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o Philosophy: “Categorifying” classical representation theory
@ Some classical results
@ Some categorical results

e The decategorified story
@ Np-representation theory
@ How cell theory helps

e The categorified story
o Finitary 2-representation theory
@ How cell theory helps
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Pioneers of representation theory.

Let A be a finite-dimensional algebra.

Frobenius ~1895++, Burnside ~1900+4, Noether ~1928-44.
Representation theory is the study of algebra actions

M: A — End(V), |“./\/l(a) = a matrix in Snd(V)”|

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple.

Maschke ~1899, Noether, Schreier ~1928. All modules are built out of
simples (“Jordan—Holder filtration™).
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Pioneers of representation theory.

Let A be a finite-dimensional algebra.

Frobenius ~1895-+4, Burnside ~19004+4, Noether ~1928-4+.

Representation theory is th

We want to have a
categorical version of this.

h actions

M: A — End(V)

|I am going to explain what we can do at present.|

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple.

Maschke ~1899, Noether, Schreier ~1928. All modules are built out of
simples (“Jordan—Holder filtration™).
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Dihedral groups as Coxeter groups.

| should do the Hecke case,
The dihedral groups are of Coxeter type Ip,: but | will keep it easy.
Dyy={(s,t|s?=t>=1,8,=_..sts =wp =,..tst = Tp),
n n

eg. Dg = (s, |82= 2=1, sts = wp = stst)

Example. A finite is the symmetry group of a (semi)regular
polyhedron, e.g. for Ig we have a 4-gon:

|Idea (Coxeter ~1934—|+).|
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Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type Ip,:

2 2 - =
Dy, =(s,t|s*=t"=1 8,=...sts=wy =_..tst =T,),
n n

eg Dg=(s,t|s>=1t2=1, tsts = wyp = stst)

Example. A finite is the symmetry group of a (semi)regular

polyhedron, e.g. for Ig we have a 4-gon:
[Fix a flag F. |Idea (Coxeter ~1934-|+).|

|Fact. The symmetries are given by exchanging flags.|
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Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type Ip,:

2 2 - =
Dy, =(s,t|s*=t"=1 8,=...sts=wy =_..tst =T,),
n n

eg Dg=(s,t|s>=1t2=1, tsts = wyp = stst)

Example. A finite is the symmetry group of a (semi)regular
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Fix a hyperplane Hy permuting

the adjacent O-cells of F. r\
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n n

eg Dg=(s,t|s>=1t2=1, tsts = wyp = stst)

Example. A finite is the symmetry group of a (semi)regular

polyhedron, e.g. for Ig we have a 4-gon:
Fix a flag F. |Idea (Coxeter ~1934-|+).|

Fix a hyperplane Hy permuting
the adjacent O-cells of F.

Fix a hyperplane H; permuting
the adjacent 1-cells of F, etc.
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Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type Ip,:

2 2 - =
Dy, =(s,t|s*=t"=1 8,=...sts=wy =_..tst =T,),
n n

eg Dg=(s,t|s>=1t2=1, tsts = wyp = stst)

Example. A finite is the symmetry group of a (semi)regular

polyhedron, e.g. for Ig we have a 4-gon:
Fix a flag F. |Idea (Coxeter ~1934-|+).|

Fix a hyperplane Hy permuting
the adjacent O-cells of F.

Fix a hyperplane H; permuting
the adjacent 1-cells of F, etc.

|Write a vertex i for each H,-.|
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Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type Ip,:

2 2 — _
Dy, =(s,t|s*=t"=1 8,=...sts=wy =_..tst =T,),

n n

eg Dg=(s,t|s>=1t2=1, tsts = wyp = stst)

Example. A finite is the symmetry group of a (semi)regular

polyhedron, e.g. for Ig we have a 4-gon:
Fix a flag F.

|Idea (Coxeter ~1934-|+).|
Fix a hyperplane Hy permuting
the adjacent O-cells of F.

Fix a hyperplane H; permuting

the adjacent 1-cells of F, etc. T

- — cos( /4)
|Wr|te a vertex i for each H,-.|

Connect /,j by an n-edge for
H;, H; having angle cos(m/n).

4
—k

|This gives a generator-relation presentation.
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Dihedral groups as Coxeter groups.

The dihedral groups are of Coxeter type Ip,:

2 2 - =
Dy, =(s,t|s*=t"=1 8,=...sts=wy =_..tst =T,),
n

n

eg Dg=(s,t|s>=1t2=1, tsts = wyp = stst)

Example. A finite is the symmetry group of a (semi)regular
polyhedron, e.g. for Ig we have a 4-gon:

To write down the elements use the Coxeter complex.
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Dihedral representation theory on one slide.

One-dimensional modules. M_» ,As, A € C s = Ag,t = AL

Daniel Tubbenhauer A primer on finitary 2-representation theory January 2019

5/13



Dihedral representation theory on one slide.

One-dimensiond Proposition (Lusztig?).

The list of one- and two-dimensional D2,-modules
is a complete, irredundant list of simples. -

T
|

M-l,-l; Ml,-h M-l,la M1,1 | M-l,-1, Ml,l
\

|I learned this construction from Mackaay in 2017.

|
Two-dimensional modules. M,z € C,s — (§ %), t— (F9).

V(n) ={2cos(rk/n—1) | k=1,...,n—2}.
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Dihedral representation theory on one slide.

One-dimensiond Proposition (Lusztig?).

The list of one- and two-dimensional D2,-modules
is a complete, irredundant list of simples. -

T
|

Mg, My, Mg, Mg 0 Mg, Mag
|

|I learned this construction from Mackaay in 2017. |

Two-dimensional modules. M,z € C,s — (§ %), t— (F9).

Note that this requires complex parameters.
In particular, this does not work over Z.

M,z e V(n)—{0} i M, ze V(n)

V(n) ={2cos(rk/n—1) | k=1,...,n—2}.
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Pioneers of 2-representation theory.

Slogan (finitary).

Let 6 be a finitary 2-category. . o
Everything that could be finite is finite.

Etingof—Ostrik, Chuang—Rouquier, many others ~2000+4. Higher
representation theory is the useful? study of actions of 2-categories:

M EC — End(V), |//Z(F) = a functor in é’nd(V)”|

with V being some finitary category. (Called 2-modules or 2-representations.)

The “atoms” of such an action are called 2-simple.

Mazorchuk—Miemietz ~2014. All 2-modules are built out of
2-simples (“ 2-Jordan—Hdlder filtration™).
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Etingof—Ostrik, Chuang—Rouquier, many others ~2000+4. Higher
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M€ — End(V),

with V being some fi|A main goal of 2-representation theory. representations.)
Classify 2-simples.

The “atoms” of such an action are called 2-simple.

Mazorchuk—Miemietz ~2014. All 2-modules are built out of
2-simples (“ 2-Jordan—Hdlder filtration™).
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Pioneers of 2-representation theary

Let

Etingof—( Comments. | will discuss the classification “in real time”.

|Main examples to keep in mind.|

Lot [a] s
R Example. 6 = Vecg or Rep(G).
Features. Semisimple, classification of 2-simples well-understood.

representation theory Is the useful/ study of actions of Z-categories:

with

p74 ra o AWAXAY
Example. € = RepZESI(g)|eve| n-
Features. Semisimple, finitely many 2-simples,
classification of 2-simples only known for g = Sl,, some guesses for general g.
Comments. The classification of 2-simples is related to Dynkin diagrams.

The Tatoms™ of such an action are called 2-simple.

Mg
2-9

Example. 6 = Hecke category.
Features. Non-semisimple, not known whether there are finitely many 2-simples,
classification of 2-simples only known in special cases.
Comments. Hopefully, by the end of the year we have a classification
by reducing the problem to the above examples.
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2-modules of dihedral groups.

The dihedral group Dy, of the regular n-gon has a Kazhdan—Lusztig (KL) basis.
Consider: 6, = wagw w, eg O =st+s+t+1

Motivation. The KL basis has some neat integral properties and exists for any
Coxeter group. (It isn't as easy to write down, but exists.)

We want a categorical action. So we need:

> A category V to act on.
>> Endofunctors acting on V for the (fixed!) KL basis.
> The relations of the KL basis have to be satisfied by the functors.
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2-modules of dihedral groups.

Theorem ~2016.

The dihedral (KL) basis.
Fixing the KL basis, there is a one-to-one correspondence
C 1.
{ 2-simple D,-modules} /2-iso
Motivation. ] JEEN ts for any

Coxeter grou|{bicolored ADE Dynkin diagrams with Coxeter number n}.

Wie waii: 2 @ Thus, its easy to write down a

=4

> A category V to act on.
>> Endofunctors acting on V for the (fixed!) KL basis.
> The relations of the KL basis have to be satisfied by the functors.
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An algebra P with a fixed basis BY is called a Np-algebra if

xy € NoBY  (x,y € BF).

A P-module M with a fixed basis BM is called a Ng-module if

xm € NoBM  (x € BY,m € BM).

These are Np-equivalent if there is a Ny-valued change of basis matrix.

Example. Ny-algebras and Ny-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ny-equivalence comes from 2-equivalence.
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Example.
Group algebras of finite groups with basis given by group elements are Np-algebras.

The regular module is a No-module.

A P-module M with a fixed basis BM is called a Ng-module if
xm € NoBM  (x € BY,m € BM).

These are Ny-equivalent if there is a Np-valued change of basis matrix.

Example. Ny-algebras and Ny-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ny-equivalence comes from 2-equivalence.
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Example.
Group algebras of finite groups with basis given by group elements are Np-algebras.

The regular module is a No-module.

Example.
A P-m 4
The regular module of a group algebra decomposes over C into simples.
These However, this decomposition is almost never an Np-equivalence.

Example. Ny-algebras and Np-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ny-equivalence comes from 2-equivalence.
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Example.
A
Group algebras of finite groups with basis given by group elements are Np-algebras.
The regular module is a No-module.
Example.
A P-m P
The regular module of a group algebra decomposes over C into simples.
However, this decomposition is almost never an Np-equivalence.
These
Exam Example. tion of
2-categ

Hecke algebras of (finite) Coxeter groups with
their KL basis are Np-algebras.

For the symmetric group a happens: all simples are No-modules.
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Clifford, Munn, Ponizovskii ~1942+, Kazhdan—Lusztig ~1979. x < y if x
appears in zy with non-zero coefficient for z € BY. x ~ y if x < y and y <| x.
~ partitions P into left cells L. Similarly for right R, two-sided cells J or
Ng-modules.

A Ng-module M is transitive if all basis elements belong to the same ~|
equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive Ng-module has a unique apex.

Hence, one can study them cell-wise.

Example. Transitive Ng-modules arise naturally as the decategorification of
simple 2-modules.
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Clifford, Munn_Panizovskii ~1942-1L Kazhdan—I| usztio ~1

79. x < yifx

appears in zy
~ partitions H
Ng-modules.

A Np-module N
equivalence cla

|

Hence, one can

Example. Tra
simple 2-modul

Philosophy.

Imagine a graph whose vertices are the x's or the m'’s.
vi — v if vi appears in zvs.

X1 /XZ\X4 m/m2\m4
N N

cells = connected components
transitive = one connected component

“The atoms of No-representation theory”.

y and y <| x.
lIs J or

ne ~
lling it.

1

ication of

|Questi0n (No-representation theory). Classify them!
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Example.

Group algebras with the group element basis have only one cell, G itself. B

af
N

Transitive No-modules are C[G/H] for H C G subgroup/conjugacy. The apex is G.

A Np-module M is transitive if all basis elements belong to the same ~
equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive Ng-module has a unique apex.

Hence, one can study them cell-wise.

Example. Transitive Ng-modules arise naturally as the decategorification of
simple 2-modules.
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Example.

Group algebras with the group element basis have only one cell, G itself.

af
N|Transitive No-modules are C[G/H] for H C G subgroup/conjugacy. The apex is G.

A Nyp-mo|

equivalen

Hence, o

have

with apex given by elements for the same shape of Young tableaux.

Example (Kazhdan—Lusztig ~1979).

Hecke algebras for the symmetric group with KL basis

coming from the Robinson—Schensted correspondence.

The transitive No-modules are the simples

Example. Transitive No-modules arise naturally as the decategorification of
simple 2-modules.
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Example.

Group algebras with the group element basis have only one cell, G itself.

af
N|Transitive No-modules are C[G/H] for H C G subgroup/conjugacy. The apex is G.

A Ng-mo|
equivalen

Example (Kazhdan—Lusztig ~1979).

Hecke algebras for the symmetric group with KL basis
have coming from the Robinson—Schensted correspondence.

The transitive No-modules are the simples

Hence, o

with apex given by elements for the same shape of Young tableaux.

Take G

Example.

= Z/3Z. Then G has three conjugacy classes and three associated simples.
These are given by specifying a third root of unity.

G has two subgroups; {e} and G.
The associated Ng-modules are the regular and the trivial G-module.
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Natural, and computable, examples of transitive Nyo-modules are the so-called cell
modules which, in some sense, play the role of regular modules.

Fix a left cell L. Let M(>_), respectively M(>_), be the Ng-modules spanned by
all x € BY in the union L’ > L, respectively L’ > L.
We call Cp = M(>1)/M(>_) the (left) cell module for L.

Fact. “Cell = transitive Nyp-module”.

Empirical fact. In well-behaved cases “Cell < transitive Ng-module”, and
classification of transitive Ng-modules is fairly easy.

Question. Are there natural examples where “Cell <~ transitive Nyo-module”?

Example. Decategorifications of cell 2-modules are key examples of cell modules.
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Na Example. cell

md
C[G] with the group element basis has only one cell module, the regular module.

i However, the transitive No-modules C[G/H] are cell modules for G/H if H< G. by

all So morally, “Cell < transitive No-module” .
\N(‘_ CdiT U — l\l\_L) L\'l\ |_) e \IEIL) CCIT TIToaurTe 101 L.
Fact. “Cell = transitive Ngo-module”.
Empirical fact. In well-behaved cases “Cell transitive No-module”, and

classification of transitive No-modules is fairly easy.

Question. Are there natural examples where “Cell <~ transitive No-module” ?

Example. Decategorifications of cell 2-modules are key examples of cell modules.
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Na Example. cell
md . .
C[G] with the group element basis has only one cell module, the regular module.
Flll However, the transitive No-modules C[G/H] are cell modules for G/H if H< G. by
d So morally, “Cell < transitive No-module” .
VVQ. CdiT U] — IVIT 1 T/ IVIT 1 J LIE [TETL] CEIT TTTOUUIE TOT L.
Example (Kazhdan—Lusztig ~1979, Lusztig ~1983+).
For Hecke algebras of the symmetric group with KL basis
Emp “Cell < transitive No-module”.
classi
In general, for Hecke algebras the cell modules are Lusztig's
Qucell modules studied in connection with reductive groups in characteristic p. |¢" ?

Example. Decategorifications of cell 2-modules are key examples of cell modules.
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Na Example. cell

md

C[G] with the group element basis has only one cell module, the regular module.

Fi . . by
I However, the transitive No-modules C[G/H] are cell modules for G/H if H< G.

d So morally, “Cell < transitive No-module” .

Wt CdiT U] — IVIT 1 T/ IVIT 1 J LIE [TETL] CEIT TTTOUUIE TOT L.

Example (Kazhdan—Lusztig ~1979, Lusztig ~1983+).

For Hecke algebras of the symmetric group with KL basis
Emp “Cell < transitive No-module”.

classi
In general, for Hecke algebras the cell modules are Lusztig's
Qucell modules studied in connection with reductive groups in characteristic p. |¢" ?

Example (dihedral case).

[l o] 1 [2] — T
Cells: [size [ 1 [2n2] 1 | 1forneven: 2 2 1fornodd: 2 -2
[ st [ yes | [ yes | 2 2 2 2

In the dihedral case the DE-modules are not cell modules.
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An additive, k-linear, idempotent complete, Krull-Schmidt category C is called
finitary if it has only finitely many isomorphism classes of indecomposable objects
and the morphism sets are finite-dimensional. A 2-category 6 with finitely many
objects is finitary if its hom-categories are finitary, ox-composition is additive and
linear, and identity 1-morphisms are indecomposable.

A simple transitive 2-module (2-simple) of € is an additive, k-linear 2-functor
M : € — o/ (= 2-cat of finitary cats),

such that there are no non-zero proper %6-stable ideals.
There is also the notion of 2-equivalence.

Example. Ny-algebras and Ny-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ny-equivalence comes from 2-equivalence.
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An b, 1o lin v icdavanatant anlat Wenll Crbhmnidls tocon: O ic 11 d

Mazorchuk—Miemietz ~2014.

finit ects
a”?* 2-Simples «~ simples (e.g. 2-Jordan—Holder filtration), any
obje and

linedbut their decategorifications are transitive No-modules and usually not simple.

A simple transitive 2-module (2-simple) of € is an additive, k-linear 2-functor
M € — (= 2-cat of finitary cats),

such that there are no non-zero proper 6-stable ideals.
There is also the notion of 2-equivalence.

Example. Ny-algebras and Np-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ny-equivalence comes from 2-equivalence.
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An it T i v idovanatont vanlat WKl Crbhvnidds + v O ic 11 d
Mazorchuk—Miemietz ~2014.

: 2-Simples «~ simples (e.g. 2-Jordan—Halder filtration), 2y
obje and

linedbut their decategorifications are transitive No-modules and usually not simple.

A simjf Mazorchuk—Miemietz ~2011. tor

Define cell theory similarly as for Np-algebras and -modules.
such t

There |2-simple = transitive, and transitive 2-modules have a 2-simple quotient.

Example. Ny-algebras and Ny-modules arise naturally as the decategorification of
2-categories and 2-modules, and Np-equivalence comes from 2-equivalence.
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Mazorchuk—Miemietz ~2014.

: 2-Simples «~ simples (e.g. 2-Jordan—Halder filtration), 2y
obje and

linedbut their decategorifications are transitive No-modules and usually not simple.

A simjf Mazorchuk—Miemietz ~2011. tor

Define cell theory similarly as for Np-algebras and -modules.
such t

There |2-simple = transitive, and transitive 2-modules have a 2-simple quotient.

Example. N Chan-Mazorchuk ~2016. orification of

2-categories ) ) o lence.
Every 2-simple has an associated apex not killing it.

Thus, we can again study them separately for different cells.
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An additive, k-linear, idempotent complete, Krull-Schmidt category C is called

finitary i Example. E objects
and the ly many
objects i{B-pMod (with B finite-dimensional) is a prototypical object of * . |tive and
linear, ar

A 2-module usually is given by endofunctors on B-pMod.

A simple transitive 2-module (2-simple) of € is an additive, k-linear 2-functor
M : € — (= 2-cat of finitary cats)

such that there are no non-zero proper 6-stable ideals.

There is also the notion of 2-equivalence.

Example. Ny-algebras and Np-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ny-equivalence comes from 2-equivalence.
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An additive, k-linear, idempotent complete, Krull-Schmidt category C is called

finitary i Example. E objects
and the ly many
objects i{B-pMod (with B finite-dimensional) is a prototypical object of * . |tive and
linear, ar

A 2-module usually is given by endofunctors on B-pMod.

A simple transitive 2-module (2-simple) of 6 is an additive, k-linear 2-functor

Example.
q G can be (naively) categorified using G-graded vector spaces Vecg € .&/%.
1
The are indexed by (conjugacy classes of) subgroups H and ¢ € H2(H7 C*).

Example. Ny-algebras and Ny-modules arise naturally as the decategorification of
2-categories and 2-modules, and Np-equivalence comes from 2-equivalence.
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An additive, k-linear, idempotent complete, Krull-Schmidt category C is called

objects i
linear, ar

Example.
ly many

B-pMod (with B finite-dimensional) is a prototypical object of ./  |tive and

A 2-module usually is given by endofunctors on B-pMod.

A simple transitive 2-module (2-simple) of 6 is an additive, k-linear 2-functor

| The

9 G can be (naively) categorified using G-graded vector spaces Vecg € ot

Example.

are indexed by (conjugacy classes of) subgroups H and ¢ € HQ(H7 C*).

R

A

1Example (Mazorchuk—Mlemletz & Chuang—Rouqmer & Khovanov—Lauda & ).

1 = RT 11 Ll <l f

2-Kac—Moody algebras are finitary 2-categories.

Their 2-simples are categorifications of the simples.
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An additive, k-linear, idempotent complete, Krull-Schmidt category C is called

finitary if it has only flmtely many |somorph|sm classes of indecomposable objects
A+l 1 A D + (o7 WS N TN |

Example (Mazorchuk M|em|etz & Soergel & Khovanov—Mazorchuk—Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.

Symmetric group: the 2-simples are categorifications of the simples.

such that there are no non-zero proper 6-stable ideals.
There is also the notion of 2-equivalence.

Example. Ny-algebras and Np-modules arise naturally as the decategorification of
2-categories and 2-modules, and Np-equivalence comes from 2-equivalence.
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An additive, k-linear, idempotent complete, Krull-Schmidt category C is called
if it has only

A D + L WS N TN |

Example (Mazorchuk—Miemietz & Soergel & Khovanov—Mazorchuk—Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.

Symmetric group: the 2-simples are categorifications of the simples.

s Example (Kildetoft—Ko—Mackaay—Mazorchuk—Miemietz—Zhang & ...).
1
Quotients of Soergel bimodules , e.g. small quotients, are finitary 2-categories.
E Except for the small quotients+e the classification is widely open. of

2-categories and 2-modules, and Ng-equivalence comes from Z-equivalence.
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An additive, k-linear, idempotent complete, Krull-Schmidt category C is called
if it has only

A D + L WS N TN |

Example (Mazorchuk—Miemietz & Soergel & Khovanov—Mazorchuk—Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.

Symmetric group: the 2-simples are categorifications of the simples.

s Example (Kildetoft—Ko—Mackaay—Mazorchuk—Miemietz—Zhang & ...).
1
Quotients of Soergel bimodules , e.g. small quotients, are finitary 2-categories.
E Except for the small quotients+e the classification is widely open. of

2-categories and 2-modules, and Ng-equivalence comes from Z-equivalence.

Example.

Fusion or modular categories are semisimple examples
of finitary 2-categories. (Example. Rep;™ (g)s-)
Their 2-modules play a prominent role in quantum algebra and topology.
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An additive, k-linear, idempotent complete, Krull-Schmidt category C is called

finitary if it has only finitely many isomorphism classes of indecomposable objects
and the morphism sets are finite-dimensional. A 2-category 6 with finitely many
objects is finitary if its hom-categories are finitary, o,-composition is additive and
linear, and identity 1-morphisms are indecomposable.

A simple

such tha
There is

On the categorical level the impact of the choice of basis is evident:

These are the indecomposable objects in some 2-category,
and different bases are categorified by
potentially non-equivalent 2-categories.

So, of course, the 2-representation theory differs!

nctor

Example. Ny-algebras and Np-modules arise naturally as the decategorification of
2-categories and 2-modules, and Ny-equivalence comes from 2-equivalence.

Daniel Tubbenhauer A primer on finitary 2-representation theory

January 2019 11/13



An additive, k-linear, idempotent complete, Krull-Schmidt category C is called
finitary if it has only finitely many isomorphism classes of indecomposable objects
and the morphism sets are finite-dimensional. A 2-category 6 with finitely many
objects is finitary if its hom-categories are finitary, o,-composition is additive and
linear, and identity 1-morphisms are indecomposable.

A simple transitive 2-module (2-simple) of € is an additive, k-linear 2-functor

U o BV WA SN o~ TS o)
Question (“2-representation theory”).

such that there 3

There is also the|Classify all 2-simples of a fixed finitary 2-category.

Example. Np-algebras and Ny-modules arlse naturally as the decategorlflcatlon of

U EaY I | oL R : L [a}
2-categories This is the categorlflcatlon of lence.

‘Classify all simples a fixed finite-dimensional algebra’,

but much harder, e.g. it is unknown whether
there are always only finitely many 2-simples (probably not).
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One can do even better than just reducing the theory to a fixed apex; one can
reduce to the diagonal. Roughly:

For each two-sided cell J fix a left cell L and consider the diagonal cell H =L UL*.

Green ~1951, Mackaay—Mazorchuk—Miemietz—Zhang ~2018. For any fiat
2-category €6 there exists a fiat 2-subcategory ./ such that

2-simples of € | one-toone | 2-simples of .o/
. A — .
with apex J with apex H
This the classification to the diagonal H.

We that this will finally lead to a classification of 2-simples for Soergel
bimodules using asymptotic Hecke algebras and categories. (At the moment this
is widely open.)

Daniel Tubbenhauer A primer on finitary 2-representation theory January 2019 12/13



Pioncors of reprosentation theory.

Let A b 8 it dimensons! slsbrs.

Fraberius ~1895-+, Burmside 1900+ Nocther ~1928 .
Representstion theey i the GEEED sty f lgbes actions

). [T ]

with  bing some vector space. (Called modies o reprsenttions )

MiA g

The “stams” of such an sction s called smple

Maschke 1699, Noether, Schreier ~1928. All modules are buil ot of
Simples (“Jordan-Holder st

Plancers of 2 epresentation theory

Lo b ity 2ot e e e e

Etingor-Ostix, ChuangRou sy others 2000+ Higher
eesntation thar i e e sy of Scons of 2 caegris

46— na(y), A== e ET]

ith ) bingsome nitary categoey (Calld 2 modules o 2 represntations)

The “atams” of such a action v called 2-smple.

Mazorchuk-Miemietz ~2010. Al

2 modues s bk aut of
25impls (1 2 Jordan-Holdr )

o
Exan|
N ol 123 bt sy

g

o s ol s s st e cll s stachd 0 ok st th o),
bt iy v e

Sz of the coll and whether th cls are strongly egu (3]

In gmarlthre wil b ety of o

e modules which s ransit N modules.

Dibedral groups as Coseter groups.

The divdral groups e of Coeser ype |

g D= (oo E L "

Example. A fne e sty goup o e
e, <5 o 1y we hove s 450

T e € cetons

—

e
B

N S

2 represent

Difedral representaion theory an one side.

One.dimension Fropostion (e

EE LR

Two-dimensional modules. M,.2 .o = (} %)+ (31])
o e o
T pticin, i s o

pr——

Mz < Vin)
V(o) = (2es(skfn-1) [ K= 1.0 2}

(Sobin 1038 1.

hensted ~1961 & Kazhdan-Luszig ~1070.
Young tabeao ofthe same sha

e S .
Blm o o o o o

Th Ne moduls s the s,

Example (SAGE; Type ).

Redocing from 46090 to 14500 o &

T =
e | [
T e | He o
| -1 [z
] Bl

Ve, ok sequence:

In particlr thare i one nr-cell 2l

I e o g o ot g, nd e s
St i . g he.

There is still much to do.
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Pioncors of reprosentation theory.

Let A b 8 it dimensons! slsbrs.

Fraberius ~1895-+, Burmside 1900+ Nocther ~1928 .
Representstion theey i the GEEED sty f lgbes actions

). [T ]

with  bing some vector space. (Called modies o reprsenttions )

MiA g

Difedral representaion theory an one side.

One.dimension Fropostion (e

Pttty vy

M Moy Mg Mux | Mas M

oo dimensional modules. M.z C.x -+ (} %)+ (1)

The “stams” of such an sction s called smple [P B i e s
Toro

Maschke 1699, Noether, Schreier ~1928. All modules are buil ot of

Simples (“Jordan-Holder st Moz Vo)1)

Mz < Vin)

V(o) = (2es(skfn-1) [ K= 1.0 2}

Plonaers of 2 epresentation theary T e A iy

Let %€ be a finitary 2-category. Slogan (fnitary). right and two-side A«H\« S,
y 2ecaters [Everingtha cokd b e s e T
Etingof-Ostrik, Chuang-Rout 1y others ~2000++. Higher -
epreanation thory 5 the el sty of sctios of 2 coregaric o O e S
Pl —
2-simples (- 2-Jordan-Halder ) E 7 :

. T T

an] Example (SAGE; Type )

N ol 123 bt sy ple (SAGE: Type E).
2represent

g

Redocing from 46090 to 14500 o &

=T =
e e i
8 mEE| i
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o e s e . it ez

iz of th ol andwhths th cels e songly el (] e etk s 1202

In particlr thare i one nr-cell 2l
In gmarlthre wil b ety of o

e modules which s ransit N modules. I e o g o ot g, nd e s
e e g o

Thanks for your attention!
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It may then be asked why, in & book which professes to leave
all applications on one side, & iderable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that
could be most directly obtained by the consideration of grou
of linear transformations.

ERY considerable advances in the theory of groups of

finite order bave been made since the appearance of the

first edition of this book. In particular the theory of groups

of linear substitutions has been the subject of numerous and

important investigati by several writers; and the reason

given in the original preface for omitting any account of it no
longer holds good.

In fact it is now more true to say that for further advances

in the abstract theory one must look largely to the representa-

tion of a group as a group of linear substitutions. There is

Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).



It may then be asked why, in & book which professes to leave
all applications on one side, & iderable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that

could be most directly obtained by the consideration of groups
of linear transformations.

|Nowadays representatlon theory is pervasive across mathematics, and beyond.
n1 order bave 'en made since € appearal

ﬁrst edltlon of thls book. In particular the theory of groups
of linaar ione has heon tha suhiact of and
[But this wasn't clear at all when Frobenius started it.|
given in the original preface for omitting any account of it no
longer holds good.

In fact it i now more true to say that for further advances
in the abstract theory one must look largely to the representa-
tion of a group as a group of linear substitutions. There is

Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).



bilden

), die der

¢ primitive

Figure: “Uber Gruppencharaktere (characters of groups)”’ by Frobenius (1896). Bottom:
first published character table.

Note the root of unity p!



Figure: The connected Coxeter diagrams of finite type. Their numbers ordered by
dimension: 1,00,3,5,3,4,4,4,3,3,3,3,3,....

Examples.

Type A3 «~ tetrahedron «~ symmetric group Ss.

Type B3 e~ cube/octahedron «~ Weyl group (Z/27)3 x Ss.

Type H3 «~ dodecahedron/icosahedron «~ exceptional Coxeter group.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)


https://en.wikipedia.org/wiki/Coxeter_group

The type A family
n=5

n;z n=3 n=4
—k — —
* ——

A
~«
L

The type D family

n =10

The type E exceptions

n =18

f
i

1L

n =30



The type A family

n=5 n==6

—k — —

This is an unexpected ADE classification,

and these have appeared in Sergei's talk"’|
n=28 n =10

JHJ._HJH_HJ

Fun, and of course related
Rep;™ (SL2), (semisimplified at level n)
] has, up to forgetting bicoloring, the same classification of 2-simples.

N X N S

There is a similar story for all types,
I e.g. Repy™ (SLs)n (semisimplified at level n)

30

relates to some “trihedral algebra”.
—_— = X k¥




The KL basis elements for S with s = (1,2),t = (2,3) and sts = wy = tst are:

=1, O.,=s+1, O.=t+1, O.,=ts+s+t+1,
O =st+s+t+1, Oy =w+ts+st+s+t+1

Figure: The character table of Ss.



The KL basis elements for S with s = (1,2),t = (2,3) and sts = wy = tst are:

=1, O.,=s+1, O.=t+1, O.,=ts+s+t+1,
O =st+s+t+1, Oy =w+ts+st+s+t+1
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Figure: The character table of Ss.



The KL basis elements for S with s = (1,2),t = (2,3) and sts = wy = tst are:

=1, O.,=s+1, O.=t+1, O.,=ts+s+t+1,
O =st+s+t+1, Oy =w+ts+st+s+t+1

91 05 et 9:5 Gst 0 0
Remark.
[T This non-negativity of the KL basis

is true for all symmetric groups,
but not for most other Coxeter groups (cf. dihedral case).

A4

ﬁ 1 0 0 0 0 0

Figure: The character table of Ss.



(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.

Elements of S, JLLN (P, Q) standard Young tableaux of the same shape. Left,
right and two-sided cells of Sj;:

> s~ tif and only if Q(s) = Q(t).
» s ~g tif and only if P(s) = P(t).
» s~ tifand only if P(s) and P(t) have the same shape.

Example (n = 3).

S e , S e B

1 s [1123], [I2[3) W()<’\N‘>,
33

’ St e o3



(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.

Elements of S, <i> (P, Q) standard Young tableaux of the same shape. Left,
right and two-sided cells of S,:

> s~ tif and only if Q(s) = Q(¢).
» s~ tif and only if P(s) = P(t).
» s~ tifand only if P(s) and P(t) have the same shape.

Example (n = 3).

Left cells

o~ [1]3] o~ [1]3]
s o2l s i[2] —_
1 [1
1 e~ 11213, (11213 Wowﬂﬁ\
33
[1]2] [1]2] [1[3] [1]2] _

Lo stewpriEr




(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.

Elements of S, <i> (P, Q) standard Young tableaux of the same shape. Left,
right and two-sided cells of S,:

> s~ tif and only if Q(s) = Q(¢).
» s~ tif and only if P(s) = P(t).
» s~ tifand only if P(s) and P(t) have the same shape.

Example (n = 3).

Right cells

1[3 1[2

S e L5 h s v 55 B
1

1 ews [1273], A213] Wy e~ 2, 2]
(12 [1]2] (13 [1]2] o B

1(2 1(2 1(3 1(2

e SRR || st em BB




(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.

Elements of S, <i> (P, Q) standard Young tableaux of the same shape. Left,
right and two-sided cells of S,:

> s~ tif and only if Q(s) = Q(¢).
» s~ tif and only if P(s) = P(t).
» s~ tifand only if P(s) and P(t) have the same shape.

Example (n = 3).

sem P s e L —
1 enms T, 0T Wowﬁ7ﬁ

teoHH st e HH




(Robinson ~1938 & )Schensted ~1961 & Kazhdan-Lusztig ~1979.

Elements of S, <£> (P, Q) standard Young tableaux of the same shape. Left,
right and two-sided cells of S,:

Apexes:
» S ~ B
» S ~
91 95 61—, Gts est ewo
» S ~
111 1 2 2 4 4 6
Exampl

The No-modules are the simples.




The regular Z/3Z-module is
Ow(é(l)g) & 1%((1)8%)) & 2%(8(1)
001 010 10

Jordan decomposition over C with (3 = 1 gives
10 0 100
Oevw((l)?8> & 1«w»<0< 0) & 2%(0(10)
001 00¢ ! 00 ¢

However, Jordan decomposition over f3 gives

ow(é‘fg) & 1W(H‘1’) & 2M<H
001 001 00

0
1
1

and the regular module does not decompose.



Example (G = Dg). Here we have three different notions of “atoms”.

Classical representation theory. The simples from before.

My | M1 Mz | Mag | Mia
atom sign rotation trivial
rank 1 1 2 1 1
Group element basis. Subgroups and ranks of Ny-modules.
subgroup | 1 (st) (wo) | (wo,s) | (wo,sts) | G
atom regular | My @M | M 0M 5 | Myg@Mig | Myi@Ma, | trivial
rank 8 2 4 2 2 1
KL basis. ADE diagrams and ranks of Ng-modules.
bottom cell | w———¥ —_—— top cell
atom sign My aOM 5 | Ma1OM 5 trivial
rank 1 3 3 1




Example (SAGE). The symmetric group on 4 strands. Number of elements: 24.
Number of cells: 5, named 0 (trivial) to 4 (top).

Cell order:
=12 e=3—=4

Size of the cells:

[cell JoJ1]2]3]4]

Left cells are rows,

‘ size H 1 ‘ 9 ‘ & ‘ 9 ‘ i ‘ right cells are columns.
Cell 1is e.g.
S1 $S1 | S3%5251 1111
number of elements
5152 S 5352 1111
515253 | $253 S3 111

Such cells of square size are called strongly regular.



Example (SAGE). The symmetric group on 4 strands. Number of elements: 24.

Number of cells: 5, named 0 (trivial) to 4 (top).
Fact.

Cell order:
Each left-right-intersection contains at least one element.

So strongly regular cells are as easy as possible.

Size of the ce

S,

[cell JoJ1]2]3]4]
[size [1]0o]4a]9o]1]

Cell 1is e.g.
S1 $S1 | S3%5251 1111
number of elements
5152 S 5352 1111
51553 | S2S3 S3 1|11

Such cells of square size are called strongly regular.



Example (SAGE). The symmetric group on 4 strands. Number of elements: 24.

Number of cells: 5, named 0 (trivial) to 4 (top).
Fact.

Cell order: . . .
Cell < transitive Ng-module” holds

No-algebras with only strongly regular cells.

Size of the cells:

[cell JoJ1]2]3]4]
[size [1]0o]4a]9o]1]

Cell 1is e.g.
S1 $S1 | S3%5251 1111
number of elements
5152 S 5352 1111
51553 | S2S3 S3 1|11

Such cells of square size are called strongly regular.



Example (SAGE). The symmetric group on 4 strands. Number of elements: 24.

Number of cells: 5, named 0 (trivial) to 4 (top).
Fact.

Cell order: . . .
Cell < transitive Ng-module” holds

No-algebras with only strongly regular cells.

Size of the cells:

[cell JoJ1]2]3]4]
[size [110olalolq]

. Fact.
Cell 1is e.g.
For the symmetric group all cells are strongly regular.
5152 S 5352 11111
515253 | $253 S3 111

Such cells of square size are called strongly regular.



Example (SAGE). The symmetric group on 4 strands. Number of elements: 24.
Number of cells: 5, named 0 (trivial) to 4 (top).

Example. There are three rows with three elements,
Cell ordg so three cells modules of dimension three.
Size of t All of them are Np-equivalent and here is one of them:
1 1 0 0 0 O 0 0 O
st~ |0 0 O)Jands, e~ |1 1 O] andss«~= |0 0 O
0 1 1 0 0 1 0 1 0
Celllise
S1 $S1 | S35251 111
number of elements
515 S R | —— | 1|11
51553 | S2S3 S3 1|11

Such cells of square size are called strongly regular.



Example (SAGE). The Weyl group of type Bg. Number of elements: 46080.
Number of cells: 26, named 0 (trivial) to 25 (top).

Cell order:
Do 7 e 10 == 13 == 15 == 18 =21

Dom] e e e oo § e Qe [ D e ]G e 17 e 10 e 22 e 23 e 24 == 25

Size of the cells and whether the cells are strongly regular (sr):

cell 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 20 21 22 | 23 | 24| 25
e 1 | 62 | 342 | 576 | 650 | 3150 | 350 | 1600 | 2432 | 3402 | 900 | 2025 | 14500 | 600 | 2025 | 900 | 3402 | 2432 | 1600 | 350 | 576 | 3150 | 650 | 342 | 62

In general there will be plenty of non-cell modules which are transitive Ng-modules.



Example (cell 12).
Exam 0.
NumH Cell 12 is a bit scary:
Cell o 455 | 1ss | 1sp0 | 2525 | 2505
15,5 45.5 15,20 25.,25 25.25
1205 | 1205 | 42020 | 22025 | 220,25
2255 | 2255 | 22520 | 425,25 | losos
0 — 2255 | 2255 | 22520 | losos | 425,25 - 25
So this cell has at least five cell modules attached to it (look at the rows),
but maybe even more.

Size of the cells and whether the cells are strongly regular (sr):

12 13 14 15 16 17 18 19 | 20 21 22 | 23 | 24| 25

=3
w
s
e
o
~
®
©
S

cell
size 1 | 62 | 342 | 576 | 650 | 3150 | 350 | 1600 | 2432 | 3402 | 900 | 2025 | 14500 | 600 | 2025 | 900 | 3402 | 2432 | 1600 | 350 | 576 | 3150 | 650 | 342 | 62

In general there will be plenty of non-cell modules which are transitive Ng-modules.



Example (G = Z/2xZ/2).
Subgroups, Schur multipliers and 2-simples.

L)27 < 1|27

N

((1,0)) ((1,1)) ((0,1))

{e}
In particular, there are two categorifications of the trivial module, and the rank

sequences read
decat: 1,2,2,2,4, cat: 1,1,2,2,2,4.



Example (G = Z/2xZ/2).
Subgroups, Schur multipliers and 2-simples.

7.)27.x7.,]27. {+1,-1}

N /I\

((1,0)) ((1,1)) ((0,1)) {e}

{e}
In particular, there are two categoriflcatlons of the trivial module, and the rank

sequences read
decat: 1,2,2,2,4, cat: 1,1,2,2,2,4.



Example (G = Z/2xZ/2).

Subgroups, Schur multipliers and 2-simples.

Z.]27.x7)27 {+1,-1} Vecit, Vecy !
SN \ AN
((1,0)) ((1,1)) {(0,1)) {e} {e} Vecz)u Vecy ) Vecs)
NN N

ecg

In particular, there are two categoriflcatlons of the trivial module, and the rank
sequences read
decat: 1,2,2,2,4, cat: 1,1,2,2,2,4.



Example (Strongly regular cells).

For a strongly regular cell H consists only of one element:

111 1[1]1 111 1]1]1
J=]11]1|&L=]1]1 1]|&L* =|1]1]1 ~ H=I[1 11
1011 1[1]1 111 1]1

and the associated 2-category ./ is has only one indecomposable. Not
surprisingly, such a 2-category has only one 2-simple.

In particular, this reduces the classification of a potentially complicated 2-category
to another classification problem for a trivial 2-category.



Example (SAGE; Type Bg).

Reducing from 46080 to 14500 to 4:

455 | 1ss | 1520 | 2525 | 25025 455 | 1ss | 1520 | 2525 | 2525
Iss | 455 | 1520 | 2525 | 2525 Iss5 | 455 | 1520 | 2525 | 2525
J = 125 1205 | 42020 | 220,25 | 220,25 o H =1 15 105 | 42020 | 220,25 | 220,25
255 | 2255 | 22520 | 42525 | lasos 255 | 2255 | 22520 | 42525 | lasos
2555 | 2255 | 22520 | losos | 42525 2355 | 2255 | 22520 | losos | 42505
o “="Vecy o7x7,/27, rank sequence: 1,1,2,2,2, 4,

In particular, there is one non-cell 2-simple.

In general, for Weyl groups the H cells are rather simple, and the associated

asymptotic limit is group like.
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