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A linearization of group theory

Slogan. Representation theory is group theory in vector spaces.
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Pioneers of representation theory

Let G be a finite group.

Frobenius ∼1895++, Burnside ∼1900++. Representation theory is the useful?

study of linear group actions

M : G −→ Aut(V),

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple. A module is called semisimple if
it is a direct sum of simples.

Maschke ∼1899. All modules are built out of simples (“Jordan–Hölder”
filtration).

“M(g) = a matrix in Aut(V)”

We want to have a
categorical version of this!

“M(a) = a matrix in End(V)”

We want to have a
categorical version of this.

I am going to explain what we can do at present.
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Life is non-semisimple

collection (“category”) of modules ! the world

modules ! chemical compounds

simples ! elements

semisimple ! only trivial compounds

non-semisimple ! non-trivial compounds

Main goal of representation theory. Find the periodic table of simples.

Example.

Back to the dihedral group, an invariant of
the module is the character χ which only remembers the

traces of the acting matrices:

{(
1 0
0 1

)
,

(
1 1
0 −1

)
,

(
−1 0
1 1

)
,

(
−1 −1
1 0

)
,

(
0 1
−1 −1

)
,

(
0 −1
−1 0

)}

1 s t ts st sts=tst
w0

χ = 2 χ = 0 χ = 0 χ = −1 χ = −1 χ = 0

Fact.

Semisimple case:
the character determines the module

!
mass determines the chemical compound.

Example.

Z/2Z→ Aut(C2), 0 7→
(

1 0
0 1

)
& 1 7→

(
0 1
1 0

)

Common eigenvectors: (1, 1) and (1,−1) and base change gives

0 7→
(

1 0

0 1

)
& 1 7→

(
1 0

0 −1

)

and the module decomposes.

Example.

Z/2Z→ Aut(f2
2
), 0 7→

(
1 0
0 1

)
& 1 7→

(
0 1
1 0

)

Common eigenvector: (1, 1) and base change gives

0 7→
(

1 0
0 1

)
& 1 7→

(
1 1
0 1

)

and the module is non-simple, yet does not decompose.

Morally: representation theory over Z is never semisimple.
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The strategy

“Groups, as men, will be known by their actions.” – Guillermo Moreno

The study of group actions is of fundamental importance in mathematics and
related field. Sadly, it is also very hard.

Representation theory approach. The analog linear problem of classifying
G-modules has a satisfactory answer for many groups.

Problem involving
a group action

G X

Philosophy. Turn problems into linear algebra.
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Some theorems in classical representation theory

B All G-modules are built out of simples.

B The character of a simple G-module is an invariant.

B There is an injection

{simple G-modules}/iso

↪→
{conjugacy classes in G},

which is 1 : 1 in the semisimple case.

B All simples can be constructed intrinsically using the regular G-module.

“Regular G-module
= G acting on itself.”

Find categorical versions of these facts.
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Dihedral representation theory on one slide

One-dimensional modules. Mλs,λt
, λs, λt ∈ C, s 7→ λs, t 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M−1,−1,M1,−1,M−1,1,M1,1 M−1,−1,M1,1

Two-dimensional modules. Mz , z ∈ C, s 7→
(

1 z
0 −1

)
, t 7→

(−1 0
z 1

)
.

n ≡ 0 mod 2 n 6≡ 0 mod 2

Mz , z ∈ V (n)−{0} Mz , z ∈ V (n)

V (n) = {2 cos(πk/n−1) | k = 1, . . . , n − 2}.

Proposition (Lusztig?).
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Beware of infinite dimensions

Take the infinite-dimensional Weyl algebra W = C〈x , δ | δx = 1 + xδ〉.

It has a very nice infinite-dimensional module

W→ End(C[X ]), x 7→ ·X , δ 7→ d/dX ,

and δx = 1 + xδ just becomes Leibniz’ product rule.

However, the classification of simples is not so easy. For example, W does not
have any finite-dimensional module.

Why? Assume it has and x 7→ some matrix M; δ 7→ some matrix N. Then:

tr(MN) = tr(NM) = 1 + tr(MN) ⇒ 0 = 1.
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But even there representation theory help

Take the infinite Artin–Tits group B(C) = 〈bi | . . . bjbibj︸ ︷︷ ︸
mij

= bibjbi︸ ︷︷ ︸
mij

〉. Example

One can easily cook-up finite-dimensional modules which help to distinguish the
elements of B(C).

However, it is very hard and not known in general how to find faithful
(“injective”) finite-dimensional modules.
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Categorification in a nutshell

set N0

category Vect

The point.

The category Vect has the whole power of linear algebra at hand!

There is nothing comparable for N0:
N0 is just a shadow of Vect.
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2-representation theory in a nutshell

2-category categories functors nat. trafos

1-category vector spaces linear maps

0-category numbers

relate relate

relate

categorify

categorify

categorify

forms

forms

forms

categorifies

categorifies

The ladder of categorification: in each step there is a new layer of structure
which is invisible on the ladder rung below.

Goal.

Categorify the theory “representation theory” itself.

Observation.

A group G can be viewed as a single-object category G,
and a module as a functor from G

into the single-object category Aut(V), i.e.
M : G −→ Aut(V).

What one can hope for.

Problem involving
a group action

G X

Problem involving

a categorical
group action

Decomposition of

the problem

into 2-simples

“lift”

new
insights?

Daniel Tubbenhauer What is...(2-)representation theory? October 2018 12 / 17



2-representation theory in a nutshell

2-category categories functors nat. trafos

1-category vector spaces linear maps

0-category numbers

relate relate

relate

categorify

categorify

categorify

forms

forms

forms

categorifies

categorifies

The ladder of categorification: in each step there is a new layer of structure
which is invisible on the ladder rung below.

Goal.

Categorify the theory “representation theory” itself.

Observation.

A group G can be viewed as a single-object category G,
and a module as a functor from G

into the single-object category Aut(V), i.e.
M : G −→ Aut(V).

What one can hope for.

Problem involving
a group action

G X

Problem involving

a categorical
group action

Decomposition of

the problem

into 2-simples

“lift”

new
insights?

Daniel Tubbenhauer What is...(2-)representation theory? October 2018 12 / 17



2-representation theory in a nutshell

2-category categories functors nat. trafos

1-category vector spaces linear maps

0-category numbers

relate relate

relate

categorify

categorify

categorify

forms

forms

forms

categorifies

categorifies

The ladder of categorification: in each step there is a new layer of structure
which is invisible on the ladder rung below.

Goal.

Categorify the theory “representation theory” itself.

Observation.

A group G can be viewed as a single-object category G,
and a module as a functor from G

into the single-object category Aut(V), i.e.
M : G −→ Aut(V).

What one can hope for.

Problem involving
a group action

G X

Problem involving

a categorical
group action

Decomposition of

the problem

into 2-simples

“lift”

new
insights?

Daniel Tubbenhauer What is...(2-)representation theory? October 2018 12 / 17



2-representation theory in a nutshell

2-category categories functors nat. trafos

1-category vector spaces linear maps

0-category numbers

relate relate

relate

categorify

categorify

categorify

forms

forms

forms

categorifies

categorifies

Classical representation theory lives here

The ladder of categorification: in each step there is a new layer of structure
which is invisible on the ladder rung below.

Goal.

Categorify the theory “representation theory” itself.

Observation.

A group G can be viewed as a single-object category G,
and a module as a functor from G

into the single-object category Aut(V), i.e.
M : G −→ Aut(V).

What one can hope for.

Problem involving
a group action

G X

Problem involving

a categorical
group action

Decomposition of

the problem

into 2-simples

“lift”

new
insights?

Daniel Tubbenhauer What is...(2-)representation theory? October 2018 12 / 17



2-representation theory in a nutshell

2-category categories functors nat. trafos

1-category vector spaces linear maps

0-category numbers

relate relate

relate

categorify

categorify

categorify

forms

forms

forms

categorifies

categorifies

Classical representation theory lives here

2-representation theory should live here

The ladder of categorification: in each step there is a new layer of structure
which is invisible on the ladder rung below.

Goal.

Categorify the theory “representation theory” itself.

Observation.

A group G can be viewed as a single-object category G,
and a module as a functor from G

into the single-object category Aut(V), i.e.
M : G −→ Aut(V).

What one can hope for.

Problem involving
a group action

G X

Problem involving

a categorical
group action

Decomposition of

the problem

into 2-simples

“lift”

new
insights?

Daniel Tubbenhauer What is...(2-)representation theory? October 2018 12 / 17



2-representation theory in a nutshell

M
2-module

i 7→M (i)
category

F 7→M (F)
functor

α 7→ M (α)
nat. trafo

M
1-module

i 7→ M(i)
vector space

F 7→M(F)
linear map

m
0-module

i 7→ m(i)
number

categorifies

categorifies

categorifies

categorifies

categorifies

categorical module

The ladder of categorification: in each step there is a new layer of structure
which is invisible on the ladder rung below.

Goal.

Categorify the theory “representation theory” itself.

Observation.

A group G can be viewed as a single-object category G,
and a module as a functor from G

into the single-object category Aut(V), i.e.
M : G −→ Aut(V).

What one can hope for.

Problem involving
a group action

G X

Problem involving

a categorical
group action

Decomposition of

the problem

into 2-simples

“lift”

new
insights?

Daniel Tubbenhauer What is...(2-)representation theory? October 2018 12 / 17



2-representation theory in a nutshell

M
2-module

i 7→M (i)
category

F 7→M (F)
functor

α 7→ M (α)
nat. trafo

M
1-module

i 7→ M(i)
vector space

F 7→M(F)
linear map

m
0-module

i 7→ m(i)
number

categorical module

categorifies

categorifies

categorifies

categorifies

categorifies

The ladder of categorification: in each step there is a new layer of structure
which is invisible on the ladder rung below.

Goal.

Categorify the theory “representation theory” itself.

Observation.

A group G can be viewed as a single-object category G,
and a module as a functor from G

into the single-object category Aut(V), i.e.
M : G −→ Aut(V).

What one can hope for.

Problem involving
a group action

G X

Problem involving

a categorical
group action

Decomposition of

the problem

into 2-simples

“lift”

new
insights?

Daniel Tubbenhauer What is...(2-)representation theory? October 2018 12 / 17



The next ladder rung

Slogan. 2-representation theory is group theory in categories.

W = C〈x , δ | δx = 1 + xδ〉

W→ End(C[X ]) x 7→ ·X δ 7→ d/dX

Step 1.

Replace the vector spaces C{X i} by appropriate categories Ni -Mod.

Here Ni are certain algebras (“Nil Coxeter”) which embed into each other Ni ↪→ Ni+1,

of which we think about as lifting C{X i} ·X−→ C{X i+1}.

Step 2.

Replace the linear operators ·X : C{X i} → C{X i+1} by
appropriate (“induction”) functors Indi+1

i : Ni -Mod→ Ni+1-Mod.

Step 3.

Replace the linear operators d/dX : C{X i+1} → C{X i} by
appropriate (“restriction”) functors Resii+1 : Ni -Mod→ Ni+1-Mod.

Step 4.

Check that everything works.

In particular, the reciprocity Resii+1Indi+1
i
∼= Id⊕ Indi−1

i Resii−1

categorifies Leibniz’ product rule.
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Pioneers of 2-representation theory

Let G be a finite group.

Chuang–Rouquier & many others ∼2004++. Higher representation theory is
the useful? study of (certain) categorical actions, e.g.

M : G −→A ut(V),

with V being some C-linear category. (Called 2-modules or 2-representations.)

The “atoms” of such an action are called 2-simple.

Mazorchuk–Miemietz ∼2014. All (suitable) 2-modules are built out of
2-simples (“weak 2-Jordan–Hölder filtration”).

“M (g) = a functor in A ut(V)”

Plus some coherence conditions which I will not explain.

The three goals of 2-representation theory.
Improve the theory itself.

Discuss examples.
Find applications.
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“Lifting” classical representation theory

B All G-modules are built out of simples.

B The character of a simple G-module is an invariant.

B There is an injection

{simple G-modules}/iso

↪→
{conjugacy classes in G},

which is 1 : 1 in the semisimple case.

B All simples can be constructed intrinsically using the regular G-module.

Goal 1. Improve the theory itself.

Note that we have a very particular notion
what a “suitable” 2-module is.

What characters were for Frobenius
are these matrices for us.

There are some technicalities.

These turned out to be very interesting,
since their importance is only visible via categorification.
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These turned out to be very interesting,
since their importance is only visible via categorification.
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2-modules of dihedral groups

Consider : θs = s + 1, θt = t + 1.

(Motivation. The Kazhdan–Lusztig basis has some neat integral properties.)

These elements generate C[D2n] and their relations are fully understood:

θsθs = 2θs, θtθt = 2θt, a relation for . . . sts︸ ︷︷ ︸
n

= . . . tst︸ ︷︷ ︸
n

.

We want a categorical action. So we need:

B A category V to act on.

B Endofunctors Θs and Θt acting on V.

B The relations of θs and θt have to be satisfied by the functors.

B A coherent choice of natural transformations. (Skipped today.)

Some details.

Theorem ∼2016.

There is a one-to-one correspondence

{(non-trivial) 2-simple D2n-modules}/2-iso
1:1←→

{bicolored ADE Dynkin diagrams with Coxeter number n}.

Thus, its easy to write down a list .

Goal 2. Discuss examples.
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A linearization of group theory

Slogan. Representation theory is group theory in vector spaces.

symmetries of n-gons ⊂ Aut(R2)
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e1

e2
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st
w0

{(
1 0
0 1

)
,

(
1 1
0 −1

)
,

(
−1 0
1 1

)
,

(
−1 −1
1 0

)
,

(
0 1
−1 −1

)
,

(
0 −1
−1 0

)}

1 s t ts st sts=tst
w0

These symmetry groups of the regular n-gons are the so-called dihedral groups
D2n = 〈s, t | s2 = t2 = 1, . . . tsts︸ ︷︷ ︸

n

= w0 = . . . stst︸ ︷︷ ︸
n

〉

which are the easiest examples of Coxeter groups.

Example n = 4; its Coxeter complex.

•

•

•

•

• •

• •
1

t

s

st

ts

tst

sts

w0
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Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).
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Nowadays representation theory is pervasive across mathematics, and beyond.

But this wasn’t clear at all when Frobenius started it.

Figure: “Über Gruppencharaktere (i.e. characters of groups)” by Frobenius (1896).
Bottom: first published character table.

Note the root of unity ρ!
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Some theorems in classical representation theory

B All G-modules are built out of simples.

B The character of a simple G-module is an invariant.

B There is an injection

{simple G-modules}/iso

↪→
{conjugacy classes in G},

which is 1 : 1 in the semisimple case.

B All simples can be constructed intrinsically using the regular G-module.

“Regular G-module
= G acting on itself.”

Find categorical versions of these facts.
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Dihedral representation theory on one slide

One-dimensional modules. Mλs,λt
, λs, λt ∈ C, s 7→ λs, t 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M−1,−1,M1,−1,M−1,1,M1,1 M−1,−1,M1,1

Two-dimensional modules. Mz , z ∈ C, s 7→
(

1 z
0 −1

)
, t 7→

(−1 0
z 1

)
.

n ≡ 0 mod 2 n 6≡ 0 mod 2

Mz , z ∈ V (n)−{0} Mz , z ∈ V (n)

V (n) = {2 cos(πk/n−1) | k = 1, . . . , n − 2}.

Proposition (Lusztig?).

The list of one- and two-dimensional D2n-modules
is a complete, irredundant list of simples.

I learned this construction from Mackaay in 2017.

Note that this requires complex parameters.
In particular, this does not work over Z.
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Categorification in a nutshell

set N0

category Vect

1

2

3

6

n

k

k
2

k
3

k
6

k
n

dim.

+

⊕

·

⊗

>

<

sur.

inj.

all n-dim.
vector spaces

V
f

W

A universe itself!

all rank 1
2−1-matrices

k
2

g
k

A universe itself!

The point.

The category Vect has the whole power of linear algebra at hand!

There is nothing comparable for N0:
N0 is just a shadow of Vect.
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2-representation theory in a nutshell

M
2-module

i 7→M (i)
category

F 7→M (F)
functor

α 7→ M (α)
nat. trafo

M
1-module

i 7→ M(i)
vector space

F 7→M(F)
linear map

m
0-module

i 7→ m(i)
number

categorifies

categorifies

categorifies

categorifies

categorifies

categorical module

The ladder of categorification: in each step there is a new layer of structure
which is invisible on the ladder rung below.

Goal.

Categorify the theory “representation theory” itself.

Observation.

A group G can be viewed as a single-object category G,
and a module as a functor from G

into the single-object category Aut(V), i.e.
M : G −→ Aut(V).

What one can hope for.

Problem involving
a group action

G X

Problem involving

a categorical
group action

Decomposition of

the problem

into 2-simples

“lift”

new
insights?
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“Lifting” classical representation theory

B All (suitable) 2-modules are built out of 2-simples.

B The decategorified actions (a.k.a. matrices) of the M(F)’s are invariants.

B There is an injection

{2-simples of C }/equi.

↪→
{certain (co)algebra 1-morphisms}/“2-Morita equi.”,

which is 1 : 1 in well-behaved cases.

B There exists principal 2-modules lifting the regular module.
Even in well-behaved cases there are 2-simples which do not arise in this way.

Goal 1. Improve the theory itself.

Note that we have a very particular notion
what a “suitable” 2-module is.

What characters were for Frobenius
are these matrices for us.

There are some technicalities.

These turned out to be very interesting,
since their importance is only visible via categorification.
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The type A family
n = 2

H

F

n = 3

H F

n = 4

H F H

F H F

n = 5

H F H F

n = 6

H F H F H

F H F H F

. . .

The type D family
n = 6

H F
H

H

F H
F

F

n = 8

F H F
H

H

H F H
F

F

n = 10

H F H F
H

H

F H F H
F

F

n = 12

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
n = 12

H F H F H

F

F H F H F

H

n = 18

H F H F H F

F

F H F H F H

H

n = 30

H F H F H F H

F

F H F H F H F

H

Back

This is an unexpected ADE classification,
which is – imho – quite neat.

Note that this is also completely different
than the decategorified story:

The number of 2-simples is at most three,
but they grow in dimension when n grows.

There is still much to do...

Thanks for your attention!
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Figure: “Über Gruppencharaktere (i.e. characters of groups)” by Frobenius (1896).
Bottom: first published character table.

Note the root of unity ρ!
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Example. Prototypical braids in R2 × [0, 1] are

◦ = =

These form a(n infinite) group.

Theorem (Artin ∼1925). The braid group B(A) is an algebraic model of the
group of braids in R2 × [0, 1].

Proof (idea).

The generators bi correspond to the simple braid swapping the i and the i + 1 strands

bi 7→

The relations boil down to

= & =

which gives a surjection.

Checking injectivity of this map is work.

Observation (e.g. Alexander ∼1923, Markov ∼1935).

Identifying bottom and top gives you knots and links, e.g.

and the study of knots and links can be largely
reduced to braids and their modules.

Example.

Here is a finite-dimensional module of B(A) for three strands:

B(A)→ Aut((C(q, t))3), b1 7→



−q2t 0 q2 − q

0 0 q
0 1 1− q


 & b2 7→




0 q 0
1 1− q 0
0 t(q2 − q) −q2t




Theorem (Lawrence ∼1990, Bigelow & Kramer ∼2002).

This works in general for B(A) and the modules are faithful.
(Two braids are the same iff their matrices are the same.)

However, for general Artin–Tits braid groups basically all questions are widely open.

Back
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Khovanov & others ∼1999++. Knot homologies are instances of

2-representation theory. Low-dim. topology & Math. Physics

Khovanov–Seidel & others ∼2000++. Faithful 2-modules of braid groups.

Low-dim. topology & Symplectic geometry

Chuang–Rouquier ∼2004. Proof of the Broué conjecture using 2-representation

theory. p-RT of finite groups & Geometry & Combinatorics
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Z quiver algebra with underlying graph G .

Endofunctors  tensoring with Z-bimodules.

Lemma. These satisfy the relations of C[D2n].
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This is an unexpected ADE classification,
which is – imho – quite neat.

Note that this is also completely different
than the decategorified story:

The number of 2-simples is at most three,
but they grow in dimension when n grows.
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