Or: Learning = forward, loss, backward

Task Identify handwritten digits

- ► We can see this as a function in the following way:
 - \blacktriangleright Convert the pictures into grayscale values, e.g. 28 \times 28 grid of numbers
 - ▶ Flatten the result into a vector, e.g. $28 \times 28 \mapsto$ a vector with $28^2 = 784$ entries
 - ▶ The output is a vector with 10 entries
- \blacktriangleright We thus have a function $\mathbb{R}^{784} \rightarrow \mathbb{R}^{10}$

Task Identify handwritten digits

- ▶ We can see this as a function in the following way:
 - Convert the pictures into grayscale values, e.g. 28×28 grid of numbers
 - ▶ Flatten the result into a vector, e.g. $28 \times 28 \mapsto$ a vector with $28^2 = 784$ entries
 - The output is a vector with 10 entries

 \blacktriangleright We thus have a function $\ensuremath{\mathbb{R}^{784}}\xspace \to \ensuremath{\mathbb{R}^{10}}\xspace$

What is machine learning?

Idea Approximate the unknown function $\mathbb{R}^{784} \to \mathbb{R}^{10}$

Neural network = a piecewise linear approximation (matrices + PL maps)

▶ The matrices = a bunch of numbers (weights) and offsets (biases)

What is machine learning?

The mathematics of AI

Or: Learning = forward, loss, backward

▶ The task of a nn is to approximate an unknown function

► It consist of neurons = entries of vectors, and weights = entries of matrices The mathematics of Al Or: Learning = forward, loss, backward April 2024 $\pi/5$

• The a_{ij}^k and b_i^k are the parameters of our nn

▶ k = number of the layer

 $\pi / 5$

- Supervised learning Create a dataset with answers, e.g. pictures of handwritten digits plus their label
- ▶ There are other forms of learning e.g. unsupervised, which I skip
- Split the data into \approx 80% training and \approx 20% testing data

How learning works

- ► Forward Run the nn = function on the training data
- ► Loss Calculate the difference "results answers" (⇒ loss function)
- Backward Change the parameters trying to minimize the loss function

Repeat

There is still much to do...

Thanks for your attention!