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Abstract. This short note is a summary of my current research projects and my results
from previous work.

It also contains a brief historical motivation why my research is interesting - something
that is hopefully helpful for experts (whoever they may be) and non-experts alike.

In short: My main research interest is categorification of quantum groups and its
applications in representation theory, low dimensional topology and algebraic geometry.
In particular, I am interested in algebraic, combinatorial and diagrammatic aspects of
categorification. I am also interested in highly related topics like representation theoretic
questions about Hecke algebras or Lie groups and modular representation theory.
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1. Background

1.1. Quantum groups. I start by recalling and introducing the notion “quantum group”
related to my research. I follow partially Hong and Kang [41].

The fundamental question is how to understand what is called quantum groups and
their symmetries, relations and combinatorics. These “non-group groups” appeared in the
80ties “out of the blue”. The quantum groups seem to be the algebraic structure behind
many parts of modern mathematics and theoretical physics and it was rather surprising
that mathematicians and physicists alike have missed them for years. In particular, in the
last 30 years a lot of connections to active fields of research were discovered.

A very biased choice is presented below.
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The theory of quantum groups is rich and a lot of different approaches are studied -
using more analytical or more algebraical methods (or mixtures).

But a particular well-behaved family of quantum groups (which, by far, does not capture
all quantum groups) can be seen as q-deformations of universal enveloping algebras of
Kac-Moody algebras. The easiest and presumably most studied family of examples of such
deformations is provided by q-deformations of universal enveloping algebras1 of classical
Lie algebras g. The usual notation for these q-deformations is Uq(g).

We point out that these algebras are sometimes called quantum enveloping algebras in
order to distinguish them from less algebraical accessible quantum groups.

A big upshot of this algebraic approach is that one can give Uq(g) by generators and
relations which makes them easy to study. For example, Uq(gln) and Uq(sln) can be
defined as follows.

1A neat way to see why the universal enveloping algebra is useful is the following. Recall that the
commutator can be seen as a functor [·, ·] : Alg → Lie from the category of associative algebras to the
category of Lie algebras. The functor U : Lie → Alg is its left adjoint: U(g) is the “free” associative
algebra associated to any Lie algebra g.
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The quantum general linear algebra Uq(gln) is the associative, unital C(q)-algebra
2 gen-

erated by Ki and K−1
i , for 1, . . . , n, and Ei, Fi modulo the following relations.

KiKj = KjKi, KiK
−1
i = K−1

i Ki = 1,

EiFj − FjEi = δi,j
KiK

−1
i+1 −K−1

i Ki+1

q − q−1
,

KiEj = q(ǫi,αj)EjKi,

KiFj = q−(ǫi,αj)FjKi,

E2
i Ej − [2]EiEjEi + EjE

2
i = 0, if |i− j| = 1,

EiEj −EjEi = 0, else,

F 2
i Fj − [2]FiFjFi + FjF

2
i = 0, if |i− j| = 1,

FiFj − FjFi = 0, else.

Here [2] = q + q−1 is the so-called quantum number.

The quantum special linear algebra Uq(sln) ⊆ Uq(gln) is the unital C(q)-subalgebra
generated by KiK

−1
i+1 and Ei, Fi, for i = 1, . . . , n−1. Here (·, ·) denotes the standard scalar

product and ǫi = (0, . . . , 1, . . . , 0) ∈ Zn and αi = ǫi − ǫi+1 = (0, . . . , 1,−1, . . . , 0) ∈ Zn.

These algebras are deformations of the classical case. For example, for g = sl2 we
can think of K as qH . Taking the “classical” limit q → 1 gives the classical case: using
l’Hôspital’s rule (one can make this rigorous!) we get from the second line above the
commutator relation for sl2:

lim
q→1

(EF − FE) = lim
q→1

qH − q−H

q − q−1
= H.

It turns out that the set of relations is exactly of the “right size”: rich enough to provide
a very interesting algebra, but manageable enough to be studied. In particular, their
representation theory is highly interesting: if q is not a root of unity, then the representation
theory is similar to the classical case of the representation theory of the Lie algebra sln, but
the quantum deformation gives the little extra information to make it useful for a lot of
purposes. For example for n = 3, the algebra Uq(sl3) has three very important irreducible
representations, called fundamental, which are denoted by Cq = C(q) (trivial), V+ (vector)
and its dual V− = V ∗

+. In the classical case the second one corresponds to the representation
of sl3 by acting on C3

q as matrices. As in the classical case, all finite dimensional irreducible
Uq(sl3)-representations appear as direct summands of tensor products of these three, hence
the name fundamental. Moreover, as in the classical case, all finite dimensional irreducibles
VΛ are highest weight representations for certain highest weight Λ and a surprising fact is

2Here we note a possible clash of notation: some authors (including me) use v for a generic parameter
and q ∈ C for a specific specialization. The difference is unimportant as long as one does not want to
work in the root of unity case. We do not do so until Subsection 2.4 and hope that the reader forgives this
terrible notation of mine.
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that the finite dimensional modules (symmetries) of these algebras behave rather “rigid”:
they have a beautiful combinatorial structure which turns out to be the combinatorial
structure behind many parts of modern mathematics and physics.

Take g = sl3 for example. Then the finite dimensional irreducibles are parametrized by
pairs of natural numbers Λ = (λ1, λ2) ∈ N2: all will have an up to a scaler unique highest
weight vector of weight (λ1+λ2)α+λ2β, where α and β are the so-called fundamental roots.
Using γ = α + β, one can re-write this as λ1α + λ2γ and all of its weight spaces, denoted
by (a, b), will be part of the Z-lattice spanned by α, γ (that we use in the picture below).
Moreover, F1 acts on these by F1 : (a, b) → (a−2, b+1) and F2 by F2 : (a, b) → (a+1, b−2).

For example, the representation of highest weight Λ = (2, 0) ∈ N2 can be thought of as

(2,0)

(0,1)

(−2,2)

(−1,0)

(1,−1)

(0,−2)

F1

F1

F1

F2

F2

F2

A good treatment of this can be found for instance in Fulton and Harris [39] which can be,
up to some details, for q not a root of unity translated to the quantum world.

One the other hand, if q is a root of unity, then, in fact, some magic happens: the
representation theory of Uq(g) over C has many similarities to the representation theory
of a corresponding almost simple, simply connected algebraic group G over an algebraically
closed field K of prime characteristic, see for example [2] or [68]. In addition, Kazhdan
and Lusztig proved later in [47] that finite dimensional representation theory of Uq(g) is
equivalent to the one for the corresponding affine Kac-Moody algebra. Both remain, even
after years of study, poorly understood.

1.2. The quantum invariants. One particular part where their representation theory
shows up is the study of the quantum link polynomials (who are again related to many areas
of active research). This is a family of link polynomials that followed from pioneering work
of Jones in the mid of the 80ties. In fact, before Jones there was a lack of link polynomials
and after Jones there were too many. The question was to order them and explain their
appearance.

It is known since the eighties that the sln-link polynomials Pn(·) can be obtained by the
so-called MOY-calculus, see [80].
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To be a little bit more precise, if one has a projection of a knot or a link as a diagram
LD, then one can calculate Pn(LD) recursively as follows.

• Pn( ) = qn−1Pn( )− qnPn( ) (recursion rule 1).
• Pn( ) = q1−nPn( )− q−nPn( ) (recursion rule 2).
• Some relations to “evaluate webs”, e.g.

= [n],

where [a] = qa−q−a

q−q−1 = qa−1 + qa−3 + · · ·+ q−a+1 is the quantum integer (a ∈ Z).

This gives in the end the polynomial Pn(LD) ∈ Z[q, q−1]3. It is an invariant of the link.
This is combinatorial and a good way to work with them, but not an “explanation”.

Such an “explanation” in terms of the representation theory of quantumUq(sln) is known
for the sln-link polynomials since the end of the eighties (Reshetikhin-Turaev, see [86]).
Moreover, this “explanation” can be used to define an even more general version of the
link polynomials. Roughly, one “colors” the stands of a link projection with irreducible
representations Vi ofUq(sln) and assigns to each crossing and cup/cap a special intertwiner.
This gives a map

⊗
i Vi →

⊗
j Vj . For the following example of a tangle (roughly: an

“open” link)
V+ V− Cq Cq

Cq Cq V+ V−

one gets an intertwiner Cq⊗Cq⊗V+⊗V− → V+⊗V−⊗Cq⊗Cq, where we consider the two
fundamental Uq(sl3)-representations V+ and V− as before and, by convention, label empty
strands by trivial representations Cq. Because a link projection is always a closed tangle,
one gets a map Cq → Cq and evaluation at 1 gives an element in Cq.

In the case of the fundamental Uq(sln)-representations as “colors”, one gets exactly the
sln-link polynomials (up to normalization). Doing very(!) roughly the same for q being a
root of unity gives the so-called Witten-Reshetikhin-Turaev invariants of 3-manifolds.

1.3. The generators and relations approach to the quantum invariants. A fun-
damental question in the representation theory (that we see roughly as the study of its
symmetries) of a mathematical object is to describe its categories of representations (e.g.
finite dimensional, projective, tilting,...) explicitly by generators and relations. In general
one could say that a generators and relations description of an “interesting object” gives

3Ok, you got me: this is not a polynomial, but a Laurent polynomial. For some reasons I do not know,
the standard terminology is “polynomial” - although this is certainly abuse of language. Since I am not
the leader type, we follow the usual conventions here.
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the possibility to study it combinatorial and algebraically. This usually gives better insight
on the object under study, is easier for applications and has other advantages. For my
field of research in particular: it is of the most importance in the interplay between the
representation theory of quantum groups and low dimensional topology.

But on the other hand, the connection of such a description to this “interesting object”
is why one wants to study exactly the corresponding set of generators and relations: in
principle, one could write down any set of generators and relations, but this seems to lack
the justification to study it. For example it is not immediately clear just from the generators
and relations definition of the quantum groups Uq(gln) and Uq(sln) from Subsection 1.1,
why these algebras are interesting.

Thus, a basic question is how to present the representation category, that we denote by
Rep(Uq(sln)), of quantum Uq(sln), i.e. objects are tensor products

⊗
i Vi of the funda-

mental representations Vk = Λk
qC

n
q of quantum Uq(sln) and morphisms are intertwiners

between these tensor products, in a pictorial way by generators and relations. Note that,
since all finite dimensional irreducible representations of Uq(sln) are direct summands of⊗

i Vi, one can say Rep(Uq(sln)) suffices to study the finite dimensional modules over
Uq(sln)

4. And even more: they give a neat way to explain the quantum sln-invariants of
links as sketched in Subsection 1.2.

One approach is due to Kuperberg who was motivated by a graphical calculus given
(from a different angle, i.e. from physics) by Temperley and Lieb [100]. His idea was to
extend their calculus to other classical Lie algebras and not just sl2. He was successful for
sl3 and other rank 2 Lie algebras in [64]. He calls his construction “webs”. For example
his sl3-webs are 3-valent, planar graphs together with an orientation such that each vertex
is either a sink or a source. One interprets the boundary components of such sl3-webs as
strings of + and −, depending if the orientation is pointing in or out. This corresponds
to the two fundamental Uq(sl3)-representations V+ = Λ1

qC
3
q and its dual V− = Λ2

qC
3
q . An

example of a sl3-web is given below. The example is an intertwiner between the trivial
Uq(sl3)-representation (bottom) and V+ ⊗ V− ⊗ V+ ⊗ V− ⊗ V+ ⊗ V+ ⊗ V+.

++++-+ -

4In a fancy language: Repall(Uq(sln)) ∼= Kar(Rep(Uq(sln))), that is, the Karoubi envelope of
Rep(Uq(sln)) is equivalent to the categoryRepall(Uq(sln)) of all finite dimensional representations. Since
a diagrammatic description of the Karoubi envelope of any category is usually not at hand, “suffices” is
relatively vague statement. Fun: the category Repall(Uq(sl2)) can be described in a completely diagram-
matic fashion, see Subsection 2.5.
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He was successful to write down all relations needed for his graphical calculus. But it was
not clear for a long time how to do this for Uq(sln) if n > 3, because it was not clear what
the full list of relations for these “sln-webs” should be.

A solution to this problem is due to Cautis, Kamnitzer and Morrison in a already very
influential work [17]. They use skew q-Howe duality to prove their results (see below in
e.g. Subsection 2.2).

Thus, Reshetikhin-Turaev showed that the quantum sln-link invariants can be obtained
using the intertwiners (or morphisms) in Rep(Uq(sln)) and Kuperberg, Cautis, Kamnitzer
and Morrison provided the combinatorial framework to work with them.

1.4. Categorification. The notion categorification was introduced by Crane in [23] based
on an earlier work together with Frenkel in [24]. But the concept of categorification has a
much longer history, than the word itself. Forced to explain the concept in one sentence,
I would choose

Interesting integers are shadows of richer structures in categories.

The basic idea can be seen as follows. Take a “set-based” structure S and try to find a
“category-based” structure C such that S is just a shadow of the category C. If the category
C is chosen in a “good” way, then one has an explanation of facts about the structure S
in a categorical language. That is, certain facts in S can be explained as special instances
of natural constructions.

Experience tells us that the categorical structure does not only explain properties of the
set-based structure, but is usually a much richer and more interesting structure.

Categorification comes with an “inverse” called decategorification and categorification
can be seen as “remembering” or “inventing” information and decategorification is more
like “forgetting” or “identifying” structure which is way easier.

Thus, we usually have to specify what we mean by decategorification.

The Euler characteristic decategorification. One of the earliest examples is the Euler char-
acteristic of a reasonable topological space. For instance, take the category Komb(C),
i.e. the category of bounded chain complexes of finite dimensional C-vector spaces. The
decategorification is χ, that is taking the Euler characteristic of a complex. As we explain
now, this approach leads to a construction that categorifies Z.

If we lift m,n ∈ N to the two C-vector spaces V and W with dimensions dimV = m
and dimW = n, then the difference m− n lifts to the complex

0 // W
d // V // 0,

for any linear map d and V in even homology degree. In order to lift the subtraction as
well, we iterate: if we have lifted m,n to complexes C,D with χ(C) = m,χ(D) = n, then
we can lift m − n to Γ(ϕ) for any map ϕ : C → D between complexes, where Γ denotes
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the cone complex that is obtained by taking direct sums along the diagonals as indicated
below.

. . .
ci−2

// Ci−1

−ci−1
//

ϕi−1

��

⊕

Ci

−ci //

ϕi

��

⊕

Ci+1

−ci+1
//

ϕi+1

��

⊕

. . .

⊕

. . .
di−2

// Di−1

di−1
// Di

di // Di+1

di+1
// . . .

This construction is not artificial, i.e. the Betti numbers of a reasonable topological space
X can be categorified using homology groups Hk(X,Z) and the Euler characteristic χ(X)
of a reasonable topological space can be categorified using chain complexes (C(X), c∗) - an
observation which goes back to Noether, Hopf and Alexandroff in the 1920’s in Göttingen.
Although of course they never called it categorification. We note the following observations.

• The homology extends to a functor and provides information about continuous
maps as well.

• The space Hk(X,Z) is a graded abelian group, while the Betti number is just a
number. More information of the space X is encoded. Homomorphisms between
the groups tell how some groups are related.

• Singular homology works for all topological spaces. And while the Euler char-
acteristic is only defined (in its initially, naive formulation) for spaces with finite
CW-decomposition, the homological Euler characteristic can be defined for a bigger
class of spaces.

• More sophisticated constructions like multiplication in cohomology provide even
more information.

• Not the main point, but: the Hk(X,Z) are better invariants.

Another example in this spirit is the so-called categorification of the Jones (or sl2)
polynomial from Khovanov [49]. We follow the normalization used of Bar-Natan in [9].
Let LD be a diagram of an oriented link. We denote the number of positive crossings by
n+ and the number of negative crossings by n− as shown in the figures below respectively.

n+ = number of crossings n− = number of crossings

The bracket polynomial of the diagram LD (without orientations) is a specific polynomial
〈LD〉 ∈ Z[q, q−1] given recursively by the following rules.

• 〈∅〉 = 1 (normalization).

• 〈 〉 = 〈 〉 − q〈 〉 (recursion step 1).

• 〈©∐ LD〉 = [2]〈LD〉 = (q + q−1)〈LD〉 (recursion step 2).
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Then the Kauffman polynomial K(LD) of the oriented diagram LD is defined by a shift
and the Jones polynomial J(LD) by a re-normalization, i.e. by

K(LD) = (−1)n−qn+−2n
−〈LD〉 and K(LD) = (q + q−1)J(LD).

This provides a possibility to calculate these polynomials recursively : start with any link
diagram LD and replace its crossings recursively by using the recursion step 1. After
that, one is left with a q-weighted sum of diagrams of circles that can be again recursively
removed by using the recursion rule 2 until one has a q-weighted sum of the empty diagram.
Then one applies the normalization.

It is non-trivial that this process is well-defined and gives an invariant of links, but it is
known that this provides a well-defined invariant of (oriented) links.

Khovanov’s idea given in [49] and reformulated by Bar-Natan in [9] is based on the idea
from the categorification of the Euler characteristic χ(X) explained above, i.e. if one can
categorify a number in χ(X) ∈ Z using chain complexes, then one can try to categorify a
polynomial in J(LD) ∈ Z[q, q−1] using chain complexes of graded vector spaces (note that
it works over Z as well - Khovanov’s original work uses Z[c] with c of degree two).

This is an almost “classical” way (in the field of categorification) to think about q’s: they
come from some grading on some category and multiplication by q comes from a grading
shifting functor.

In particular, if V denotes a two dimensional C-vector space with a basis element v+
of degree 1 and a basis element v− of degree −1 (the graded dimension is q + q−1), then
Khovanov categorifies the normalization and the recursion step 2 conditions from above as

J∅K = 0 → C → 0 and J©∐ LDK = V ⊗C JLDK,

where J·K takes values in the category of chain complexes of finite dimensional, graded
C-vector spaces. Let Γ(·) denote the cone complex. To categorify the recursion-step 1
condition Khovanov proposed the rule

r z
= Γ

(
0 →

r z
d
→

r z
→ 0

)
.

Of course, the differential d is a main ingredient here. Details can be for example found
in [9]. This, in a “higher” way as above for the polynomials, gives the Khovanov complex
recursively.

Note that the shift from [9] is already included in the usage of the cone. Indeed, the
appearance of chain complexes and the rule above suggest an alternative construction by
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actions of functors on certain categories. Details can be found for example in the work of
Stroppel [96].

A fundamental question is now: can we see “higher” representation theory of the quan-
tum groups from Subsection 1.1 for these link homologies turning up like on the uncate-
gorified level explained in Subsection 1.2?

In fact, history repeats itself: before Khovanov there was a lack of link homologies and
after Khovanov there were too many. The question was and is to order them and explain
their appearance. This is a big motivation of the author: “explain” these homologies using
“higher” representation theory. Roughly: study the symmetries of “categorified” quantum
groups and related categorifications (which reflect the neat story on the uncategorified level
from Subsection 1.1 in a categorical framework) and apply it to study link homologies.

The Grothendieck group decategorification. In algebra there is a related notion of categori-
fication: the decategorification is the K0 this time. Recall that roughly, if A is an abelian
category, the Grothendieck group K0(A) of A is defined as the quotient of the free abelian
group generated by all (isomorphism classes of) A ∈ Ob(A) modulo the relation

A2 = A1 + A3 ⇔ ∃ an exact sequence 0 → A1 → A2 → A3 → 0.

It is easy to check that for this construction, given an additive function φ : A → A′ for an
abelian group A′, there exists a unique group homomorphism Φ: K0(A) → A′ such that
the following diagram commutes.

A
K0(·)

//

φ
""❊

❊❊
❊❊

❊❊
❊❊

K0(A)

∃!Φ
{{①①
①①
①①
①①
①

A′

Hence, one can say that this construction is the “most natural” way to make the category
A into an abelian group K0(A). For additive or triangulated categories there are related
notions of split K⊕

0 and triangulated K∆
0 Grothendieck groups. For details, see for example

Section 1.2 in [77].

It is worth noting that one motivation to introduce and study Grothendieck groups in
the mid 1950s was to give a definition of generalized Euler characteristic. To be more
precise. Denote by (C∗, c∗) ∈ Ob(Komb(C)) a bounded complex for a suitable category C.
Then the Euler characteristic of (C∗, c∗) is defined by

χ(C∗) =
∑

i∈Z

(−1)i[Ci],
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with [Ci] ∈ K0(C). This coincides with the Euler characteristic above.

A categorification of an algebra A can best be described as an “anti”-Grothendieck group
of A, i.e. find a suitable category (or 2-category) C whose K0 is isomorphic to A.

This works roughly as follows. The Grothendieck group K0 of a suitable category C is an
abelian group. If C comes with a monoidal structure ⊗, then this induces the structure of
a ring on K0(C). Thus, tensoring with C gives an C-algebra KC

0 = K0(C)⊗ZC. Analogous
constructions work for A-modules as well.

A simple example of this is the following. Take the category C =FinVecC for the field
C, i.e. the objects are finite dimensional C-vector spaces V,W, . . . and the morphisms are
C-linear maps f : V → W between them. Then K0(C) ∼= Z via the map [C] 7→ 1 and the
multiplication · in Z is induced by the tensor product ⊗ of C.

Thus, C =FinVecC categorifies Z.

Note the following neat upshot: if C has a suitable set of “irreducible objects” Xi, then
A ∼= KC

0 has a basis induced by [Xi] ∈ KC
0 with only positive, integral structure coefficients,

because

Xi ⊗Xj
∼= X1 ⊕ · · · ⊕Xk  [Xi] · [Xj] = [X1] + · · ·+ [Xk].

With respect to the quantum groups from Subsection 1.1 for generic q, there is another
nice upshot of the Grothendieck group construction. If the category C is Z-graded, then
the ring K0(C) is not just a Z-module, but a Z[q, q−1]-module. The q comes from the
grading of the category C and the shift up and down endofunctors Fu,Fd : C → C induce
the multiplication with q and q−1.

Combining both: good examples of such bases are the Kazhdan-Lusztig bases of the
Hecke algebras and Lusztigs canonical bases (or, equivalently, Kashiwara’s lower global
crystal bases) of the quantum Kac-Moody algebras from Subsection 1.1.

The original construction of these bases and the proof of their remarkable positive in-
tegrality properties relied on a “geometric categorification”, i.e. using perverse sheaves.
Kazhdan and Lusztig’s work has inspired much of work, although more modern approaches
use a different way of categorification. Lusztig’s work is a “classic” in geometric represen-
tation theory, see e.g. Chapter 14.4 in [67].

In short for the Uq(sln)’s: if one studies Uq(sln) careful enough, then one realizes that
it has rather surprising “rigid” properties. For example, the existence of (dual) canonical
basis seems to be a purely “quantum” feature with no real analogon in the classical case.
But these basis have also a very rigid behaviour which is highly related to combinatorics
of Hecke algebras, certain Springer fibers and flag manifolds. Shouldn’t there be a graded,
monoidal category C “pulling the strings from the background”? Or stated otherwise:
shouldn’t there be a categorification of the quantum group and its symmetries (modules)?
Note that it is reasonable to assume that such a categorification would reflect the relations
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sketched in Subsection 1.1 on a higher level and provide more insights in the related fields
as well.

In fact, Crane and Frenkel conjecture in the mid of the 90ties that there should be a
category “pulling the strings from the background” such that the quantum groups are just
special instances of natural constructions in the category. In particular, they were hoping
to see a “categorification” of the Witten-Reshetikhin-Turaev invariants of 3-manifolds (this
would mean q is a root of unity): a 3 + 1-dimensional TQFT that provides information
about smooth 4-manifolds. Well, the story at roots of unity is rather tricky, but:

Khovanov and Lauda and independently Rouquier (see [55], [56] and [57] or [90]) have
defined a “categorification” of quantum Uq(sln) (generic q), denoted by U(sln), and its
irreducible VΛ representation of highest weight Λ, denoted by RΛ. The algebra RΛ (which
is also a 2-category) is the so-called cyclotomic KL-R algebra which is highly related to
cohomologies of partial flag and quiver varieties. Both categories have a nice diagrammatic
presentation by generators and relations. For example, the algebra RΛ can be defined by
diagrams and relations as

or or or and

id i3 i2 i1

Λi1

Λ

= 0

and additional “braid-like” relations. The cyclotomic KL-R algebra has the structure of a
Z-graded, C-algebra. But the point is: we know that Uq(sln) and VΛ are interesting and
related to many parts of modern mathematics. Shouldn’t we expect that U(sln) and RΛ

are even more interesting and reflect these relations on a “higher” level? The recent years
have shown that this is in fact true!

This is another main motivation of the author: study the symmetries of categorified
quantum groups and related categorifications and apply it to the study of Hecke algebras,
(dual) canonical bases, “higher” combinatorics, representation theory and category theory.

1.5. A list of examples of categorification. Indeed, although there are other ways
how to “categorify”, the two decategorifications from Subsection 1.4, that is, using the
(graded) Euler characteristic and the Grothendieck group, are the ones mostly related to
my research. We provide a list of other interesting examples. This list is (already long
but) far from being complete.

Much more can be found in the work of Baez and Dolan [6] and [7] for examples that
are related to more combinatorial parts of categorification or Crane and Yetter [25] and
Khovanov, Mazorchuk and Stroppel [58] or Savage [92] for examples from algebraic cate-
gorification.

• Khovanov’s construction can be extended to a categorification of the Reshetikhin-
Turaev sln-link polynomial and the HOMFLY-PT polynomial, e.g. see [60] and [61].
Moreover, some applications of Khovanov’s categorification are:
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– It is functorial, e.g. see [20]: it “knows” about cobordisms between links. Since
cobordism between links L, L′ ∈ S3 are cobordisms embedded in the four ball
B4, this gives a way to get information about smooth structures in dimension
4 (and 4-dimensional, smooth topology is hell)!

– Kronheimer and Mrowka showed in [63], by comparing Khovanov homology to
Knot Floer homology, that Khovanov homology detects the unknot. This is
still an open question for the Jones polynomial.

– Rasmussen obtained his famous invariant by comparing Khovanov homology
to a variation of it. He used it to give a combinatorial proof of the Milnor
conjecture, see [84]. Note that he also gives in [85] a way to construct exotic
R4 from his approach.

– There is a variant of Khovanov homology, called odd Khovanov homology,
see [81], that differs over Q and can not be seen on the level of polynomials.

– Not the main point again, but: it is strictly stronger than the Jones polynomial.
• Floer homology can be seen as a categorification of the Casson invariant of a mani-
fold. Floer homology is again “better” than the Casson invariant, e.g. it is possible
to construct a 3+1 dimensional Topological Quantum Field Theory (TQFT) which
for closed four dimensional manifolds gives Donaldson’s invariants, see for exam-
ple [111].

• Knot Floer homology can be seen as a categorification of the Alexander-Conway
knot invariant, see for example [82].

• Ariki gave in [5] a remarkable categorification of all finite dimensional, irreducible
representation of sln for all n as well as a categorification of integrable, irreducible

representations of the affine version ŝln. In short, he identified the Grothendieck
group of blocks of so-called Ariki-Koike cyclotomic Hecke algebras with weight
spaces of such representations in such a way that direct summands of induction
and restriction functors between cyclotomic Hecke algebras for m,m+1 act on the
K0 as the Ei, Fi of sln.

• Chuang and Rouquier masterfully used in [19] the categorification of good old sl2
to solve an open problem in modular representation theory of the symmetric group
by a completely new approach.

• Khovanov and Lauda’s [55], [56] and [57], and independently Rouquier’s [90], cat-
egorification works more general as stated above. In fact, they categorified all
quantum Kac-Moody algebras with their canonical bases and the cyclotomic KL-R
algebra RΛ works for the more general set-up as well.

• The approach of Webster, recently updated in [109], to categorify the Reshetikhin-
Turaev g-polynomial for arbitrary simple Lie algebra g.

• Khovanov and Qi [59] and Elias and Qi [30] have a recent approach how to categorify
at roots of unity. Their categorification of Uq(sl2) for q being a (certain type of)
root of unity can be (the future will prove me right or wrong) the first step to
categorify the Witten-Reshetikhin-Turaev invariants of 3-manifolds.
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• The so-called Soergel category S can be seen in the same vein as a categorification
of the Hecke algebras in the sense that the split Grothendieck group gives the Hecke
algebras. We note that Soergel’s construction shows that Kazhdan-Lusztig bases
have positive integrality properties, see [94] and related publications.

• In Conformal Field Theory (CFT) researchers study fusion algebras, e.g. the Ver-
linde algebra. Examples of categorifications of such algebras are known, e.g. using
categories connected to the representation theory of quantum groups at roots of
unity [53], and contain more information than these algebras, e.g. the R-matrix
and the quantum 6j-symbols.

• The Witten genus of certain moduli spaces can be seen as an element of Z[[q]]. It
can be realized using elliptic cohomology, see [4] and related papers.
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2. Previous research

My main research interest so far has always been an attempt to find interesting categori-
fications of known mathematical structures, in order to study them and their applications.
The fact I like about my field of research is that it “sits in-between” different fields. Thus,
my research is mostly an interplay between algebra, category theory, combinatorics and
low-dimensional topology.

2.1. Virtual link homologies. In my first two pre-prints [104] and [103] I have studied
generalizations of the Khovanov homology (see Subsection 1.4) to a bigger class of knots
and links, i.e. the so-called virtual knots and links.

To be more precise, virtual link diagrams LD are planar graphs of valency four where
every vertex is either an overcrossing , an undercrossing or a virtual crossing , which
is marked with a circle. We also allow circles, i.e. closed edges without any vertices.

A virtual link L is an equivalence class of virtual link diagrams modulo planar isotopies
and generalized Reidemeister moves, see Figure 1.

RM1 RM2

vRM1 vRM2

mRM

vRM3RM3

Figure 1. The generalized Reidemeister moves are the moves pictured plus
mirror images.

Virtual links are an essential part of modern knot theory and were proposed by Kauffman
in [45]. They arise from the study of links which are embedded in a thickened Σg for an
orientable surface Σg. These links were studied by Jaeger, Kauffman and Saleur in [43].
Note that for classical links the surface is Σg = S2, i.e. virtual links are a generalization
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of classical links and they should for example have analogous “applications” in quantum
physics.

A fact we would like to add: while classical knots and links are known to be related to
the study of quantum groups for quite some time now (see e.g. Subsection 1.2), it is not
clear what a suitable interpretation of virtual knots and links in this direction should be.

Anyway: from the perception above, virtual links are a combinatorial interpretation
of projections on Σg. It is known that two virtual link diagrams are equivalent iff their
corresponding surface embeddings are stably equivalent, i.e. equal modulo:

• The Reidemeister moves RM1, RM2 and RM3 and isotopies.
• Adding/removing handles which do not affect the link diagram.
• Homeomorphisms of surfaces.

For a sketch of the proof see Kauffman [46]. For an example see Figure 2.

=

=

Figure 2. Two knot diagrams on a torus. The first virtual knot is called
the virtual trefoil.

One of the greatest developments in modern knot theory was the discovery of Kho-
vanov homology by Khovanov in his famous paper [49] (Bar-Natan gave an exposition of
Khovanov’s construction in [9]). As explained in Subsection 1.4, Khovanov homology is
a categorification of the Jones polynomial in the sense that the graded Euler characteris-
tic of the Khovanov complex, which we call the classical Khovanov complex, is the Jones
polynomial (up to normalization).

Recall that the Jones polynomial is known to be related to various parts of modern
mathematics and physics, e.g. it origin lies in the study of von Neumann algebras. We note
that the Jones polynomial can be extended to virtual links in a rather straightforward way,
see e.g. [46]. We call this extension the virtual Jones polynomial or virtual sl2-polynomial.

As a categorification, Khovanov homology reflects these connections on a “higher level”.
Moreover, the Khovanov homology of classical links is strictly stronger than its decategori-
fication, e.g. see [9]. Another great development was the topological interpretation of the
Khovanov complex by Bar-Natan in [8]. This topological interpretation is a generalization
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of the classical Khovanov complex for classical links and one of its modifications has func-
torial properties, see e.g. [20]. He constructed a topological complex whose chain groups are
formal direct sums of classical link resolutions and whose differentials are formal matrices
of cobordisms between these resolutions.

An algebraic categorification of the virtual Jones polynomial over the ring Z/2 is rather
straightforward and was done by Manturov in [76]. Moreover, he also published a version
over the integers Z later in [75]. A topological categorification was done by Turaev and
Turner in [106], but their version does not generalize Khovanov homology, since their
complex is not bi-graded. Another problem with their version is that it is not clear how
to compute the homology.

I gave a topological categorification which generalizes the version of Turaev and Turner
in the sense that a restriction of the version given in [104] gives the topological complex
of Turaev and Turner, another restriction gives a bi-graded complex that agrees with
the Khovanov complex for classical links and another restriction gives the so-called Lee
complex, i.e. a variant of the Khovanov complex that can be used to define the Rasmussen
invariant of a classical knot, see [84], which is also not included in the version of Turaev
and Turner. Moreover, the version given in [104] is computable and also strictly stronger
than the virtual Jones polynomial.

Another restriction of the construction from [104] gives a different version than the one
given by Manturov [75] in the sense that we conjecture it to be strictly stronger than his
version. Moreover, in [103], the author extended the construction to virtual tangles in a
“good way”, something that is not known for Manturov’s construction.

I also showed that this constructions can be compared to so-called skew-extended Frobe-
nius algebras. With this he was able to classify all possible virtual link homologies from
our approach. It should be noted that all the classical homologies are included.

Moreover, I have written a computer program for calculations.

2.2. Web algebras. In a second research project [71] and [101] (partially joint work with
Mackaay and Pan) we studied a new algebra KS, which is a categorification of Kuperberg’s
web spaces: Kuperberg showed [64] that the sl3-web space WS of sl3-webs with boundary
S = (S1, . . . , Sm) with Sk = ± (called sign string) is isomorphic to the space of invariant
tensors InvUq(sl3)(VS) mentioned above in Subsection 1.3. Recall that V+ = Λ1

qC
3
q and

V− = Λ2
qC

3
q are the two non-trivial fundamental representations.

On the uncategorified level we studied in [71] skew q-Howe duality in the context of
sl3-webs. Very briefly, this means that we defined an action of Uq(slm) on a sl3-web with
m boundary components using so-called ladder operators.

Ei1λ, Fi1λ 7→

λ1 λi−1 λi λi+1

λ1 λi−1 λi±1 λi+1∓1

λi+2

λi+2

λm

λm
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That is, the Ei, Fi ∈ Uq(slm) act one the given sl3-web by gluing ladders on top of the
sl3-web. This shows that the sl3-web space (recall: This space talks about the representa-
tion category Rep(Uq(sl3)), thus, about intertwiners which are way more interesting and
complicated than the representations themselves) is a module over Uq(slm) - or even better :
it is the irreducible Uq(slm)-module of a certain highest weight Λ. This provides a neat and
powerful tool to study Rep(Uq(sl3)) using the well-known5 highest weight representation
theory of Uq(slm).

To explain what we showed, assume for simplicity that |+ |+2| − | = 3ℓ, where | ± | are
the number of pluses and minuses in S. Without giving the details here, by skew q-Howe
duality this implies that

V(3ℓ)
∼=

⊕

S

WS,

where V(3ℓ) is the irreducible Uq(gl3ℓ)-representation of highest weight λ = (3ℓ) and, by
restriction, this gives rise to a Uq(sl3ℓ)-representation.

But our main part in [71] is the categorification of Kuperberg’s web space using cate-
gorified skew q-Howe duality!

To be a little bit more precise, we defined in [71] the sl3 analogue of Khovanov’s arc
algebras H2, introduced in [50]. We call them sl3-web algebras and denote them by KS,
where S is a sign string. KS is a topological algebra.

Khovanov uses in his paper so-called arc diagrams, which give a diagrammatic presenta-
tion of the representation theory of Uq(sl2). These diagrams are related to the Kauffman
calculus for the Jones polynomial mentioned in Subsection 1.4. Since we defined an sl3
analogue, we use the Kuperberg sl3-webs from Subsection 1.3. These sl3-webs give a di-
agrammatic presentation of the representation theory of Uq(sl3). And of course, instead
of sl2-cobordisms, which Bar-Natan used in [8] to give his formulation of Khovanov’s cate-
gorification of the sl2-link polynomial, we use Khovanov’s [48] sl3-foams, which he used to
categorify the sl3-link polynomial. For example, a sl3-foam is a type of singular cobordism
between sl3-webs.

The pictured foam is amorphism between the two sl3-webs at the bottom and top boundary
of the singular cobordism.

Another motivation to study KS comes from Brundan and Stroppel’s work. That is, the
work of Brundan and Stroppel on generalizations of the arc algebra, intensively stud-
ied in the series of papers [12], [13], [14], [15] and [16] (and additionally studied e.g.
in [18], [52], [97] and [98]), suggested that these algebras, in addition to their relations

5As usual: well-known means more than one person knows it.
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to knot theory, also have an interesting underlying representation theoretical and combi-
natorial structure.

The main idea was the usage of “categorified” skew q-Howe duality. This means for us
that we have defined an action of Khovanov-Lauda’s categorification U(slm) on our “foam”
constructions. This action can be extended to a 2-representation of U(slm). The following
picture illustrates this.

i,λ

7→

λi

λi+1

i,i,λ

7→ −

λi

λi+1

The pictured diagrams on the left sides are generators of Khovanov-Lauda’s diagrammatic
categorification U(slm) mentioned in Subsection 1.4. Moreover, one can see the above
mentioned ladder operators, i.e. the action on the level of sl3-webs, at the bottom and top
of the pictured foam.

To summarize: We proved the following main results regarding KS.

(1) KS is a graded, symmetric Frobenius algebra.
(2) We give an explicit degree preserving algebra isomorphism between the cohomol-

ogy ring of the Spaltenstein variety Xλ
µ and Z(KS). This generalized Khovanov’s

results [52] from the sl2 case.
(3) We have categorified Kuperberg’s results using a categorified version of skew q-

Howe duality, i.e. let R(3ℓ) be the cyclotomic Khovanov-Lauda Rouquier algebra

(cyclotomic KL-R algebra) with highest weight (3ℓ). We proved that there exists
an exact, degree preserving categorical U(slm)-action on

⊕

S

KS-Modgr,

where U(slm) is again Khovanov and Lauda’s diagrammatic categorification of

U̇q(slm). This categorical action can be restricted to

⊕

S

KS-pModgr.

By a general result due to Rouquier [90], we get

R(3ℓ)-pModgr
∼=

⊕

S

KS-pModgr.
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(4) In particular, this proves that the split Grothendieck groups of both categories are
isomorphic. It follows that we have

K⊕
0

(
KS-pModgr

)
∼= W Z

S ,

for any S. The superscript Z denotes the integral form.
(5) The equivalence in (3) implies that R(3ℓ) and

⊕
S KS are Morita equivalent, i.e. we

have
R(3ℓ)-Modgr

∼=
⊕

S

KS-Modgr.

(6) We have showed that (5) implies that KS is a graded cellular algebra, for any S.
(7) We show that the graded, indecomposable, projective KS-modules correspond to

the dual canonical basis elements in InvUq(sl3)(VS).

It has turned out that our approach was suitable to be generalized to n > 3. In fact,
most of our arguments could just be copied for n > 3, although the technicalities get much
harder, see in the work of Mackaay and Yonezawa [70] and [74].

A related point is to prove similar results as Brundan and Stroppel showed for the
sl2 analogues (in their sequence of papers [12], [13], [14], [15] and [16] mentioned above),
denoted by H2, of our algebra KS. For example, they showed that H2 is a graded cellu-
lar algebra by constructing an explicit cellular basis. Using the explicit basis, they also
constructed the quasi-hereditary cover of H2.

I was able to construct such an explicit graded cellular basis for KS in [101] by giving a
growth algorithm for foams that produces a “foamy” version of Hu and Mathas (see [42])
graded cellular basis for the cyclotomic KL-R algebra.

Note that Kuperberg gave a diagrammatic basis BS of his sl3-web spaceWS. Researchers
hoped that this basis is a diagrammatic version the dual canonical basis as in the n = 2
case provided by the arc basis, until Khovanov and Kuperberg showed in [54] that this
is not true. No diagrammatic presentation of the dual canonical basis is known for the
web spaces outside of n = 2. They raised the question how these bases relate to the dual
canonical bases.

But in the paper [101] I have identified Kuperberg’s sl3-basis BS with a so-called inter-
mediate crystal basis in the sense of Leclerc and Toffin [66]. This answers immediately the
old question how BS is related to the dual canonical basis of WS, namely it shows that
they are related by an unitriangular change-of-base matrix.

In fact, my construction of the explicit cellular basis for the sl3-web algebra categorifies
these intermediate crystal basis: the projective covers of the cell modules obtained from
my cellular basis categorify the intermediate crystal basis and their simple heads the dual
canonical basis.
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Furthermore, my paper gives topological interpretations of Brundan-Kleshchev-Wang’s
degree of tableaux [11] (which is rather mysterious in their framework) and Hu and Mathas
graded cellular basis [42] and fills in some “holes” about the sl3-web spaces, e.g. I give a
growth algorithm for sl3-webs that generalizes immediately to n > 4 (and I claim that this
is the “right” version of a basis for the sln-webs that is not Fontaine’s basis or the Satake
basis - see [37] and [38]).

Recall that a finite dimensional algebra A is quasi-hereditary iff its module category
A−Mod is a so-called highest weight category, see [21], where latter notions is motivated
by the classical story of Weyl’s wonderful theory of highest weights for classical Lie algebras
g as indicated in Subsection 1.1. Thus, how to explicitly construct a quasi-hereditary cover
of KS is a natural, but still open, question.

2.3. Khovanov-Rozansky’s sln-link homology and q-skew Howe duality. In my
paper [102] I take up the ideas from Subsections 1.2, 1.3 and 2.2 and categorify them.

That is, I discuss how to use the categorification of skew q-Howe duality to obtain
and compute colored (the colors are the various fundamental representations) Khovanov-

Rozansky’s sln-link homologies using the sln generalizations of KS denoted by Hn(~k) or by
Hn(Λ).

Let me first discuss the uncategorified picture. As indicated in Subsection 1.2, we have
the following classical picture.

sln-webs oo
Intertwiner

//

Kauffman, Kuperberg, MOY
❘❘❘

❘❘❘

))❘❘
❘❘

❘

Uq(sln)-tensors

Reshetikhin, Turaev
❥❥❥

❥❥

tt❥❥❥
❥❥❥

sln-link polynomials

But we also get the following Howe-dual picture.

sln-webs oo
Howe-duality

//

Kauffman, Kuperberg, MOY
❘❘❘

❘❘❘

))❘❘
❘❘

❘

Uq(slm)-irreducibles

Lusztig, Cautis, Kamnitzer, Licata
✐✐✐

✐✐✐

tt✐✐✐✐
✐✐✐

sln-link polynomials

Hence, one has found a new, neat and useful “explanation” for the sln-link polynomials.

For example, if one wants to calculate the polynomials of a link diagram LD, then the
m is fixed by the diagram, but the n can vary.

How to make this on the nose explicit is what I show in the first part of my paper [102].
I show even something stronger : the lower part U−

q (slm) (only consisting of F ’s) suffices
for everything.
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Note that the “evaluation” of sln-webs is connected to the colored Reshetikhin-Turaev
sln-link polynomial (as sketched in Subsection 1.2), but the “usual, classical” translation
of a a, b-colored crossing into sums of sln-webs would use E’s and F ’s, e.g.

〈

ba

〉

n

=
b∑

k=0

(−1)k+(a+1)bq−b+k

︸ ︷︷ ︸
α(k)

·

a b

a+k−b

k

a+k b−k

b a

!

b∑

k=0

α(k) · F
(a+k−b)
i E

(k)
i v...a,b...

Thus, we had to rearrange it (this corresponds to an embedding of U̇q(sli) into U̇q(sli+1)

and then use the relations in U̇q(sli+1) to re-write F
(a+k−b)
i E

(k)
i in U̇q(sli+1)), using the

observation that any sln-web can be obtained by a string of F
(j)
i ’s, to

b∑

k=0

α(k) ·

F
(a+k−b)
i+1

a b 0

F
(a)
i

a k b− k
F

(b−k)
i+1

0 a + k b− k

0 b a

!

b∑

k=0

α(k) · F
(a+k−b)
i+1 F

(a)
i F

(b−k)
i+1 v...a,b....

A neat fact is that the invariance under the Reidemeister moves, as we sketch in [101],
are then just instances of the higher quantum Serre relations (which can be found e.g. in
Chapter 7 of Lusztig’s book [68]). We give, using this, an explicit algorithm to compute
the colored Reshetikhin-Turaev sln-polynomials. Our version is completely combinatorial
in nature and has the nice upshot that there is no conceptual difference between different
n and between the un-colored and colored setting.

Now comes the upshot: recall that, on the uncategorified level, Rep(Uq(sln)) is the
highest weight module of Uq(slm) of highest weight Λ. This reflects on the categorified
level by saying that their module categories are equivalent:

RΛ − pModgr
∼= Hn(Λ)− pModgr.

Thus, they have the same symmetries.

Hence, we get the following Howe-dual picture

sln-foams oo
Howe 2-duality

//

Khovanov, Khovanov-Rozansky
❘❘

❘❘
❘

))❘❘
❘❘❘

cyl. KRL algebra RΛ

A combinatorial way?
✐✐✐

✐✐✐

tt✐✐✐
✐✐✐

sln-knot homologies
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I filled in [102] the left arrow with a positive answer. This provides a completely combi-
natorial explanation and a way to obtain and calculate the Khovanov-Rozansky sln-link
homologies for all links and all n (and all colors).

In fact, I showed something stronger again. I showed that the topological sln-web algebra
Hn(Λ) is graded isomorphic to a certain idempotent truncation of the (thick) cyclotomic
KL-R algebra RΛ by extending Hu and Mathas graded cellular basis from [42] to the thick
case by giving a “sln-foamy version” of it.

To summarize: I prove in [102] the following main results on the uncategorified level.

• The combinatorial heart my paper is the extended growth algorithm that gives a
bijection between sln-webs with flows and n-multitableaux. Everything done on
the uncategorified level in [101] follows in the same vein for general n.

• We also extend this explicit bijection to match Brundan, Kleshchev and Wang’s
degree of n-multitableaux with weights of flows.

• We use this to give an evaluation algorithm for closed sln-webs and its application
to the dual canonical basis.

• We show how to use the n-multitableaux set-up to compute the colored Reshetikhin-
Turaev sln-polynomials. A neat fact (although we only sketch how it works): the
invariance under the Reidemeister moves is a consequence of the higher Serre rela-
tions.

I prove in [102] the following main results on the categorified level.

• We give the sln-web version of the Hu and Mathas basis by a growth algorithm and
show that it is a graded cellular basis.

• We relate our construction to the thick cyclotomic KL-R algebra by showing that
Hn(Λ) is graded isomorphic to a certain idempotent truncation of the thick cyclo-
tomic KL-R algebra.

• We define our purely combinatorial version of the colored sln-link homology in
Definition and show that it agrees with the colored Khovanov-Rozansky sln-link
homology.

• We show how to use the sln-web version of the Hu and Mathas basis for (honest)
calculations.

Note that my work shows that the Khovanov-Rozansky sln-link homologies are com-
pletely combinatorial in nature. Thus, everything is “down to earth” and can be made
explicit.

Another highly interesting project is connected to the “type D” algebra defined by Ehrig
and Stroppel [32], [33], [34] and [35]. Using this “type D skew Howe duality” one could for
example extend Kuperberg’s web spaces to other types and hopefully define also some kind
of categorification of these and relate them to possible “not type A”-Khovanov homologies.
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2.4. Diagrammatic categorification and Uq-tilting modules at roots of unity.

Let us denote by Uq short the Q(q)-algebra Uq(sl2) for q being a fixed root of unity6

(of any order l > 2). Let me explain my joint work with Henning Haahr Andersen on
categorification at roots of unity, see [3]. In the cited paper we study the quantum group
Uq where q is an l-th root of unity, its category of tilting modules T and the category of
projective endofunctors pEnd(T) combinatorially and diagrammatically.

It turns out, when studying the representation theory of Uq, a certain category of tilting
modules T comes up naturally. The category T is inspired by the corresponding category
of tilting modules for reductive algebraic groups due to Donkin [27] (see also Ringel [87])
and shares most of its properties, see for example [1].

It turns out, despite the fact that this is the category one needs to study the (non-semi
simple!) finite dimensional representation theory of Uq, that this category is useful for
various reasons. As explained at the end of Subsection 1.1 this gives a way to study the
(very hard!) representation theory of G over a field K of positive characteristic. And, as
explained for example in [1], this category gives rise to a so-called modular category (in the
sense of Turaev [105]) that provides the algebraic framework to generate 3+1-dimensional
TQFT’s and the Witten-Reshetikhin-Turaev invariants of 3-manifolds (as we recalled at
the end of Subsection 1.2).

Thus, we claim that this category is worthwhile to study.

A ground-breaking development towards proving the so-called Kazhdan-Lusztig conjec-
tures was initiated by Soergel in [94] (see also Subsection 1.5). He defines a combinatorial
category S consisting of objects that are bimodules over a polynomial ring R. These bi-
modules are nowadays commonly called Soergel bimodules and are indecomposable direct
summands of tensor products of modules denoted by Bi.

His category is additive, monoidal and graded and he proves that the Grothendieck
group K0 of it is isomorphic to an integral form of the Hecke algebra Hv(W ) associated
to the Weyl group W of the simple Lie algebra g in question. Here the grading and
the corresponding shifting functors give on the level of Grothendieck groups rise to the
indeterminate v of the Hecke algebra Hv(W ).

In fact, in the spirit of categorification outlined by Crane and Frenkel in the 90s, graded
categories C (or 2-categories) give rise to a structure of a Z[v, v−1]-module on K0(C).
Many examples of this kind of categorification are known as we (tried to) explain in Sub-
sections 1.4 and 1.5.

Thus, it is natural to ask if we can introduce a non-trivial grading on T as well. We do
this by using an argument pioneered by Soergel (see [93]) in the ungraded and Beilinson,
Ginzburg and Soergel (see [10]) and Stroppel (see [97]) in the graded case for category O.
Namely, the usage of Soergel’s combinatorial functor Vm that gives rise to an equivalence

6Time for the notation clash mentioned above! Sorry for this bad notation, but v is the indeterminate
in this subsection.
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of a block of O (for g) and a certain full subcategory of Mod − A. The algebra A is the
endomorphism ring of the anti-dominant projective in the block and it can be explicitly
(when the block is regular) identified with the algebra of coinvariants for the Weyl group
associated to g. This algebra can be given a Z-grading and, as Stroppel explains in [97],
this set-up gives rise to graded versions of blocks of category O and the categories of graded
endofunctors on these blocks.

In our case the role of A is played by an “infinite version” A∞ of a quiver algebra Am

that Khovanov and Seidel introduced in [62] in their study of Floer homology. Its “Koszul
version” appears in various contexts related to symplectic topology, algebraic geometry
and representation theory. It is naturally grade and thus, we use this grading to introduce
a graded version Tgr of T (and its endofunctors).

We stress that this is a purely “root of unity” phenomena now: the category of finite
dimensional Uv-modules (for an indeterminate v) is semisimple and has therefore no inter-
esting grading. On the other hand, the grading on Tgr is non-trivial and gives for example
rise (as mentioned above) to a grading for similar modules of reductive algebraic groups
over algebraical closed fields K of prime characteristic. Moreover, an intriguing question is
if one can use the grading on Tgr to obtain new information about invariants of links and
tangles coming from the ribbon structure of T or about the Witten-Reshetikhin-Turaev
invariants.

Life is short, but the paper [3] is not : hopefully these questions will be addressed in a
sequel of the paper [3].

This raises the question, if we can understand Tgr and pEnd(Tgr) by generators and
relations! In fact, we are lucky: as outlined in an even more general framework by Khovanov
in [51], biadjoint functors have a “built-in topology” since, roughly, biadjointness means
that we can straighten out diagrams. To this end, recall that two functors F : C → D
and G : D → C are adjoint (with F being the left adjoint of G) iff there exist natural
transformations called unit ι : idC ⇒ GF and counit ε : FG ⇒ idD such that

(2.4.1) F
idF ◦ι

//

idF

22FGF
ε◦idF // F and G

ι◦idG //

idG

22GFG
idG◦ε

// G

commute.
In the string-2 framework these equations reveal their topological nature: if we pic-

ture the categories C,D as faces, the functors F,G as oriented strings and the natural
transformations as (often not pictured) 0-dimensional coupons, for example

idF = D C

F

F

, idG = C D

G

G

, ι =

D

C

G F

idC

and ε =

C

D

F G

idD
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(where we read from bottom to top and right to left), then the conditions in 2.4.1 are

C D

F

F

= D C

F

F

and D C

G

G

= C D

G

G

If, in addition, F is also right adjoint to G (thus, they are biadjoint), we get similar pictures
as above (as we encourage the reader to verify). Thus, very roughly: “biadjointness=planar
isotopy”.

A main feature of the Bi’s from Soergel categorification of the Hecke algebra Hv(W ) is
that tensoring with Bi is an endofunctor that is self-adjoint and, even stronger, a Frobenius
object, i.e. there are morphisms

Bi → R, R → Bi, Bi → Bi ⊗R Bi and Bi ⊗R Bi → Bi

pictured as (we read from bottom to top and right to left again)

R

Bi

,

Bi

R

,

Bi ⊗ Bi

Bi

and

Bi ⊗ Bi

Bi

that satisfy the Frobenius relations (plus reflections of these)

Frob1: = Frob2: = =

Thus, it is tempting to ask if one can give a diagrammatic categorification for Soergel’s
categorification as well. The observations from above, as Khovanov explains in Section 3
of [51], were the main reason why Khovanov and Elias started to look for such a description.

They were (very) successful in their search and their diagrammatic categorification given
in [29] has inspired many successive work (most mentionable for this paper: Elias’ cate-
gorification of the Hecke algebra Hv(D∞) from [28] called the dihedral cathedral).

Moreover, the “down-to-earth” approach using a diagrammatic description has already
led to seminal results: as Elias and Williamson explain in Subsection 1.3 in [31], their al-
gebraic proof that the Kazhdan-Lusztig polynomials have positive coefficients for arbitrary
Coxeter systems was discovered using the diagrammatic framework (the paper [31] itself
does not contain any diagram).

In our context: the combinatorics of the blocks Tλ (a certain block of T) of T is mostly
governed by two functors Θs and Θt called translation through the s and t-wall respectively.
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Here, following Kazhdan-Lusztig approach from [47], s and t are the two reflections that
generate the affine Weyl group Wl = 〈s, t〉 ∼= D∞ of sl2.

These functors, motivated from the category O analoga, are biadjoint and satisfy Frobe-
nius relations. Moreover, we show that the same still holds in the graded setting.

Thus, it seems reasonable to expect that T
gr
λ and pEnd(Tgr

λ ) have a diagrammatic de-
scription as well. And, since Wl

∼= D∞ (where the latter is the infinite dihedral group),
it seems reasonable to expect that these diagrammatic descriptions are related to Elias’
dihedral cathedral D(∞) from [28].

We prove this in the paper [3]: a certain quotient QD(∞) of D(∞) gives the diagram-
matics behind the (graded!) categories Tgr

λ and pEnd(Tgr
λ ). We point out that, even in our

small sl2 case, the diagrammatic description, due to its “built-in” isotopy invariance and
Frobenius properties (as explained above), eases to work with T

gr
λ and pEnd(Tgr

λ ).

To summarize: We prove in [3] the following main results.

• We gather a lot of “well-known” results about T and prove some additional new
results for the category of its endofunctors pEnd(T).

• We show analoga of Soergel’s Struktursatz and Endomorphismensatz, namely we
show that T is equivalent to a certain module category Mod − A and prove that
A = A∞ is Khovanov-Seidel’s infinite quiver algebra.

• We use this to introduce a non-trivial grading on T and on pEnd(T). Hopefully
this purely “root of unity” phenomena gives new information about the related
invariants of tangles, links and 3-manifolds.

• We identify K⊕
0 (T) with the Burau representation of B∞ (the braid group in a lot of

strands, namely ∞-many strands). The action of B∞ on K⊕
0 (T) is given by certain

arrangements of the translation functors Θs and Θt.
• We give a diagrammatic presentation of the now graded categories T

gr
λ and on

pEnd(Tgr
λ ) motivated by Elias’ dihedral cathedral.

• We indicate how everything will generalize (although it will be less explicit).

2.5. Symmetric webs, Jones-Wenzl recursions and q-Howe duality. A classical
result of Rumer, Teller and Weyl [91], modernly interpreted, states that the so-called
Temperley-Lieb category T L describes the full subcategory of quantum sl2-modules gen-
erated by tensor products of the 2-dimensional vector representation V of quantum sl2,
which we denote by sl2-Mod∧. The former was first introduced in the study of statistical
mechanics (as an algebra and also in the non-quantum setting) by Temperley and Lieb
in [100] and has played an important role in several areas of mathematics and physics.

Explicitly, the objects in T L are non-negative integers, and the morphisms are given
graphically by Z[q, q−1]-linear combinations of non-intersecting tangle diagrams, which we
view as mapping from the k1 boundary points at the bottom of the tangle to the k2 on
the top, modulo boundary preserving isotopy and the local relation for evaluating a circle,
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that is,

(2.5.1) = −[2]

Here, as usual, [a] for a ∈ Z denotes the quantum integer.

Morphisms in T L are locally generated (by taking tensor products ⊗ and compositions
◦ of diagrams (we read from left to right and bottom to top) by the basic diagrams

, ,

where the first diagram corresponds to the identity, and the latter two correspond to the
unique (up to scalar multiplication) sl2-intertwiners V ⊗V → Cq = C(q) and Cq → V ⊗V .
For example,

corresponds to a morphism V ⊗ V ⊗ V → V ⊗ V ⊗ V . It turns out that the isotopy and
circle removal (2.5.1) relations are enough. That is, we have the following.

Theorem 2.1. The category T L and sl2-Mod∧ are equivalent (as pivotal) categories.

It is known that every finite dimensional, irreducible quantum sl2-module appears as a
direct summand of V ⊗k for some big enough k. Thus, we obtain the entire category of
finite dimensional quantum sl2-modules, denoted by sl2-fdMod, by passing to the Karoubi
envelope Kar(T L) of T L. Recall that the Karoubi envelope (sometimes also called idem-
potent completion) is the minimal enlargement of a category in which idempotents split;
objects in this category are (roughly) idempotent morphisms, which should be viewed as
corresponding to their images.

It is a striking question if one can give a diagrammatic description of Kar(T L) as well.

A solution to this question is known: an (in principle) explicit description of the entire
category sl2-fdMod can be given using the Jones-Wenzl projectors (also called Jones-
Wenzl idempotents). These were introduced by Jones in [44] and then further studied by
Wenzl in [110]. The Jones-Wenzl projectors are morphisms in T L which correspond to
projecting onto, then including from, the highest weight irreducible summand Vk ⊂ V ⊗k.
These projectors, which are usually depicted by a box with k incoming and outgoing strands
at the top and bottom, admit a recursive definition describing the k-strand Jones-Wenzl
projector JWk in terms of (k − 1)-strand projector as follows.

(2.5.2)

· · ·

· · ·

JWk =

· · ·

· · ·

JWk−1 +
[k − 1]

[k]

· · ·

· · ·

JWk−1

JWk−1
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We point out that some authors have a different sign convention here. Our convention
comes from the fact that a circle evaluates to −[2] instead of to [2], see (2.5.4).

However, working with such projectors in the Karoubi envelope quickly becomes cum-
bersome and computationally unmanageable due to their recursive definition. In the pa-
per [88], we provide a new, alternative diagrammatic description of the entire category
sl2-fdMod of finite dimensional quantum sl2-modules.

To this end, we introduced our new description of the representation theory of quantum
sl2, the category of symmetric sl2-webs. Here a symmetric sl2-web u is an equivalence class
(modulo boundary preserving planar isotopies) of edge-labeled, trivalent planar graphs
with boundary. The labels for the edges of u are numbers from Z>0 such that, at each
trivalent vertex, two of the edge labels sum to the third.

Definition 2.2. (The free symmetric sl2-spider) The free symmetric sl2-spider, which
we denote by SymSpf(sl2), is the category determined by the following data.

• The objects of SymSpf(sl2) are tuples ~k ∈ Zm
>0 for some m ∈ Z≥0, together with

a zero object. We display their entries ordered from left to right according to their
appearance in ~k. Note that we allow ∅ as an object (corresponding to the empty
sequence in Z0), which is not to be confused with the zero object.

• The morphisms from ~k to ~l, denoted by HomSymSpf (sl2)
(~k,~l), are diagrams with

bottom boundary ~k and top boundary ~l freely generated as a C(q)-vector space by
all symmetric sl2-webs that can be obtained by composition ◦ (vertical gluing) and
tensoring ⊗ (horizontal juxtaposition) of the following basic pieces (including the
empty diagram ∅).

(2.5.3)

k

k

,

k k

,

k k

,

k + l

k l

,

k + l

k l

These are called (from left to right) identity, cap, cup, merge and split.

Definition 2.3. (The symmetric sl2-spider) The symmetric sl2-spider, denoted by
SymSp(sl2), is the quotient category obtained from SymSpf(sl2) by imposing the follow-
ing local relations.

• The standard relations as they already appear in the skew-picture in (2.4), (2.6),
(2.9) and (2.10) [17], but without orientations.

• The symmetric relations, that is, circle removal :

(2.5.4) 1 = −[2],
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and, finally, the dumbbell relation:

(2.5.5)

1 1

1 1

2 = [2]

1 1

1 1

+

1 1

1 1

Armed with this notation, we are ready to formulate our main result.

Theorem 2.4. The additive closure of SymSp(sl2) is monoidally equivalent to sl2-fdMod.

Note that. we must pass to the additive closure in order to make sense of direct sum
decompositions. This is far more satisfying than passing to the Karoubi envelope of T L
since working in the additive closure of a category C is combinatorially “the same” as
working in C.

In particular, the Jones-Wenzl projectors are included in our picture, but without any
recursive formula. Namely, they are directly given via

JWk =
1

[k]!

...

...

1k − 1

1k − 1

k

1k − 2

1k − 2

1k − 3

1k − 3

where we repeatedly split a k-labeled edge until all of the top/bottom edges have label 1.

In fact, we also get a slightly stronger result. To this end, we define the following
morphisms in HomSymSp(sl2)

(
(k, l), (l, k)

)
.

(2.5.6) βSym
k,l =

k l

= (−1)kq−k− kl
2

∑

j1,j2≥0
j1−j2=k−l

(−q)j1

k l

l k

k − j1 l+ j1

j1

j2
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which give rise to the braiding. More generally, for any two objects ~k,~l in SymSp(sl2)
define

βSym
~k,~l

=

k1 . . . ka l1 . . . lb

l1 . . . lb k1 . . . ka

∈ HomSymSp(sl2)

(
(k1, . . . , ka, l1, . . . , lb), (l1, . . . , lb, k1, . . . , ka)

)

by taking tensor products of compositions of the morphisms βSym
k,l . We now aim to show the

following result. To understand it recall that sl2-fdMod is a braided monoidal category
where the braiding is induced via the sl2-R-matrix (the explicit construction of the braided
monoidal structure on the category sl2-fdMod can be found in many sources, e.g. Chapter
XI, Section 2 and Section 7 in [105]).

Theorem 2.5. The morphisms βSym
~k,~l

define a braiding on SymSp(sl2) and the additive

closure of SymSp(sl2) is braided monoidally equivalent to sl2-fdMod.

By using Theorem 2.5 we obtain a new way to define the colored Jones polynomial.

We note that this approach is similar in the 1-colored case to computing the Jones
polynomial using the Kauffman bracket, but in the colored case completely avoids the use
of cabling and Jones-Wenzl projectors, trading them instead for our “symmetric version”
of the MOY-calculus [80] typically used to compute the

∧k
qC

n
q -colored sln-link invariant.

Our main theoretical “tool” is symmetric q-Howe duality (in contrast to skew q-Howe
duality from e.g. Subsection 2.2!). Roughly: we first deduce the existence of a functor
Γsym : SymSp(sl2) → sl2-fdMod, and then show that Γsym induces the desired equiva-
lence of categories. The definition of Γsym is essentially dictated by our desire to have a
commutative diagram

(2.5.7)

Ud(glm)
Φm //

Υm ''❖
❖❖

❖❖
❖❖

❖❖
❖❖

sl2-fdMod

SymSp(sl2)

Γsym

77♥♥♥♥♥♥♥♥♥♥♥♥

Where the functor Φm is the symmetric q-Howe functor induces by symmetric q-Howe
duality.

Or to summarize, we show in the paper [88] the following.

• We define a diagrammatic category SymSp(sl2) and show that SymSp(sl2) is
monoidally equivalent to the category of all finite dimensional Uq(sln)(sl2)-modules
sl2-fdMod.

• We show that this equivalence can be upgraded to an equivalence of braided
monoidal categories.
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• We prove how one can define the colored Jones polynomials via MOY-calculus from
this braiding.

• We indicate how this can be the “explanation” between a “mirror symmetry” be-
tween symmetric and anti-symmetric colored link polynomials.

• We formulate our main tool rigorously: the symmetric q-Howe duality.
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3. Future goals and recent projects

I have collected current projects I am actively working on in this section. Some of them
a quite advanced and some of them are just in the beginnings.

3.1. Tilting categories and graded cellular structures on EndUq(g)(T ). An ongoing
project at the moment is joint work with Henning Haahr Andersen and Catharina Stroppel
and related to representations at roots of unity. This project, which will hopefully turn
out to be the beginning of a more “complete” story, is restricted to n = 2 at the moment
in the pre-print [3].

It turns out that endomorphism ring of Uq(g)-tilting modules are a natural source of
cellular structures in the sense of Graham and Lehrer [40]. This includes a lot of example
and “explains” their cellular structures in the more general framework of EndUq(g)(T ) rings.
Examples are Temperley-Lieb algebras or Brauer algebras and related structures.

Moreover, all of these seem to be graded cellular algebras in the sense of Hu and
Mathas [42]. But, and that is the point, the grading does not come from the tilting theory
anymore, but from the cyclotomic KL-R algebra in the sense of Khovanov-Lauda [55], [56]
and Rouquier [90].

But this is only the type A part of the story: for type D one needs to work in the spirit
of Ehrig-Stroppel as in [32], [33], [34] and [35].

To explore this in detail and give a general framework for graded cellular structures on
endomorphism ring of Uq(g)-tilting modules is the goal of this project.

3.2. Branching rules and link homologies. A current project in preparation that is
joint work with Pedro Vaz is to use the categorical branching rules to “branch down” the
(colored) Khovanov-Rozansky sln-link homologies.

It follows from the equivalence from Subsection 2.3 that one can hope to define the
(colored) Khovanov-Rozansky sln-link homologies just by using the combinatorial data of
the cyclotomic KL-R algebra RΛ. This is what I did in my latest paper [102] by extending
the equivalence from Subsection 2.3: I show that the cyclotomic KL-R algebra RΛ is (up
to some details) isomorphic to the topological sln-web algebra Hn(Λ), see Subsection 2.3.

Thus, it follows that one can define the (colored) Khovanov-Rozansky sln-link homolo-
gies just by using the neat combinatorics of the cyclotomic KL-R algebra. Just one conse-
quence of this is that this makes it possible to do honest calculations of these homologies
- something that was very difficult before.

But this connects the story also to the latest work of Vaz [107] where he “categorifies”
the classical branching rules: recall that RΛ categorifies the slm-module of highest weight
Λ. Thus, there is a dependence on m.

He uses the sequence of embeddings

sl1 →֒ sl2 →֒ sl3 →֒ sl4 →֒ . . .
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to reduce modules over RΛ (let us write short Rm for it) to modules over Rm−1. Then
continue until everything is decomposed into a direct sum of modules over a very simple
algebra R1.

Our approach now is to combine both: it follows from my work that the sln-link ho-
mologies are given as modules over Rm. And it follows from the work of Vaz that these
modules can be reduced as direct summands over a simpler algebra R1.

Since the cyclotomic KL-R algebra is isomorphic to the sln-web algebra this should
reduce the sln-link homologies to simpler cases.

A connection to other types, using the type B, C or D branching rules from [108], or
using different branching rules is also possible.

3.3. Symmetric sl2-link homology. Another project is joint work in progress with David
Rose based on our joint work [88], in which we introduce and explore the world of symmetric
sl2-webs.

We expect that a categorification of our symmetric sl2-web category will be the natural
setting for a categorification of the colored Jones polynomial. We plan to explore exactly
this issue in subsequent work, constructing a 2-category of symmetric sl2-foams, akin to
previous work by Khovanov [49], Mackaay, Stošić and Vaz [72], Morrison and Nieh [79]
and Queffelec and Rose [83].

Such a categorification should give a colored sl2-link homology theory which avoids the
use of infinite complexes categorifying Jones-Wenzl projectors as in [22], [36] or [89], and
hence, will be manifestly finite dimensional (in contrast to those mentioned above, as well
as Webster’s approach [109]).

Finally, we suspect that a duality between symmetric and traditional foams will lead to
a precise formulation of “mirror symmetry” between (symmetric or skew) colored sln-link
homologies.

4. Odds and ends

We have collected some open questions related to my research.

4.1. Virtual knots. Here are some open problems that I have observed. Note that nowa-
days the results about classical Khovanov homology form a highly studied and rich field.
So there are much more open questions related to my construction.

(a) My complex is an extension of the classical (even) Khovanov complex. One could
try to find a method which leads to an extension of odd Khovanov homology [81].
Even and odd Khovanov homology differ over Q but are equal over Z/2.

(b) Secondly, one could try to analyse the relationship between the virtual Khovanov
complex and the categorification of the higher quantum polynomials (n ≥ 3) from
Khovanov in [48] and Mackaay and Vaz in [73] and Mackaay, Stošić and Vaz in [72].
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(c) It would be interesting to find a honest representation theoretical “explanations”
of the appearance of virtual Khovanov homology in the sense of categorified vir-
tual Reshetikhin-Turaev invariants. Note that even the decategorified level is still
mysterious from the viewpoint of representation theory.

(d) It would be interesting to compare my construction to a recent alternative con-
struction by Dye, Kaestner and Kauffman [26]

4.2. Web algebras. Let us mention some open questions that are hopefully answered in
future work. We will focus here on four questions (also there are even more), namely the
ones listed below.

(a) It is a future goal to use my explicit cellular basis for KS to construct a quasi-
hereditary cover of KS. To achieve this goal a promising approach seems to be
to give a “foamy” version of the cyclotomic quiver Schur algebra constructed by
Stroppel and Webster [99].

(b) A generalization of the results on skew q-Howe duality, i.e. for arbitrary represen-
tations of Uq(sln). In order to do so, one would for example consider clasps and
clasped web spaces as explained by Kuperberg in [64]. Note that this is not known
at the moment, even for n = 2. This would correspond to the “honestly” colored
versions of the sln polynomials instead of the Λk

qC
n
q -colored case.

(c) Instead of a categorification of the invariant tensors, as we have done, one could
also try to give a categorification of the full tensor product. Note that in the n = 2
case a categorification is known, e.g. see Chen and Khovanov [18]. It is worth
noting that this is related to the question how to construct the quasi-hereditary
cover of KS. Such a cover for Khovanov’s arc algebra, i.e. the sl2 case, was studied
by Brundan and Stroppel [12], Chen and Khovanov [18] and Stroppel [97].

(d) The Question asked by Kamnitzer, i.e. how our work is related to the approach
from algebraic geometry by Fontaine, Kamnitzer and Kuperberg [38].
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