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The beginning of topology Categorification of the concepts Category theory as a research field Grothendieck’s n-categories

A generalisation of well-known notions

Closed Total Associative Unit Inverses

Group Yes Yes Yes Yes Yes

Monoid Yes Yes Yes Yes No

Semigroup Yes Yes Yes No No

Magma Yes Yes No No No

Groupoid Yes No Yes Yes Yes

Category No No Yes Yes No

Semicategory No No Yes No No

Precategory No No No No No
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Leonard Euler and convex polyhedron

Euler’s polyhedron theorem

Leonard Euler
(15.04.1707-18.09.1783)

Polyhedron theorem (1736)

Let P ⊂ R3 be a convex
polyhedron with V vertices, E
edges and F faces. Then:

χ = V − E + F = 2.

Here χ denotes the Euler
characteristic.
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Leonard Euler and convex polyhedron

Euler’s polyhedron theorem

Polyhedron E K F χ

Tetrahedron 4 6 4 2

Cube 8 12 6 2

Oktahedron 6 12 8 2

Dodekahedron 20 30 12 2

Isokahedron 12 30 20 2

Polyhedron theorem (1736)

Let P ⊂ R3 be a convex
polyhedron with V vertices, E
edges and F faces. Then:

χ = V − E + F = 2.

Here χ denotes the Euler
characteristic.
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Leonard Euler and convex polyhedron

Problems of the theorem

The polyhedron theorem in its original formulation is intrinsic,
i.e. it depends on the embedding of the polyhedron.

The theorem does not give a formula for non convex
polyhedron.

But a tetrahemihexahedron for example has
V = 6,E = 12 and F = 7. Hence χ = 1.

A more general version would be nice!
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Bernhard Riemann and Enrico Betti

Two important mathematicians

Georg Friedrich Bernhard Riemann
(17.09.1826-20.07.1866)

Enrico Betti
(21.10.1823-11.08.1892)
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Bernhard Riemann and Enrico Betti

Bettinumbers - first steps (1857)

Bernhard Riemann already defines an early version of the
notion Bettinumber in his famous paper

”
Theorie der

Abel’scher Functionen“ (1857).

He says a surface S is n-connected if maximal n curves Ck

exists such that no subset of the Ck forms a boundary of
S . He calls this number ”Zusammenhangszahl” Z.

He shows that Z is independent of the choice of the curves.
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Bernhard Riemann and Enrico Betti

Bettinumbers - first steps (1857)

He also shows that Z is equal
to the number of non intersec-
ting cuts such that S is still
connected.

From a modern viewpoint Z = 2 dimH1(S ,Z/2) and the
interaction between the cuts and the curves is a first hint for
the Poincaré duality.
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Bernhard Riemann and Enrico Betti

Problems with Riemanns formulation

Bernhard Riemann is very vague with the notions surface,
curve, cut and part.

A part of his proof is not working because of this.

His construction dependent on the choice for the basis of R3.

Enrico Betti proves not until 1871 with precise notions that Z
is an invariant of the surface (but his proof is still flawed).
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Henri Poincaré - The founder of topology

Two fundamental concepts of topology

Jules Henri Poincaré
(29.04.1854-17.07.1912)
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Henri Poincaré - The founder of topology

Two fundamental concepts of topology

Jules Henri Poincaré
(29.04.1854-17.07.1912)

The fundamental group
(
”
Analysis Situs“ 1895)

Let M be a piecewise linear
n-manifold (variété) and let
m ∈ M. The group of all
homotopy classes of loops based
at m, called π1(M,m), is an
invariant of M.
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Henri Poincaré - The founder of topology

Two fundamental concepts of topology

Bettinumbers and duality
(
”
Analysis Situs“ 1895)

Let M be a piecewise linear
n-manifold (variété). The
Bettinumbers bk are invariants of
M. Moreover bk = bn−k and
their alternating sum is
χ =

∑
k(−1)kbk .
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Henri Poincaré - The founder of topology

A new point of view

Henri Poincaré is not very strict with formulations. But this is
solved in the next few years by other mathematicians.

The main problem is that almost all of his arguments are very
specific. Therefore they are very complicated and ad hoc. The
bigger picture is missing. Most of his definitions are also not
very general.

But his paper is still very influential and inspires lots of other
mathematicians. The next two decades reveal new insights,
e.g. torsions coefficients, the Künneth-formula and Brouwer’s
fixed point theorem.

But it takes quite long and lots of theorems have a
complicated proof.
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Henri Poincaré - The founder of topology

A new point of view
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Henri Poincaré - The founder of topology

A new point of view
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Homology groups

The Göttingen connection

Amalie Emmy Noether
(23.03.1882-14.05.1935)

Heinz Hopf
(19.11.1894-03.06.1971)
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Homology groups

Groups instead of Bettinumbers (1925-1927)

Emmy Noether invented during her lectures and during the
lectures of Heinz Hopf an epoch making new concept for the
study of Bettinumbers.

She considers them as abelian groups
instead of numbers, the so-called homology groups Hi (·).

Heinz Hopf realised a crucial advantage of this approach:
there are maps between groups. These maps could also be
studied. They are even more interesting then the groups
themselves. An insight which is consistently pursued in
category theory: morphisms are more important then objects,
2-morphisms then morphisms etc.

From today’s perspective one would say that Emmy Noether
and Heinz Hopf categorified the notion

”
Bettinumber“ .
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Homology groups

Chain complexes (1929)

Shortly after that, i.e. in 1929, published the Australian
mathematician Walther Mayer the algebraical notation of
Chain complexes to study homology groups.

. . . Ci−1(·)
δi−1oo Ci (·)

δioo Ci+1(·)
δi+1oo . . .

δi+2oo

Here δi ◦ δi+1 = 0. Therefore he was allowed to define
Hi (·) = ker(δi )/im(δi+1). The Euler characteristic becomes
the alternating sum

∑
k(−1)krk(Hk(·)).

From today’s perspective one would say that Walther Mayer
categorified the notion

”
Euler characteristic“ .
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Some examples

Maps and coffee cups

Brouwer’s fixed point theorem (1909)

Let f : Dn → Dn be continuous. Then f has a fixed point.

Beweis.

This follows directly from Lefschetz’s fixed point theorem. The
theorem says that every continuous function f : X → X between
an finite CW complex X with Λf 6= 0 has a fixed point. Here

Λf =
∑
k≥0

(−1)kTr(Hk(f ,Q) : Hk(X ,Q)→ Hk(X ,Q))

and the only non trivial homology group of Dn is H0.

The proof is of course impossible without the maps (morphisms)
between the groups.
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Some examples

Maps and coffee cups

In one dimension is Brouwer’s fixed point theorem just the
intermediate value theorem.

In two dimensions it states that one
point is fixed on every map; the ”you are here” marker. In three
dimensions it states that you can shake your coffee cup as strong
as you want: one point is fixed.
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Some examples

Fundamental theorem of algebra

Fundamental theorem of algebra (folklore)

Let p(x) = xn + an−1x
n−1 + · · ·+ a0 be a polynomial with n > 0

and ak ∈ C. Then p has a root in C.

Beweis.
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Let p(x) = xn + an−1x
n−1 + · · ·+ a0 be a polynomial with n > 0

and ak ∈ C. Then p has a root in C.

Beweis.

We have H1(S1) = Z and the only group homomorphisms Z→ Z
are multiplication with ±n.
Moreover H1(z → zn) = ·n is the multiplication with n for all
n ∈ N. So we assume p has no root.
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Fundamental theorem of algebra (folklore)

Let p(x) = xn + an−1x
n−1 + · · ·+ a0 be a polynomial with n > 0

and ak ∈ C. Then p has a root in C.

Beweis.

We define H,H ′ : S1 × [0, 1]→ S1 by

Ht(z) =
p(tz)

|p(tz)|
und H ′t(z) =

(1− t)Ht(z) + tzn

|(1− t)Ht(z) + tzn|

(it is easy to show that both denominators never become zero if p
has no roots!) two homotopies from the constant map to p and
from p to z → zn.
This is a contradiction because we get
·0 = H1(const) = H1(z → zn) = ·n.
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Some examples

Morphisms and equivalence

The examples illustrate two fundamental concepts of category
theory:

morphisms are at least as interesting as objects. Probably
even more interesting.

In both example most of the notions are only considered up to
homotopy. This is indeed a crucial question of category
theory, i.e. which equivalence relation are ”suitable”. For
example it would be isomorphisms for objects, natural
equivalence for functors and equivalence for categories.

The two points are even more important for higher categories.
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A rapid development

Categorification is useful

The new view point on Bettinumbers by Emmy Noether, Heinz
Hopf and Walther Mayer caused a rapid development in topology.
And this despite the political difficulties in the years 1930-1945.

We give an incomplete and pure subjective list of the most
”important” results in topology/algebra between 1930-1945:

Different constructions of homology theories (Alexander,
Alexandroff, Lefschetz, Čech etc.), even cohomology theories
like de Rham (1931) (dual concepts).

Homology of Lie groups (Pontrjagin (1935), Hopf (1941)).
The begin of the notion Hopf algebra, an algebra with
co-multiplication (flip arrows).

The universal coefficients theorem of Čech (1935) (Z is a
universal object of the category of abelian groups).

Higher homotopy groups of Hurewicz (1935) homotopies in
categories).



The beginning of topology Categorification of the concepts Category theory as a research field Grothendieck’s n-categories

A rapid development

Categorification is useful

The new view point on Bettinumbers by Emmy Noether, Heinz
Hopf and Walther Mayer caused a rapid development in topology.
And this despite the political difficulties in the years 1930-1945.
We give an incomplete and pure subjective list of the most
”important” results in topology/algebra between 1930-1945:

Different constructions of homology theories (Alexander,
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A rapid development

Categorification is useful

A mathematical description of tensor products is obtained by
Whitney (1938) from the homology of tangent bundles
(monoidal categories).

Definition and theorems for exact sequences by Hurewicz
(1941). Here δ is very important (as a natural transformation).

Eilenberg and Mac Lane discuss Hom,Tor,Ext algebraical
(1942). They develop new notions (functors).

Eilenberg and Steenrod give an axiomatic definition of
(co-)homology theory (1945) which is later (1962) completed
by Milnor (even H is a functor).

But much more...
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First definitions

Two historical figures

Left: Saunders Mac Lane (04.08.1909-14.04.2005)
Right: Samuel Eilenberg (30.09.1913-30.01.1998)
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First definitions

Definitions by Eilenberg and Mac Lane

The first appearance of the notion ”category” in Samuel Eilenbergs
and Saunders Mac Lanes paper

”
General Theory of Natural

Equivalences“ (1945) came almost out of nowhere. There was only
one and restricted to groups notation in the year 1942 in one of
their papers.

The title of their paper already suggests that they were more
interested in natural transformations then in categories. But they
invented the natural transformation ”just” to study effects in
homological algebra (e.g. effects involving homology groups Hn(·)).
The notions ”functor”, ”limes” and ”colimes” also appeared in the
paper for the first time.
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First definitions

Definitions by Eilenberg and Mac Lane

They took the notion ”category” from philosophy, i.e. from
Aristoteles, Kant and Peirce, but they defined it in a mathematical
strict way.

Their definitions contains the notation of classes and sets but they
were rather a kind of meta calculus.
They already denoted that the objects could be almost omitted
and that the morphisms are much more important.
In the year 1945 it was not clear that category theory is more then
just a good syntax to describe effects in homological algebra, e.g.
the notation groupoid for πn(·) (without a base point).
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First definitions

A new generation

This changed within the next fifteen years. Let us give some
developments:

two very influential books of Eilenberg and Steenrod (1952)
and Cartan and Eilenberg (1956) caused that a young
generation of mathematicians has grown up with the notions;

young mathematicians like Buchsbaum and Grothendieck
defined categories ”new”, i.e. in a more practical, set
theoretical sense as sets/maps (1953-1957);

Grothendieck used the notations for the first time outside of
homological algebra, i.e. in algebraic geometry (1957);

very influential was the deductive definition by Lambek and
Lawvere. Their notions got widespread around 1960 because
of their universal elegance.
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Vertices and arrows

Joachim Lambek
(05.12.1922-ongoing)

Francis William Lawvere
(09.02.1937-ongoing)
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First definitions

Vertices and arrows

Joachim Lambek and William Lawvere defined categories in a
combinatorial way as pure deductive system built up by vertices
and arrows.

From their point of view a category should be a pure abstract
notions, i.e. made of words of vertices and arrows and symbols
modulo some relations.
Arrows are for example not necessary maps but logical symbols.
The calculus only gets a concrete interpretation by a model.
This is much more descriptive and shows the idea behind category
theory direct: hunt diagrams and find universal vertices/arrows.
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Vertices and arrows

A good example for a category from their point of view is:



The beginning of topology Categorification of the concepts Category theory as a research field Grothendieck’s n-categories

First definitions

Vertices and arrows

Moreover their notions revealed category theory as a foundation of
mathematics.

The categorical logic was born and has a big first
success, i.e. William Lawvere was able to define the category of
categories (1966).
After that the category theory got more applications, i.e. in
homological algebra, algebraic geometry and mathematical logic.
Only one little step was missing to establish the category theory as
independent research field.
This one last step was probably Dan Kan’s observation that
so-called adjunctions appear everywhere in mathematics.
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Adjunctions - a main notion of category theory

A ”good” equivalence

A fundamental question of every science, not just of mathematics,
is which kind equivalence should be used.

For example the notion of isomorphisms, i.e. bijections, for
sets. But this notion is completely useless to study ordinals because
it destroys to much structure. This is a common problem: if one
identifies to much, then one could lose interesting information, if
one identifies not enough, then one could lose the ability to prove
interesting results.
These extrema, i.e. equality and ”all is equal”, are almost always
to fine or to course. A reasonable notions is in between.
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A ”good” equivalence

Let us for example look at the three most used notions of
equivalence in topology in more detail, i.e. isotopies,
homoemorhpisms and homotopies:

all knots are homoemorphic to S1 but a non trivial knot is not
isotopic to S1;

a disc D2 is homotopic to a point but not homoemorphic;

the functors π∗(·),H∗(·) are invariants up to homotopy.

Hence, in a lot of cases there is no such thing like a unique answer,
just a ”good” one.
What is a ”good” notion for category theory?
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Daniel Marinus Kan
(??-ongoing)

Dan Kan’s answer (1958)

Isomorphic functors almost never appear.
Natural equivalence is what we want but
adjunctions is what we mostly get.
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A ”good” equivalence

Daniel Marinus Kan (called Dan Kan) defined in his paper
”
Adjoint

Functors“ (1958) the notion of adjoint equivalence of functors.

This notions becomes central for category theory in the following
years. And that although it was overlooked by everyone until then.
One could, casually speaking, say that isomorphisms equal
isotopies, natural equivalences equals homoemorphisms and
adjunctions equals homotopies.
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Adjunctions - a main notion of category theory

A long list of examples

Let us demonstrate Dan Kan’s observation with the following
example:

Let us consider the categories GRP (groups) und SET (sets).
These two are not equivalent (SET has no zero object) , because
there is no unique way to define a group structure on a set. But
their is a different fundamental relation.
Let V : GRP→SET be the forgetful functor, i.e. forget the group
structure. Question: Given a set could we find a group structure
such that any other possible group structure could be obtained
(factorise) from it?
Indeed: the free group! We denote with F the functor which
associates a set to its corresponding free group.
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A long list of examples

We get V ◦ F 6= id and F ◦ V 6= id.

But we also have an unit
η : id→ V ◦ F and a counit ε : id→ F ◦ V such that for all maps
f : X → V (G ) and all group homomorphisms g : F (X )→ G
unique f ′ : F (X )→ G and g ′ : X → U(G ) exits such that
V (f ′) ◦ η = f and ε ◦ F (g ′) = g .
Or different: F is the best approximation to an inverse of V . This
motivated Dan Kan to define adjunctions, i.e. a pair of functors
F ,G together with an unit and counit and natural isomorphisms
between Hom(F -,-) und Hom(-,G -).
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A long list of examples

Adjoints are everywhere and they are unique up to isomorphisms:

”equivalent” to the notion of universal vertex/arrow, to
Kan-extensions, to representable functors and monads;

a generalisation of the notion of equivalence of categories;

free functors are left adjoint to forgetful functors;

tensor products are left adjoint to Hom-functors;

abelisation of a group G/[G ,G ] is right adjoint to inclusion;
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A long list of examples

suspension of a topological space X is left adjoint to the loop
space of X ;

Stone-Ćech compactification is right adjoint to inclusion;

different examples from mathematical logic, e.g. quantifiers
and negations;

etc.

Thus it is a crucial question which functors have adjoints.
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Category theory is a map of mathematics

Category theory becomes independent

The notion of adjoint functors and the long list of examples who
were found in the following years in algebra, algebraic geometry,
topology, graph theory and mathematical logic suggested that the
notion category is more then just a tool to understand effects in
homological algebra.

We list some influential developments of the following years:

Grothendieck (1957): abelian categories and K-theory;

the notion topos by Grothendieck (1958) - category theory as
a basement of mathematics;

algebraic K-theory was introduced 1959 by Serre;

Kan-extensions and simplicial sets by Dan Kan (1960);
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Category theory becomes independent

Grothendieck categorified the Galois theory (1960)

Lawvere founded the categorical logic (1963) - category
theory instead of set theory;

Mac Lane uses the notion monoidal category (1963) - a
basement for tensor products;

axiomatic definition of the ”category of sets” (1963) and
”category of categories” (1966);

strict 2-categories were introduced 1965 by Ehrenmann and
generalised 1967 by Bénabou to weak 2-categories;
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Category theory is a map of mathematics

Category theory becomes independent

Lambek used the notion multi category (1968);

Lawvere and Tierney founded the ”theory of universes” in the
year 1970;

Mac Lanes book
”
Categories for the working mathematician“

is published 1971 and becomes the standard book.

One could say that in 1971 the category theory has become an
independent research field.The principle of categorification is
continued consequently until today.
From a modern perspective one could see it as a map (like on the
title page): it shows connection between apparently different fields
- from physics to mathematical logic.
A very interesting connection is shown in next next section.
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Tensor products and braids

Monoidal categories

Saunders Mac Lane introduced in his influential paper
”
Natural

associativity and commutativity“ (1963) the notion of monoidal
categories. The idea is the following observation:

let U,V ,W be three K -vector spaces. Almost every
mathematicians would say that

V⊗W = W⊗V ; (U⊗V )⊗W = U⊗(V⊗W ); K⊗V = V = V⊗K

but this is only true up to natural isomorphisms.
He observed that this is a fundamental concept of category theory,
i.e. almost all notions are only true up to some kind of natural
isomorphisms. This has motivated him to generalise the notion of
tensor products to categories (and therefore far beyond just vector
spaces). This was the birth of the notion monoidal category.
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Tensor products and braids

Monoidal categories

Let C a category together with a functor, called tensor product,
⊗ : C × C → C. He fixed four classes of natural isomorphisms and
an object 1. Let x , y , z be objects of C.

left and right unit lx : 1⊗ x → x and rx : x ⊗ 1→ x ;

associator ax ,y ,z : x ⊗ (y ⊗ z)→ (x ⊗ y)⊗ z and braiding
Bx ,y : x ⊗ y → y ⊗ x .

This together with some axioms, we only mention Bx ,yBy ,x = 1
here, forms a monoidal category. He called it strict if all fixed
natural isomorphisms are the identity.
He had proven the following theorem. This is some kind of
justification for the carelessness of mathematicians.
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Tensor products and braids

Monoidal categories

Mac Lane’s coherence theorem

Every monoidal category is monoidal equivalent to a strict
monoidal category.

That is the reason why we can carefree write K ⊗V = V = V ⊗K
etc. because the not strict category of K -vector spaces is
equivalent to a strict one.
Almost all ”practical” examples of monoidal categories are not
strict. But the theorem allows us to view them as strict. Hence,
category theory has given an explanation why we could be so
carefree (in most cases) with brackets by abstraction.
But there is also a problem with his observation:
the ring of matrices already shows that commutativity is not as
natural as associativity.
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Braids and category theory

In the following years mathematicians found an graphical calculus
(its hard to mention specific persons) which describes this effect:

If we see f : x → y as a verti-
cal time development and picture
f ⊗f ′ : x⊗x ′ → y⊗y ′ as horizon-
tal placement then we can denote
the braiding Bx ,y like in the right
picture.

f

x

y
f'

x'

y'

Bx,y=
x y

y x

f f'=

f

x

y

f=

We mention that monoidal categories have, in contrast to ”usual”
categories, a two dimensional structure, i.e. horizontal (standard)
and vertical (tensor) composition.
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Hence, it is easy to see why the construction of Saunders Mac
Lane is not natural because we sould get the following identities.

x y

y x

x y

= x y

x y

y x

x y

= x y

x y

y x

x y

= x y

The left equation is in three dimensions false in general because
otherwise every knot would be trivial.
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Braids and category theory

Today one would call a category that satisfy only the right
equation braided.

Is the left equation also true, then it is called
symmetric. One can prove:

Mac Lanes coherence theorem - part 2

Every (symmetric) monoidal category is monoidal equivalent to a
strict (symmetric) monoidal but not every is equivalent to a
symmetric one.

These braided categories are used nowadays e.g. to study
invariants of 3-manifolds (via Kirby-calculus), quantum groups (via
Yang-Baxter-equation) and they are used in theoretical physics (via
quantum groups).
The detailed study of categorical structures has proven useful once
again.
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Two dimensional categories

2-categories

Jean Bénabou
(03.06.1932-ongoing)

Jean Bénabou (1967)

The monoidal categories are two
dimensional but rarely strict.
Hence, the two dimensional
composition should be defined
only up to 2-isomorphisms.
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Two dimensional categories

2-categories

Jean Bénabou mentioned the two dimensional structure of
monoidal categories in

”
Introduction to Bicategories“ (1967) and

he defined what he called bicategory (today one would say weak
2-category).

The idea to extend the observation of category theory that
morphisms are more interesting then objects. Therefore he defined
2-morphisms, i.e. morphisms between morphisms. A bicategory
contains:
objects 1-morphisms 2-morphisms

x• x• f // •y x•

f

��

g

??

ww�α •y
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Two dimensional categories

2-categories

The composition for 1-morphisms is like in usual categories. He
defined, based on an observation of Saunders Mac Lane, a
horizontal and a vertical composition for 2-morphisms (together
with some axioms):

x•

fww�α
��ww�β

h

CC
g // •y x•

f

��

g

??

ww�α •y

h

��

j

@@

ww�β •z

This suggests that one could imagine categories on a pure pictorial
scale. Categories have a combinatorial structure and 2-categories
have an additional topological structure.



The beginning of topology Categorification of the concepts Category theory as a research field Grothendieck’s n-categories

Two dimensional categories

2-categories

The composition for 1-morphisms is like in usual categories. He
defined, based on an observation of Saunders Mac Lane, a
horizontal and a vertical composition for 2-morphisms (together
with some axioms):

x•

fww�α
��ww�β

h

CC
g // •y x•

f

��

g

??

ww�α •y

h

��

j

@@

ww�β •z

This suggests that one could imagine categories on a pure pictorial
scale. Categories have a combinatorial structure and 2-categories
have an additional topological structure.



The beginning of topology Categorification of the concepts Category theory as a research field Grothendieck’s n-categories

Two dimensional categories

2-categories

The composition for 1-morphisms is like in usual categories. He
defined, based on an observation of Saunders Mac Lane, a
horizontal and a vertical composition for 2-morphisms (together
with some axioms):

x•

fww�α
��ww�β

h

CC
g // •y x•

f

��

g

??

ww�α •y

h

��

j

@@

ww�β •z

This suggests that one could imagine categories on a pure pictorial
scale.

Categories have a combinatorial structure and 2-categories
have an additional topological structure.



The beginning of topology Categorification of the concepts Category theory as a research field Grothendieck’s n-categories

Two dimensional categories

2-categories

The composition for 1-morphisms is like in usual categories. He
defined, based on an observation of Saunders Mac Lane, a
horizontal and a vertical composition for 2-morphisms (together
with some axioms):

x•

fww�α
��ww�β

h

CC
g // •y x•

f

��

g

??

ww�α •y

h

��

j

@@

ww�β •z

This suggests that one could imagine categories on a pure pictorial
scale. Categories have a combinatorial structure and 2-categories
have an additional topological structure.



The beginning of topology Categorification of the concepts Category theory as a research field Grothendieck’s n-categories

Two dimensional categories

Examples

Of course is any category a 2-category (without 2-morphisms)

and
also the ”category of categories” with categories as 0-cells,
functors as 1-cells and natural transformations as 2-cells is a
2-category but these are not good examples.
One of the most important axioms is that unit and associativity of
the composition can be defined only up to special 2-isomorphisms.
The associator ax ,y ,z : x ⊗ (y ⊗ z)→ (x ⊗ y)⊗ z in monoidal
categories is an example.
But the two examples above satisfy unit and associativity direct - a
really rare phenomena.
Let us mention a nicer example, i.e. BiMOD.
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Two dimensional categories

Examples

The 2-category BiMOD has rings R, S , . . . as 0-cells,

R − S-bimodules RMS , RNS , . . . as 1-cells and bimodule
homomorphisms f , g , . . . : RMS → RNS as 2-cells.
Whar are the compositions? Tensoring for the 1-cells

R
RMS //

RMS ⊗S SMT

22S
SMT // T

usual composition (vertical) and again tensoring (horizontal) for
2-morphisms.
Hence, unit and associativity only true up to isomorphisms.
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Two dimensional categories

Examples

This example inspired Jean Bénabou to the following observation:

1-categories with one object are like the natural numbers N
monoids and 2-categories with one object are monoidal categories.
We get that the 2-category BiMOD contains every category of
R-modules, i.e. for all rings R, as a subcategory!
To see this one fix a ring R. It follows with Jean Bénabous
observation that we get the statement and even the tensor product
⊗R for free.
That’s why 2-categories are studied by lots of people until today.
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The ω-categories

Grothendieck’s dream

Alexandre Grothendieck
(28.03.1928-ongoing)

Grothendieck’s dream (1983)

Let X be a topological space.
Then there is a category

∏
ω(X ),

called fundamental ω-groupoid,
which is a complete invariant of
the homotopy type of X .
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The ω-categories

n-categories

In the year 1983 Alexandre Grothendieck has written an about 600
page letter to his friend Daniel Quillen in which he used, inspired
by observations of Jean Bénabou, the notions n-categories and
ω-categories.

The n-categories should in his imagination be a n-dimensional
analogon to the already established 2-categories.
A n-category in his approach should contain n-cells. These n-cells
should be between the n − 1-cells and they should have n different
compositions.
We get the following picture:
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n-categories

2-cells

x-composition y-composition

x-composition

0-cells 1-cells

3-cells

y-composition z-compositionx-composition

...

...

Again everything is only up to some kind of n-isomorphisms
defined. But we mention that there is not an unique approach for
the definition, i.e. there are more definitions by different authors.
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Grothendieck’s example

Alexandre Grothendieck had one particular example in mind which
he called ω-category, i.e. a category which contains a n-cell for
every n ∈ ω.

Let X be a topological space. His example was the
ω-category

∏
ω(X ), i.e.:

points x ∈ X are 0-cells;

paths w : [0, 1]→ X are 1-cells;

homotopies of paths [0, 1]2 → X are 2-cells;

homotopies of homotopies of paths [0, 1]3 → X are 3-cells etc.

Composition is the standard composition of paths and homotopies.
With this every n > 0-cell is an isomorphism. That why he called∏
ω(X ) the fundamental ω-groupoid, e.g.

∏
1(X ) is the classical

fundamental groupoid.
We note that in this example all is only up to some kind of
equivalence (homotopies) defined, e.g. even the composition of
paths is only up to homotopies associative.
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The ω-categories

More interesting examples

Today one would call such categories (Beware: there is more then
one proposal for a definition only up to homotopies) weak. Further
examples are:

ω-TOP, i.e. topological spaces with continuous maps and
homotopies of continuous maps and...

ω-ChCo, i.e. chain complexes and chain maps and
homotopies of chain maps and...

If the world is fair then there should be a weak ω-functor
∏
ω.

Because of even more interesting examples n-categories were and
are intensively studied.
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The periodic system

An interesting effect should be mentioned. The effect is based on
an observation of Jean Bénabou, i.e. that 2-categories with exactly
one object are the monoidal categories.

A n + m-category is called
m degenerated if it contains only one k-cell for all k < m. Then we
get the so-called periodic system of n-categories:

n=0 n=1 n=2

m=0 sets categories 2-categories

m=1 monoids monoidal cat. monoidal 2-cat.

m=2 comm. monoids braided cat. braided 2-cat.

m=3 ” sym. mon. cat. sylleptic 2-cat.

m=4 ” ” sym. mon. 2-cat.

m=5 ” ” ”
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The periodic system

This effect of stabilisation , i.e. the by one row shifted symmetry
between columns, is notable and and carries on. We get:

Corollary

For a topological space X is πk(X , x) abelian if k > 1.

Beweis.

We set n = 0 and m = k in the periodic system. For example
π2(X , x) contains one point x (i = 0), the constant loop (i = 1)
and continuous maps [0, 1]2 → X .
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There is still much to do...
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Thanks for your attention!
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