\textbf{\l_3-web bases, categorification and link invariants}

Daniel Tubbenhauer

Joint work with Marco Mackaay and Weiwei Pan

November 2013
1 Categorification
 - What is categorification?

2 Webs and representations of $U_q(\mathfrak{sl}_3)$
 - \mathfrak{sl}_3-webs
 - Intermediate crystals
 - q-skew Howe duality and growing of webs
 - Knot polynomials and webs

3 The Categorification
 - An algebra of foams
 - Growing of foams
 - Foamation
 - Knot homologies and foams
What is categorification?

Forced to reduce this presentation to one sentence, the author would choose:

Interesting integers are shadows of richer structures in categories.

The basic idea can be seen as follows. Take a “set-based” structure S and try to find a “category-based” structure C such that S is just a shadow of C.

Categorification, which can be seen as “remembering” or “inventing” information, comes with an “inverse” process called decategorification, which is more like “forgetting” or “identifying”.

Note that decategorification should be easy.
Examples of the pair categorification/decategorification are:

- *Bettinumbers of a manifold* M categorify \rightarrow decat $= \text{rank}(\cdot)$ Homology groups

- *Polynomials in* $\mathbb{Z}[q, q^{-1}]$ categorify \rightarrow decat $= \chi_{\text{gr}}(\cdot)$ complexes of gr. VS

- *The integers* \mathbb{Z} categorify \rightarrow decat $= K_0(\cdot)$ K – vector spaces

- *An A–module* categorify \rightarrow decat $= K_0^\oplus(\cdot) \otimes_{\mathbb{Z}} A$ additive category

Usually the categorified world is much more interesting.

Today decategorification $=$ Grothendieck group!
Definition (Kuperberg)

A \mathfrak{sl}_3-web w is an oriented trivalent graph, such that all vertices are either sinks or sources. The boundary ∂w of w is a sign string $S = (s_1, \ldots, s_n)$ under the convention $s_i = +$ iff the orientation is pointing in and $s_i = -$ iff the orientation is pointing out (we also need 0, 3 later - but they are not drawn).

Example

![Diagram of a \mathfrak{sl}_3-web with sign string (+, -, +, -, +, +, +)]
Kuperberg’s \mathfrak{sl}_3-webs

Definition (Kuperberg)

The $\mathbb{C}(q)$-web space W_S for a given sign string $S = (\pm, \ldots, \pm)$ is generated by

$\{ w \mid \partial w = S \}$, where w is a web, subject to the relations

\[
\begin{align*}
\circ & = [3] \\
\xrightarrow{\text{relation 2}} & = [2] \\
\xrightarrow{\text{relation 3}} & = \left(\begin{array}{c}
\text{loop} \\
\end{array} \right) + \left(\begin{array}{c}
\text{crossing} \\
\end{array} \right)
\end{align*}
\]

Here $[a] = \frac{q^a - q^{-a}}{q - q^{-1}} = q^{a-1} + q^{a-3} + \cdots + q^{-(a-1)}$ is the quantum integer.
A connection to knot theory

Let L_D be a link projection. Assign to it a polynomial $P_3(L_D)$ (it is in $\mathbb{Z}[q, q^{-1}]$) by local and inductive rules as follows.

- $P_3(\text{\includegraphics[width=0.1\textwidth]{link1}}) = q^2 P_3(\text{\includegraphics[width=0.1\textwidth]{link2}}) - q^3 P_3(\text{\includegraphics[width=0.1\textwidth]{link3}})$ (recursion rule 1).
- $P_3(\text{\includegraphics[width=0.1\textwidth]{link4}}) = q^{-2} P_3(\text{\includegraphics[width=0.1\textwidth]{link2}}) - q^{-3} P_3(\text{\includegraphics[width=0.1\textwidth]{link5}})$ (recursion rule 2).
- The Kuperberg relations.

Theorem (Murakami, Ohtsuki and Yamada)

The polynomial $P_3(\cdot)$ is uniquely determined by the rule and a link invariant. Moreover, it agrees with the so-called HOMFLY-PT polynomial under a certain substitution of variables and normalization.

For example

$$P_3(\text{\includegraphics[width=0.15\textwidth]{link6}}) = q^2 P_3(\text{\includegraphics[width=0.1\textwidth]{link2}}) - q^3 P_3(\text{\includegraphics[width=0.2\textwidth]{link7}}) = q^2 [3]^2 - q^3 [2][3] = [3].$$
A sign string $S = (s_1, \ldots, s_n)$ corresponds to tensors

$$V_S = V_{s_1} \otimes \cdots \otimes V_{s_n},$$

where V_+ is the fundamental $U_q(\mathfrak{sl}_3)$-representation and V_- is its dual, and webs correspond to intertwiners.

Theorem (Kuperberg)

$$\mathcal{W}_S \cong \text{Hom}_{U_q(\mathfrak{sl}_3)}(\mathbb{C}(q), V_S) \cong \text{Inv}_{U_q(\mathfrak{sl}_3)}(V_S)$$

In fact, the so-called spider category of all webs modulo the Kuperberg relations is equivalent to the representation category of $U_q(\mathfrak{sl}_3)$.

As a matter of fact, the \mathfrak{sl}_3-webs without internal circles, digons and squares form a basis B_S, called web basis, of \mathcal{W}_S!
Webs can be coloured with flow lines. At the boundary, the flow lines can be represented by a state string \(J \). By convention, at the \(i \)-th boundary edge, we set \(j_i = \pm 1 \) if the flow line is oriented downward/upward and \(j_i = 0 \), if there is no flow line. So \(J = (0, 0, 0, 0, 0, +1, -1) \) in the example.

Given a web with a flow \(w_f \), attribute a weight to each trivalent vertex and each arc in \(w_f \) and take the sum. The weight of the example is \(-4\).
Theorem (Khovanov-Kuperberg)

Pairs of sign S and a state strings J correspond to the coefficients of the web basis relative to tensors of the standard basis $\{e_{\pm 1}^-, e_0^0, e_{\pm 1}^+\}$ of V_{\pm}.

Example

$$ws = \cdots + (q^{-2} + q^{-4}) (e_+^0 \otimes e_-^0 \otimes e_+^0 \otimes e_-^0 \otimes e_+^0 \otimes e_-^+ \otimes e_-^{-1}) \pm \cdots .$$
What kind of basis is B_S?

Theorem (Khovanov-Kuperberg)

Given (S, J), we have (with $v = -q^{-1}$ and $e^j_S = e^j_{s_1} \otimes \cdots \otimes e^j_{s_n}$)

$$w^j_S = e^j_S + \sum_{J' < J} c(S, J, J') e^j_{J'}$$

for $c(S, J, J') \in \mathbb{N}[v, v^{-1}]$.

In general we have $B_S \neq \text{dcan}(W_S)$, but the web basis is bar-invariant.

Theorem (MPT)

We proved, by categorification, that the change-of-basis matrix from Kuperberg’s web basis B_S to the dual canonical basis $\text{dcan}(W_S)$ is unitriangular.

Question: The web basis B_S is a somehow “special” basis of W_S. But it is not the dual canonical. So what kind of basis is it?
The quantum algebra $U_q(\mathfrak{sl}_d)$

Definition

For $d \in \mathbb{N}_{>1}$ the quantum special linear algebra $U_q(\mathfrak{sl}_d)$ is the associative, unital $\mathbb{C}(q)$-algebra generated by $K_i^{\pm 1}$ and E_i and F_i, for $i = 1, \ldots, d - 1$, subject to some relations (that we do not need today).

Definition (Beilinson-Lusztig-MacPherson)

For each $\lambda \in \mathbb{Z}^{d-1}$ adjoin an idempotent 1_λ (think: projection to the λ-weight space!) to $U_q(\mathfrak{sl}_d)$ and add some relations, e.g.

$$1_\lambda 1_\mu = \delta_{\lambda, \nu} 1_\lambda \quad \text{and} \quad K_i 1_\lambda = q^{\pm \lambda_i} 1_\lambda \quad \text{(no K's anymore!).}$$

The idempotented quantum special linear algebra is defined by

$$\hat{U}(\mathfrak{sl}_d) = \bigoplus_{\lambda, \mu \in \mathbb{Z}^{d-1}} 1_\lambda U_q(\mathfrak{sl}_d) 1_\mu.$$
Let $d = 3\ell$ and let V_Λ be the irreducible $\mathcal{U}(\mathfrak{sl}_d)$-module of highest weight $\Lambda = (3^\ell)$. Kashiwara-Lusztig’s lower global crystal (or canonical) basis $\text{can}(V_\Lambda) = \{ b_T \mid T \in \text{Std}(3^\ell) \}$ has nice properties, but is in very hard to find.

Leclerc and Toffin have defined an intermediate crystal basis B_Λ of V_Λ by an explicit algorithm that can be used to compute $\text{can}(V_\Lambda)$ inductively, i.e. B_Λ has some nice properties, but is still trackable enough to be written down.

Example (with $\ell = 3$)

\[
T = \begin{pmatrix}
1 & 2 & 4 \\
2 & 3 & 5 \\
4 & 6 & 6
\end{pmatrix} \quad \leadsto \quad \text{LT}(T) = F_1 F_2 F_3^{(2)} F_2 F_1 F_4 F_3 F_2 F_5^{(2)} F_4^{(2)} F_3^{(2)} v_\Lambda.
\]
Sitting in-between \(\{b_T\} \) and \(\{x_{T'}\} \)

The intermediate crystal basis sits “in-between” the canonical \(\text{can}(V_{\Lambda}) \) and the tensor basis \(\{x_{T'} \in \Lambda^\ell_q(C^d_q) \otimes 3 \supset V_{\Lambda} \mid T' \in \text{Col}(3^\ell)\} \).

Theorem (Leclerc-Toffin)

We have (for \(T' \in \text{Col}(3^\ell) \), \(T'' \in \text{Std}(3^\ell) \))

\[
LT(T) = x_T + \sum_{T' \prec T} \alpha_{T'}(v)x_{T'} \quad \text{and} \quad b_T = LT(T) + \sum_{T'' \prec T} \beta_{T''T}(v)LT(T'')
\]

with certain \(\alpha_{T'}(v) \in \mathbb{N}[v, v^{-1}] \) and \(\beta_{T''T}(v) \in \mathbb{Z}[v, v^{-1}] \) (with \(v = -q^{-1} \)).

Moreover, the intermediate crystal basis is \textit{bar-invariant}.

We have seen this \textit{before}!
An instance of q-skew Howe duality

The commuting actions of $\hat{U}(\mathfrak{sl}_d)$ and $\hat{U}(\mathfrak{sl}_3)$ on

$$\Lambda^\bullet_q(C_q^d) \otimes^3 \cong \Lambda^\bullet_q(C^d \otimes C^3) \cong \Lambda^\bullet_q(C_q^3) \otimes^d$$

introduce an $\hat{U}(\mathfrak{sl}_d)$-action on $\Lambda^\bullet_q(C_q^3) \otimes^d$ and an $\hat{U}(\mathfrak{sl}_3)$-action on $\Lambda^\bullet_q(C_q^d) \otimes^3$. Here

$$\Lambda^\bullet_q(C_q^l) = \bigoplus_{k=1}^{l} \Lambda^k_q(C_q^l)$$

and all the $\Lambda^k_q(C_q^l)$ are irreducible $\hat{U}(\mathfrak{sl}_l)$-representations.
The \(\mathfrak{sl}_3 \)-webs form a \(\hat{\mathfrak{u}}(\mathfrak{sl}_d) \)-module

We defined an action \(\phi \) of \(\hat{\mathfrak{u}}(\mathfrak{sl}_d) \) on \(W_{(3^d)} = \bigoplus_{S \in \Lambda(n, n)_3} W_S \) by

\[
1_{\lambda} \mapsto \begin{array}{c} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_d \end{array}
\]

\[
E_i 1_{\lambda}, \ F_i 1_{\lambda} \mapsto \begin{array}{c} \cdots \\ \lambda_{i-1} \\ \lambda_i \\ \lambda_{i+1} \\ \lambda_{i+2} \\ \lambda_d \end{array}
\]

We use the convention that vertical edges labeled 1 are oriented upwards, vertical edges labeled 2 are oriented downwards and edges labeled 0 or 3 are erased.

Think: 0, 3 indicates the trivial, 1 the \(V_+ \) and 2 the \(V_- \)-representation.
Exempli gratia

$$E_{11(22)} \mapsto$$

$$F_{2}E_{11(121)} \mapsto$$
Proposition (MT)

The Kuperberg web basis B_S is Leclerc-Toffin’s intermediate crystal basis under q-skew Howe duality, i.e.

$$\text{LT}(T) = \{ F_{i_1}^{(r_1)} \cdots F_{i_s}^{(r_s)} v_3 \ell \mid T \in \text{Std}(3^\ell) \} \xrightarrow{sHd} w_S^J. $$

(No K’s and E’s anymore!)

Corollary

The change-of-basis matrix from Kuperberg’s web basis B_S to the dual canonical basis $\text{dcan}(W_S)$ is unitriangular, it is bar-invariant and

$$w_S^J = e_S^J + \sum_{J' < J} c(S, J, J') e_S^{J'} \quad \text{for} \quad c(S, J, J') \in \mathbb{N}[v, v^{-1}].$$

We also defined a growth algorithm for flows - but we do not need it today.
From T we obtain the string

$$LT(T) = F_1 F_2 F_3^{(2)} F_2 F_1 F_4 F_3 F_4^{(2)} F_5^{(2)} F_4^{(2)} F_3^{(2)}.$$
Exempli gratia

\[\text{LT}(T)_{V_{3^3}} = F_1 F_2 F_3^{(2)} F_2 F_1 F_4 F_3 F_2 F_5^{(2)} F_4^{(2)} F_3^{(2)} V_{3^3} \]
Crossings as $F^{(i)}_j$

Define the following braiding operators B_j (and similar ones for ∇).

\[
\begin{align*}
\arrows: (q^2 F_j F_{j+1} - q^3 F_{j+1} F_j) v_{110} & \quad \searrow: (q^{-2} F_{j+1} F_j^{(2)} - q^{-3} F_{j+1} F_j^{(2)} F_{j+1}) v_{210} \\
\searrow: (q^2 F_{j+1} F_j - q^3 F_j F_{j+1}) v_{332} & \quad \nabla: (q^{-2} F_{j+1} F_j - q^{-3} F_j F_{j+1}) v_{120}
\end{align*}
\]

Example

\[
\nabla: (q^{-2} F_{j+1} F_j - q^{-3} F_j F_{j+1}) v_{120}
\]

This gives (for $j = 1$)

\[
\begin{array}{c}
q^{-2} \quad \nabla \quad 0 \\
1 \quad 2 \quad 3 \quad 1 \quad 0 \quad -q^{-3} \\
1 \quad 2 \quad 3 \quad 1 \quad 2 \quad 0
\end{array}
\]
Proposition(T)

Let L_D be a diagram of a link. Then (under q-skew Howe duality):

$$\text{LT}(L_D)v_h = \prod_k \tilde{F}_{jk}^{(i_k)} v_h, \quad \text{with } \tilde{F} = F, \tilde{F} = B$$

for some highest weight vector v_h. That is, L_D can be realized combinatorial as sums of certain tableaux.

Observation(T)

Since the above construction agrees (up to some normalization/shifting) with the construction of the \mathfrak{sl}_3-link polynomial (MOY-calculus), the combinatorics of tableaux can be used to calculate these invariants (note: works for all $n > 1$).

Wish(T)

There should be a way to get the colored \mathfrak{sl}_3-link polynomial from this approach as well, since they correspond to arbitrary tensor products instead of V_+, V_-.
The corresponding four webs can always be evaluated using tableaux.
Please, fasten your seat belts!

Let’s categorify everything!
A pre-foam is a cobordism with singular arcs between two webs. Composition consists of placing one pre-foam on top of the other. The following are called the zip and the unzip respectively.

They have dots that can move freely about the facet on which they belong, but we do not allow dot to cross singular arcs.

A foam is a formal \mathbb{C}-linear combination of isotopy classes of pre-foams modulo relations, e.g.

$$\alpha \quad \beta \quad \delta$$

$$= \begin{cases}
1, & (\alpha, \beta, \delta) = (1, 2, 0) \text{ or a cyclic permutation}, \\
-1, & (\alpha, \beta, \delta) = (2, 1, 0) \text{ or a cyclic permutation}, \\
0, & \text{else.}
\end{cases}$$
Involution on webs and foams

Definition

There is an *involution* * on the webs and foams. That is

$$
\begin{pmatrix}
\vdots \\
\vdots \\
\vdots
\end{pmatrix}^* =
\begin{pmatrix}
\vdots \\
\vdots \\
\vdots
\end{pmatrix}
$$

for webs and for foams

\[
\begin{pmatrix}
\begin{pmatrix}
\text{\textbullet} & \text{\textbullet} \\
\text{\textbullet} & \text{\textbullet}
\end{pmatrix}
\end{pmatrix}^* =
\begin{pmatrix}
\begin{pmatrix}
\text{\textbullet} & \text{\textbullet} \\
\text{\textbullet} & \text{\textbullet}
\end{pmatrix}
\end{pmatrix}
\]

A *closed foam* is a foam from \emptyset to a closed web u^*v.
Foam$_3$ is the category of foams, i.e. objects are webs w and morphisms are foams F between webs. The category is graded by the q–degree

$$\text{deg}_q(F) = \chi(\partial F) - 2\chi(F) + 2d + b,$$

where d is the number of dots and b is the number of vertical boundary components. The foam homology of a closed web w is defined by

$$\mathcal{F}(w) = \text{Foam}_3(\emptyset, w).$$

$\mathcal{F}(w)$ is a graded, complex vector space, whose q-dimension can be computed by the Kuperberg bracket (that is counting all flows on w and their weights).
A “higher” connection to knot theory

Let L_D be a link projection. Assign to it a complex $[L_D]$ in the category of formal chain complexes of Foam_3 locally as follows.

- $[\begin{array}{c} \circlearrowright \\ \circlearrowleft \end{array}] = 0 \rightarrow \{2\} \xrightarrow{d} \{3\} \rightarrow 0$.
- $[\begin{array}{c} \circlearrowright \\ \circlearrowleft \end{array}] = 0 \rightarrow \{3\} \xrightarrow{d} \{2\} \rightarrow 0$.
- The differentials d are (un)zips.
- “Tensor” everything together.

Theorem (Khovanov)

The complex $[L_D]$ a link invariant. Moreover, it decategorifies to $P_3(L_D)$.

For example

$$[\begin{array}{c} \circlearrowright \\ \circlearrowleft \end{array}] = 0 \rightarrow \{2\} \xrightarrow{d} \{3\} \rightarrow 0.$$
The \(\mathfrak{sl}_3 \)-web algebra

Definition (MPT)

Let \(S = (s_1, \ldots, s_n) \). The \(\mathfrak{sl}_3 \)-web algebra \(K_S \) is defined by

\[
K_S = \bigoplus_{u, v \in B_S} uK_v,
\]

with

\[
uK_v = \mathcal{F}(u^* v)\{n\}, \text{ i.e. all foams: } \emptyset \to u^* v.
\]

Multiplication is defined as follows.

\[
uK_{v_1} \otimes v_2 K_w \to uK_w
\]

is zero, if \(v_1 \neq v_2 \). If \(v_1 = v_2 \), use the multiplication foam \(m_v \), e.g.
The \mathfrak{sl}_3-web algebra

Theorem(s) (MPT)

The multiplication is well-defined, associative and unital. The multiplication foam m_ν has q-degree n. Hence, K_S is a finite dimensional, unital and graded algebra. Moreover, it is a graded Frobenius algebra.
Moreover, for $n = d = 3\ell$ we define

$$W_{(3\ell)} = \bigoplus_{\mu_s \in \Lambda(n,n)_3} W_S$$

on the level of webs and on the level of foams we define

$$\mathcal{W}_{(3\ell)}^{(p)} = \bigoplus_{\mu_s \in \Lambda(n,n)_3} K_S - (p)\text{Mod}_{gr}.$$

With this constructions we obtain our first categorification result.

Theorem (MPT)

$$K_0(\mathcal{W}_{(3\ell)}) \otimes \mathbb{Z}[q,q^{-1}] \mathbb{Q}(q) \cong W_{(3\ell)}$$ and $$K_0^\oplus(\mathcal{W}_{(3\ell)}^{(p)}) \otimes \mathbb{Z}[q,q^{-1}] \mathbb{Q}(q) \cong W_{(3\ell)}.$$
As a remainder, the LT-algorithm gives

\[\text{LT}(T) = x_T + \sum_{T' \prec T} \alpha_{T'}(v)x_{T'}. \]

Thus, we need column-strict tableaux and 3-multitableaux (for \(x_{T'}\) and \(\alpha_{T'}(v)\)). What do we expect to gain? Since Leclerc-Toffin also showed

\[b_T = \text{LT}(T) + \sum_{T'' \prec T} \beta_{T''}T(v)\text{LT}(T'') \]

we expect that we get a method to “compute” the projective indecomposable of \(K_S\), since they should decategorify to the dual canonical basis.
A growth algorithm for foams

Definition(T)

Given a pair of a sign string and a state string \((S, J)\), the corresponding 3-multipartition \(\tilde{\lambda}\) and two Kuperberg webs \(u, v \in B_S\) that extend \(J\) to \(f_u\) and \(f_v\) receptively. We define a foam by

\[
F_{\tilde{\lambda}}(u_{f_u}, v_{f_v}) = \underbrace{F_{\sigma_u}}_{\text{Topology}} \underbrace{e(\tilde{\lambda})}_{\text{Idempotent}} \underbrace{d(\tilde{\lambda})}_{\text{Dots}} \underbrace{F_{\sigma_v}^*}_{\text{Topology}}.
\]

Theorem(T)

The growth algorithm for foams is well-defined, the only input data are webs and flows on webs, works inductively and gives a graded cellular basis of \(K_S\).
Khovanov and Lauda’s diagrammatic categorification of $\dot{\mathcal{U}}_q(\mathfrak{sl}_d)$, denoted $\mathcal{U}(\mathfrak{sl}_d)$, is also related to our framework! Roughly, it consists of string diagrams of the form

$$
\lambda: \mathcal{E}_i \mathcal{E}_j \mathbf{1}_\lambda \Rightarrow \mathcal{E}_j \mathcal{E}_i \mathbf{1}_\lambda \{ (\alpha_i, \alpha_j) \}, \quad \lambda - \alpha_i \downarrow \lambda:\ \mathcal{F}_i \mathbf{1}_\lambda \Rightarrow \mathcal{F}_i \mathbf{1}_\lambda \{ \alpha^{ii} \}
$$

with a weight $\lambda \in \mathbb{Z}^{n-1}$ and suitable shifts and relations like

$$
\begin{aligned}
\lambda_i \lambda_j &= \lambda_j \lambda_i \\
\lambda_i \lambda_j &= \lambda_j \lambda_i, \quad \text{if } i \neq j.
\end{aligned}
$$
We define a 2-functor

\[\Psi : \mathcal{U}(\mathfrak{sl}_d) \to \mathcal{W}^{(p)}_{(3^\ell)} \]

called \textit{foamation}, in the following way.

On objects: The functor is defined by sending an \(\mathfrak{sl}_d \)-weight \(\lambda = (\lambda_1, \ldots, \lambda_{d-1}) \) to an object \(\Psi(\lambda) \) of \(\mathcal{W}^{(p)}_{(3^\ell)} \) by

\[\Psi(\lambda) = S, \quad S = (a_1, \ldots, a_\ell), \quad a_i \in \{0, 1, 2, 3\}, \quad \lambda_i = a_{i+1} - a_i, \quad \sum_{i=1}^{\ell} a_i = 3^\ell. \]

On morphisms: The functor on morphisms is by glueing the ladder webs from before on top of the \(\mathfrak{sl}_3 \)-webs in \(\mathcal{W}_{(3^\ell)} \).
On 2-cells: We define

\[i, \lambda \mapsto \lambda_i \]

\[i, \lambda \mapsto \lambda_i \]

\[i, i, \lambda \mapsto - \]

\[i, i+1, \lambda \mapsto (-1)^{\lambda_{i+1}} \]

\[i+1, i, \lambda \mapsto \]

And some others.
Theorem (MPT)

The 2-functor $\Psi : \mathcal{U}(\mathfrak{sl}_d) \to \mathcal{W}^{(p)}_{(3^\ell)}$ categorifies q-skew Howe duality.

Corollary ("Almost" directly)

We have $\psi_p([D^\lambda_p]) = b^\lambda$ under the isometry

$$\psi_p : K_0^{\oplus}(\mathcal{W}^p_{(3^\ell)}) \otimes_{\mathbb{Z}[q, q^{-1}]} \mathbb{Q}(q) \to \mathcal{W}_{(3^\ell)},$$

that is projective covers D^λ_p (who give a complete list of all projective, irreducible K_S-modules) of the simple heads D^λ of the cell modules C^λ categorify the upper global crystal basis b^λ of $\mathcal{W}_{(3^\ell)}$. In principle, the D^λ_p are computable from the extended growth algorithm.
Crossings as complexes

In order to make sense of the minus signs from before we have to go to the category of complexes on the categorified level. That is, define higher braiding operators B_j (and other, similar ones)

\[
\begin{pmatrix}
0 & 2 & 1 \\
0 & 3 & 0 \\
1 & 2 & 0
\end{pmatrix}
\rightarrow
\begin{pmatrix}
0 & 1 & 2 \\
0 & 2 & 1 \\
1 & 1 & 1
\end{pmatrix}
\]

where the sign is categorified using the language of complexes and the q using degree shifts, e.g. $\{-3\}$.
Exempli gratia (The Hopf link - part two)

The Hopf link example from before will give a complex

\[F' F_4 F_3 F_2 Fv_3 \{5\} \]

\[\to \]

\[F' F_4 F_3 F_2 F_3 Fv_3 \{4\} \]

\[\to \]

\[F' F_3 F_4 F_2 F_3 Fv_3 \{5\} \]

\[\oplus \]

\[F' F_3 F_4 F_2 F_3 Fv_3 \{6\} \]

\[\to \]

\[F' F_3 F_4 F_3 F_2 Fv_3 \{5\} \]

that, up to some degree conventions, agrees with \(\mathfrak{sl}_3 \)-Khovanov homology of \(L_D \). Here \(F = F_5^{(2)} F_4^{(2)} F_3^{(2)} F_1^{(2)} F_2^{(3)} \) and \(F' = F_5 F_4 F_3 F_1 \).

Wish(T)

Since the above construction agrees (up to some normalization/shifts) with the construction of the \(\mathfrak{sl}_3 \)-link homologies, the “higher” combinatoric of tableaux should tell us how to calculate these invariants (note: this should work for all \(n > 1 \)). Moreover, the colored \(\mathfrak{sl}_3 \)-link homologies should fit in this framework.
There is still **much** to do...
Thanks for your attention!