebra kS, is generated by { Fc|c € 1" } U{¢1,...,1¥n_1} subject
to the relations
Fch = 5chc: Zcel" Fc =1, wch = Fsrcwr
V2Fe = bc e Fer Urbe = ety if |r —t] > 1

Fe, ifCryo =Cr —> Cra1,
(¢r+1wr¢r+1 - ¢rwr+1'¢r)":c — _FC7 ifcr+2 =Cr <— Cry1,
0, otherwise

v

Proof Using the seminormal form it is straightforward to check that these
relations hold in k&,,. Given this it is easy to deduce that k&, is
isomorphic to the abstract algebra with the presentation above.

Remark In the semisimple case, %/ is concentrated in degree zero, so we
are not seeing an interesting grading on k&, yet.

Remark This argument works, essentially without change for all of the
algebras #\. We need only define the content of a standard /-tableau to
be cym(t) = [/ +c—rleif t(/,r,c)=m, for 1< m<n

Andrew Mathas— Cyclotomic quiver Hecke algebras I1 12 /22



Now suppose that k is a field of characteristic p, diving n. Then the
primitive idempotents F+ € @S, cannot, in general, be reduced mod p to
give elements of k&, because of the denominators in their definition.
Similarly, the Jucys-Murphy elements L, no longer act as scalars but as
upper triangular matrices.

Let | = 7Z/pZ. The residue sequence of a standard tableau t is the
sequence i* = (if,...,i%) € I", where ix = cx(t) + pZ. Like contents,
residues increase along rows and decrease down columns, mod p

Example If A = (4,3,3,2) and p = 3 then the residues in [\] are:

0

O N

O~ N O
= NO

Given i € I" let Std(i) = {t standard |i* =i }. Frequently, Std(i) = ()
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The idempotents F; take care of the “semisimple” elements in Z/

For each i € / fix i € Z such that i = / + pZ. The nilpotent elements in
,,5,”,{\ are, yr = ) icyn ZteStd(i)(Lr - ir) F., Now consider 1),:

— 1 1
y = Z (Sr—m)m’:v

veStd(Ph)
Take 5,(v) = (1 + p,(v))/pr(v). Then 1), becomes

Yr = Z (srpr(v) — 1)%”}

veStd(PA)

= > (s{lm—L)-)——F
veStd(PA)

— (Lrsr —siLy) Z mFV

veStd(Ph)
The right-hand side makes sense as an element of Z,)&,, provided that
14 7Yy — 0¥ ¢ pZ. If iy = i, then (L,s, — s,L,)Fi = pZp)Si.
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Forie I"let F = Z F. € Q&,
teStd(i)

Proposition
Suppose i € I". Then F; € Z,)&,,

Proof Let Fj = H [l 52k e 06,

r=1gseStd P
ip #if
— F.=F] Z [Py = Z astFs, for some ag; € Z(p)
s€Std(P)) s€eStd(i)

In particular, aty = 1 and FF{ = F,. Therefore, since FsFy = dguFs,

[[(F-F)= H(Z(l - ast)Fs) —0

t ® s#t
0 R-r) - 5 COIIE <z,
teStd(i) 0#£SCStd(i) seS
O
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Theorem (Brundan-Kleshchev, Hu-M.)
Suppose that k = Z,y. For1 <r < nandi € I" define
Yr = Ziel" ZteStd(')(L - ;\f) Fe and
(sr+1) e L ifir =it
UrFi = (Lys, — s,L,)F, ifip=ir1+1,
(Lrsy — s,Lr)mF;, otherwise

Then y,, 1., F; € k&,,. These elements generate kS, and they induce an
isomorphism k&, = %" (k).

To prove this it is enough the relations on the seminormal basis

of Q&,,, which is completely straightforward. To complete the proof that
k&, = % you can use a dimension count, which comes from the
categorification of the Fock space

This shows that % is an “idempotent completion” of k&,: once the
idempotents F; belong to 7\ (k) then algebra becomes isomorphic
to 7N (k)
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The KLR generators of %/, which induce its grading, are
1/)1,-",’%—1, Yi,--y Yn, 1iv forie "

Theorem (Hu-M.)

Suppose that k is a field, Then k&,, is a graded cellular algebra with
graded cellular basis { st | s,t € Std(\) and A € PM}.

Example Take p = 3 and A = (7,5,3). The initial A-tableau t* has the
numbers 1,2, ..., n entered in order along the rows of \:

12 3 4567
89101112

and

Then oaex = Liny?, where
it* =(0,1,2,0,1,2,0,2,0,1,2,0,1,2,0) and
YX = Y3Ye6Y10Y15
In general, sy = 1g(s)-1 1i>\y/\'l/)d(t), where s = td(s) and t = t*d(t).
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O Let A= Mat,(k) be the algebra of n x n matrices. Take
P={#} SH#) ={L2...n} and o =ey

where e;; is the elementary matrix with 1 in row / and column j and 0
elsewhere. Then A is cellular because

€jjekl = 0jk€il
O Let { i |(s,t) € Std*(P}) } be a seminormal basis of k&,,. This is a
cellular basis because fstfuy = dtv Ve fov

The basis gt is cellular essentially because
st = fsy + higher terms
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Let A be an unital k-algebra, where k is a commutative ring with one

Definition (Graham and Lehrer, 1996)

A cellular basis for A is a triple (C,P,S), where P is a poset with order >,
S()) is a finite set for A € P and
C: H S(A\) x S(\) — A; (s, t) = ¢} is an injective map such that
AEP
O {cA|AeP,s,t€S(\)}isak-basis of A
Q@ Ifa€c Athen acl, =3 s rsu(a)cy (mod A”), where ry,(a) does
not depend on t and A>* is the subspace of A spanned by
{chy|pu>Xandu,veS(u)}

A

© The map x: A— A; ¢ — ¢, is an anti-isomorphism

A cellular algebra is an algebra that has a cellular basis

If Ais a graded algebra then a cellular basis (C,P,S) of Ais a graded
cellular basis if, in addition, there exists a degree function
deg : [Tyep S(\) —Z; t > degt such that deg ¢y = degs +degt
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One of the main properties of a cellular basis is that

hpsy = Z rsa(h)Way (mod higher shapes)
aeStd(\)

The graded Specht module S* has basis {1 |t € Std()\) } and %-action
hq/)s — Z rsa(h)wa

acStd(\)
Importantly, S* has a natural homogeneous bilinear form (, )

Consider: ¥sythuy = (Ut Yu)WUsy

— radS*={xe€ S*|(x,y) =0forall y € S*} is a graded
submodule of S* as (xh, y) = (x, yh*) is homogeneous

Define D* = S*/rad S*, a graded quotient of S*

Theorem (Brundan-Kleshchev, Hu-M.)

Over a field, { D*(k) |1 € KN and k € Z} is a complete set of pairwise
non-isomorphic irreducible kS ,-modules. Moreover, (D*)® = DH.
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