The mathematics of AI

Or: Learning = forward, loss, backward

AcceptChange what you cannot changeaccept

What is machine learning?

$$
\begin{array}{llllllllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 \\
3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\
4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 \\
5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 \\
6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 & 6 \\
7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 \\
8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 & 8 \\
9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9 & 9
\end{array}
$$

Task Identify handwritten digits

- We can see this as a function in the following way:
- Convert the pictures into grayscale values, e.g. 28×28 grid of numbers
- Flatten the result into a vector, e.g. $28 \times 28 \mapsto$ a vector with $28^{2}=784$ entries
- The output is a vector with 10 entries
- We thus have a function $\mathbb{R}^{784} \rightarrow \mathbb{R}^{10}$

What is machine

Input example

Output example

- Task Identify
- We can see thi
- Convert t
- Flatten the
- The outp
- We thus have

28 grid of numbers
th $28^{2}=784$ entries

What is machine learn
Task－rephrased
We have a function $\mathbb{R}^{784} \rightarrow \mathbb{R}^{10}$
00 How can we describe this function？
11 How，1，1，1，1，1，1，

2222222222222222
$\begin{array}{lllllllllllll}3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}$
4444444444444444
5555555555555555
6666666666666666
$77 ク 777 ク 7 ク 7777777$
8888888888888888
9999999999999999

Task Identify handwritten digits
－We can see this as a function in the following way：
－Convert the pictures into grayscale values，e．g． 28×28 grid of numbers
－Flatten the result into a vector，e．g． $28 \times 28 \mapsto$ a vector with $28^{2}=784$ entries
－The output is a vector with 10 entries

- We thus have a function $\mathbb{R}^{784} \rightarrow \mathbb{R}^{10}$

What is machine learm Task - rephrased

We have a function $\mathbb{R}^{784} \rightarrow \mathbb{R}^{10}$
101 How can we describe this function?

What is machine learning?

ReLU Activation Function

- Idea Approximate the unknown function $\mathbb{R}^{784} \rightarrow \mathbb{R}^{10}$
- Neural network $=$ a piecewise linear approximation (matrices + PL maps)
- The matrices $=$ a bunch of numbers (weights) and offsets (biases)
- The PL maps = usually ReLU

What is machine learning?

- Machine learning mantra
- Forward = calculate an approximation (start with random inputs)
- Loss = compare to real data
- Backward = adjust the approximation

What is a neural network (nn)?

- $\mathrm{NN}=$ a directed graph as above
- The task of a nn is to approximate an unknown function
- It consist of neurons $=$ entries of vectors, and weights $=$ entries of matrices

What is a neural network (nn)?

- It consist of neurons = entries of vectors, and weights $=$ entries of matrices

What is a neural network (nn)?

\mathbb{R}

Example

Here we have four matrices (plus four biases), whose composition gives a map

$$
\mathbb{R}^{3} \rightarrow \mathbb{R}^{4} \rightarrow \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}
$$

- The task of a $n n$ is to approximate an unknown function
- It consist of neurons $=$ entries of vectors, and weights $=$ entries of matrices

What is a neural network (nn)?

Actually...

we need nonlinear maps as well, say ReLU applied componentwise

Here we have four matrices, whose composition gives a map

$$
\mathbb{R}^{3} \xrightarrow{\text { ReLUomatrix }} \mathbb{R}^{4} \xrightarrow{\text { ReLUomatrix }} \mathbb{R}^{3} \xrightarrow{\text { ReLUomatrix }} \mathbb{R}^{3} \xrightarrow{\text { ReLUomatrix }} \mathbb{R}^{2}
$$

$-\mathrm{NN}=\mathrm{B}^{1 .}$ But ignore that for now

- The task ReLU doesn't learn anything, its just brings in nonlinearity
- It consist of neurons $=$ entries of vectors, and weights $=$ entries of matrices

What is a neural network (nn)?

- The $a_{i j}^{k}$ and b_{i}^{k} are the parameters of our nn
- $k=$ number of the layer
- Deep $=$ many layers $=$ better approximation

What is a neural network (nn)?

The point

Many layers \rightarrow many parameters
These are good for approximating real world problems

Examples

ResNet-152 with 152. layers (used in transformer models such as ChatGPT) VGG-19 with 19 layers (used in image classification)
GoogLeNet with 22 layers (used in face detection)

- $k=$ number of the layer
- Deep $=$ many layers $=$ better approximation

What is a neural network (nn)?

Saming has improved Al!?
A GPU can do e.g. matrix multiplications faster
than a CPU and lots of nn run on GPUs

- Deep $=$ many layers $=$ better approximation

How learning works

- Supervised learning Create a dataset with answers, e.g. pictures of handwritten digits plus their label
- There are other forms of learning e.g. unsupervised, which I skip
- Split the data into $\approx 80 \%$ training and $\approx 20 \%$ testing data

How learning works

- Forward Run the $\mathrm{nn}=$ function on the training data
- Loss Calculate the difference "results - answers" (\Rightarrow loss function)
- Backward Change the parameters trying to minimize the loss function
- Repeat

How learning works

(1) Forward pass

Feed in the input data, and apply the
mathematical operation for each layer in turn
Input: \longrightarrow Output:

Forward

Boils down to a bunch of matrix multiplications

- Forn
- Loss
followed by the nonlinear activation e.g. ReLU
- Backward Change the parameters trying to minimize the loss function

Repeat

Task Minimize loss function

- Forward Re
- Loss Calcul
- Backward

Repeat

unction)
ss function

How learning works

1 Forward pass

And what makes it even better:

You can try it yourself
My favorite tool is PyTorch but there are also other methods

- Forwar
© PyTorch

Let us see how!

- Backward Change the parameters trying to minimize the loss function

－Task Identify handwritten digits
We can see this as a fuinction in the following way
－Comert the pictures into grayscale values．e．g． 28×28 grid of numbers
－Flatten the realt imo a vector，e\＆ $28 \times 28 \rightarrow$ a vector with $28^{2}-784$ enties
－The output is a wector with 10 entric
－We thus have a function $\mathbb{R}^{n 4} \rightarrow 2^{10}$

What is machine learning？

－Machire learning mantra
－Formard－calculate an approximation（start with random inputs）
－Loss－compare to real data
－Badward－adjust the appraximation

What is a neural network（ nn ）

－It consted neurons－entries of vertors，and wightrs－entries of matrices

What is machine learning？

－Idea Approximate the unknown function $\mathbb{R}^{\text {Th }} \rightarrow \mathbb{R}^{\text {D }}$
－Neural network－a piccewise linear approximation（matrices＋PL maps）
－The matrices－a burch of numbers（weights）and offsers（biases）
－The PL mapa－usually ReLU

How learning work

4目目白 4日回的 7日暗 90710

Supervised learning Create a dataset with answers，e．g．pictures of handaritten digits plus theirit label
ather forms of leaming e．5，unemperited which 1 sit
Split the data into $\approx 80 \%$ ，training and $\$ 20 \%$ testing data

There is still much to do．．．

－Task Identify handwritten digits
We can see this as a function in the following way
－Convert the pictures into grayscale values．e．g． 28×28 grid of numbers
－Flaten the rusult ima a wetcor，el $28 \times 28 \rightarrow$ a vector with $28^{2}-784$ entios
－The output is a wector with 10 entric
－We thus have a function $\mathbb{R}^{n 4} \rightarrow 2^{10}$

What is machine learning？

－Machine laarning mantra
－Formard－calculate an approximation（start with random inputs）
－Loss－compare to real data
－Backward－adjust the appraximation

What is machine learning

Idea Approximate the unknown function $\mathbb{R}^{\text {h }} \rightarrow \mathbb{R}^{\text {b }}$
－Neural network－a piccewise linear approximation（matrices＋PL maps）
－The matrices－a burch of numbers（weights）and offsers（biases）
－The PL mapac－usually ReLU

How learning work

4日回的 7日暗 90710

－Supervised learning Create a dataset with answers，e．g．pictures of handaritten digits plus theirit abel
ther torms of leaming e．5．unnanpervised，which 1 st
Split the data into $\approx 80 \%$ ，training and $\$ 20 \%$ testing data

Thanks for your attention！

