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A pioneer of representation theory

Schur’s remarkable relationship between gln and the symmetric group Sk :

Schur ∼1901. Let V = Vgl = Cn. There are commuting actions

U(gln)

�

V ⊗ · · · ⊗V︸ ︷︷ ︸
k times

	 C[Sk ]

generating each other’s centralizer. The U(gln)-C[Sk ]-bimodule decomposes as

⊕

λ∈P
L(gln, λ)⊗ L(Sk , λ

T).

The λ’s are partitions (Young diagrams) of k with at most n rows.

First statement

Second statement Third statement

The precise form does not matter for today. It is only important that one can make it explicit.
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The diagrammatic presentation machine

U(gln)

�

V ⊗ · · · ⊗V︸ ︷︷ ︸
k times

	 C[Sk ]
fix use

Schur’s first statement gives a functor

S Rep(gln)
ΦCategorical version of

the symmetric group
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The diagrammatic presentation machine

U(gln)

�

V ⊗ · · · ⊗V︸ ︷︷ ︸
k times

	 C[Sk ]
fix use

Schur’s second statement gives a full functor

S Rep(gln)
Φ

full

Categorical version of
the symmetric group
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The diagrammatic presentation machine

U(gln)

�

V ⊗ · · · ⊗V︸ ︷︷ ︸
k times

	 C[Sk ]
fix use

Schur’s third statement gives a full functor

S Rep(gln)

S/“ ker(Φ)” Rep(gln)

Φ

full

Φ

fully faithful

whose “kernel ker(Φ)” can be calculated.

Hence, up to taking duals and Karoubi closures, Schur gave us a diagrammatic

presentation of the representation category Rep(gln) of gln.

Categorical version of
the symmetric group
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“Thick” Schur-Weyl duality

One of Howe’s remarkable relationships between gln and glk :

Howe ∼1975. Let V = Cn. There are commuting actions

U(gln)

� ∧•
V ⊗ · · · ⊗∧•

V︸ ︷︷ ︸
k times

	 U(glk)

generating each other’s centralizer, and
∧a1V ⊗ · · · ⊗∧akV is the (a1, . . . , ak)th

weight space as regards U(glk). The U(gln)-U(glk)-bimodule decomposes as

⊕

λ∈P
L(gln, λ)⊗ L(glk , λ

T).

The λ’s are partitions with at most k columns and n rows.

11/2th statement
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Again: The diagrammatic presentation machine

U(gln)

� ∧•
V ⊗ · · · ⊗∧•

V︸ ︷︷ ︸
k times

	 U(glk)
fix use

Howe’s first statement gives a functor

U̇(glk) Rep(gln)
Φext

ADot version generated by
weight space idempotents 1λ,

and Ei and Fi
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Again: The diagrammatic presentation machine

U(gln)

� ∧•
V ⊗ · · · ⊗∧•

V︸ ︷︷ ︸
k times

	 U(glk)
fix use

Howe’s 11/2th statement defines a diagrammatic category Web such that

U̇(glk) Rep(gln)

S Web

Φext
A

full

Γext
Afull

βA

fully faithful

commutes. In particular, Web is a thick version of the symmetric group.

Dot version generated by
weight space idempotents 1λ,

and Ei and Fi
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The presentation functor

Observe that there are (up to scalars) unique U(gln)-intertwiners

a+b
a,b :

∧a
V ⊗∧b

V�
∧a+b

V, a,b
a+b :

∧a+b
V ↪→ ∧a

V ⊗∧b
V

given by projection and inclusion.

The presentation functor is

Γext
A : Web →Rep(gln), a 7→ ∧a

V,

a

a+b

b

7→ a+b
a,b ,

a

a+b

b

7→ a,b
a+b

The (co)associativity relations say that∧•
V is a (co)algebra with

(co)multiplication a+b
a,b ( a,b

a+b).

We can play the game the other way around as well by defining Howe’s action via:

a

a+1

b

b−1

E
=

a

a+1

1 b−1

b−1

◦
a

a 1 b−1

b∧a
V ⊗∧b

V→ ∧a
V ⊗V ⊗∧b−1

V→ ∧a+1
V ⊗∧b−1

V

etc.
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Another pioneer of representation theory

Brauer’s remarkable relationship between gn = son, spn and the Brauer algebra Brkn :

Brauer ∼1937. Let V = Cn. There are commuting actions

U(gn)

�

V ⊗ · · · ⊗V︸ ︷︷ ︸
k times

	 Brkn

generating each other’s centralizer. The U(gn)-Brkn-bimodule decomposes as

⊕

λ∈P
L(gn, λ)⊗ L(Brkn , λ

T).

The λ’s are partitions of k , k − 2, k − 4, . . . whose precise form depend on gn.

Be careful: One needs to work with on in type D.
Today, I silently stay with son, and thus, in type B.
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The diagrammatic presentation machine – it still works fine

U(gn)

�

V ⊗ · · · ⊗V︸ ︷︷ ︸
k times

	 Brkn
fix use

As usual, Brauer’s insights give a full functor

Brn Rep(gn)

Brn/“ ker(Φ)” Rep(gn)

Φ

full

Φ

fully faithful

whose “kernel ker(Φ)” can be calculated.

Hence, up to Spin’s and Karoubi closures, Brauer gave us a diagrammatic
presentation of the representation category Rep(gn) of gn.

Categorical version of
the Brauer algebra
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“Thick” Schur-Weyl-Brauer duality

Another one of Howe’s remarkable relationships:

Howe ∼1975. Let V = Cn. There are commuting actions

U(son)

� ∧•
V ⊗ · · · ⊗∧•

V︸ ︷︷ ︸
k times

	 U(so2k)

generating each other’s centralizer, and
∧a1V ⊗ · · · ⊗∧akV is the (a1, . . . , ak)th

weight space of U(so2k). The U(son)-U(so2k)-bimodule decomposes as

⊕

λ∈P
L(son, λ)⊗ L(so2k ,

∑k
j=1(λTj − n/2)εj).

The λ’s again satisfy certain explicit conditions and ai = ai + n/2.

Note that the action of U(so2k)
is not as clear as it was for U(glk)!
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Still alive: The diagrammatic presentation machine

U(gln)
∧•

V ⊗ · · · ⊗∧•
V U(glk)

U(son)
∧•

V ⊗ · · · ⊗∧•
V︸ ︷︷ ︸

k times

U(so2k)

�
�

	
	

⊂ ⊃=

fix use

Howe’s 11/2th statement defines a diagrammatic category Web such that

U̇(so2k) Rep(son)

Brn Web

Φext
BD

full

Γext
BDfull

fully faithful

β

commutes. In particular, Web is a thick version of the Brauer algebra.

Restricting the
action

on one side

Increases the
centralizer

on the other

Hence, we get
“old diagram generators”

and
“new diagram generators”
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Some delicate quantizations

U(gln)
∧•

V ⊗ · · · ⊗∧•
V U(glk)

U(son)
∧•

V ⊗ · · · ⊗∧•
V

︸ ︷︷ ︸
k times

U(so2k)

�
�

	
	

⊂ ⊃=

Quantum skew Howe duality:
Lehrer–Zhang–Zhang ∼2009.

(But its quite easy and not their main point.)

Does not quantize! Quantizes easily

No action at all. Action unclear.

The quantum dimension of Vgl
q is [n].

The quantum dimension of Vso
q is [n−1]+1.

Hence, Vso
q does not come from Vgl

q !
This “flaw” propagates all the way through:∧a

qV
so
q have “weird” quantum dimensions.

The quantum dimension of V
so5
q

↑

Above: Kuperberg’s B2 web relations ∼1995.

We wanted to
generalize Kuperberg’s

results. We failed
because quantization

is hard outside
of type A.

But let me explain
what we can do.

Using a coideal
subalgebra

does the trick.

The action is
constructed using
the unquantized
diagrammatics.
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Lehrer–Zhang–Zhang ∼2009.

(But its quite easy and not their main point.)

Does not quantize! Quantizes easily

No action at all. Action unclear.

The quantum dimension of Vgl
q is [n].

The quantum dimension of Vso
q is [n−1]+1.

Hence, Vso
q does not come from Vgl

q !
This “flaw” propagates all the way through:∧a

qV
so
q have “weird” quantum dimensions.

The quantum dimension of V
so5
q

↑

Above: Kuperberg’s B2 web relations ∼1995.

We wanted to
generalize Kuperberg’s

results. We failed
because quantization

is hard outside
of type A.

But let me explain
what we can do.

Using a coideal
subalgebra

does the trick.

The action is
constructed using
the unquantized
diagrammatics.
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Further directions

Uq(gln)
∧•

qV
gl
q ⊗ · · · ⊗

∧•
qV

gl
q Uq(glk)

U′q(son)
∧•

qV
gl
q ⊗ · · · ⊗

∧•
qV

gl
q︸ ︷︷ ︸

k times

Uq(so2k)

�
�

	
	

⊂ ⊃=

I Use a similar approach to get the quantum group to work. (Needs probably
some mixed Howe duality à la Queffelec–Sartori.)

I q-monoidal categories are probably very useful to study representation
categories of coideal subalgebras. An abstract formulation à la Brundan–Ellis
(“super monoidal”) should be useful.

I Coideal subalgebras are amenable to categorification, cf. Ehrig–Stroppel or
Bao–Shan–Wang–Webster. Similarly, their representation categories should
be amenable to categorification.

I Formulate everything in a “2-q-monoidal language”. (Again, à la
Brundan–Ellis.)

∗ = n−1/2 for type B,
∗ = n/2 for type D.

This should give the quantum group story,
but it is much trickier since e.g.

Vso
q
∼= Vgl

q ⊕ (Vgl
q )∗ ⊕ C

as Uq(gl∗)-modules in type B.
Thus, the above is not the usual U(gl∗)-U(glk) duality.

a a b b

= q∗

a a b b

q-interchange law
∗ =some power depending on a, b

c

b

aa+b
a+b
+c

Singular cobordisms (“foams”,

à la Khovanov–Rozansky and Mackaay–Stošić–Vaz)

categorify webs.

The q-monoidal property has to be smartly encoded.

2-q-monoidal foams.

(Maybe connected to Beliakova–Putyra–Wehrli

whose pictures I shamelessly stole.)
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à la Khovanov–Rozansky and Mackaay–Stošić–Vaz)
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A pioneer of representation theory

Schur’s remarkable relationship between gln and the symmetric group Sk :

Schur ∼1901. Let V = Vgl = Cn. There are commuting actions

U(gln)

�

V ⊗ · · · ⊗V︸ ︷︷ ︸
k times

	 C[Sk ]

generating each other’s centralizer. The U(gln)-C[Sk ]-bimodule decomposes as

⊕

λ∈P
L(gln, λ)⊗ L(Sk , λ

T).

The λ’s are partitions (Young diagrams) of k with at most n rows.

First statement

Second statement Third statement

The precise form does not matter for today. It is only important that one can make it explicit.
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Another pioneer of representation theory

Brauer’s remarkable relationship between gn = son, spn and the Brauer algebra Brkn :

Brauer ∼1937. Let V = Cn. There are commuting actions

U(gn)

�

V ⊗ · · · ⊗V︸ ︷︷ ︸
k times

	 Brkn

generating each other’s centralizer. The U(gn)-Brkn-bimodule decomposes as

⊕

λ∈P
L(gn, λ)⊗ L(Brkn , λ

T).

The λ’s are partitions of k, k − 2, k − 4, . . . whose precise form depend on gn.

Be careful: One needs to work with on in type D.
Today, I silently stay with son, and thus, in type B.
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Still alive: The diagrammatic presentation machine

U(gln)
∧•

V ⊗ · · · ⊗∧•
V U(glk)

U(son)
∧•

V ⊗ · · · ⊗∧•
V︸ ︷︷ ︸

k times

U(so2k)

�
�

	
	

⊂ ⊃=

fix use

Howe’s 11/2th statement defines a diagrammatic category Web such that

U̇(so2k) Rep(son)

Brn Web

Φext
BD

full

Γext
BDfull

fully faithful

β

commutes. In particular, Web is a thick version of the Brauer algebra.

Restricting the
action

on one side

Increases the
centralizer

on the other

Hence, we get
“old diagram generators”

and
“new diagram generators”
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Some delicate quantizations

Uq(gln)
∧•

qVq ⊗ · · · ⊗
∧•

qVq Uq(glk)

Uq(son)
∧•

qVq ⊗ · · · ⊗
∧•

qVq︸ ︷︷ ︸
k times

Uq(so2k)

�
6�

	

???

6⊂ ⊃=

Quantum skew Howe duality:
Lehrer–Zhang–Zhang ∼2009.

(But its quite easy and not their main point.)

Does not quantize! Quantizes easily

No action at all. Action unclear.

The quantum dimension of Vgl
q is [n].

The quantum dimension of Vso
q is [n−1]+1.

Hence, Vso
q does not come from Vgl

q !
This “flaw” propagates all the way trough:∧a

qV
so
q have “weird” quantum dimensions.

The quantum dimension of V
so5
q

↑

Above: Kuperberg’s B2 web relations ∼1995.

We wanted to
generalize Kuperberg’s

results. We failed
because quantization

is hard outside
of type A.

But let me explain
what we can do.

Using a coideal
subalgebra

does the trick.

The action is
constructed using
the unquantized
diagrammatics.
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Dual pair Module M q-version and web calculi

U(gln)-U(glk)
∧•(Cn ⊗ Ck) Cautis–Kamnitzer–Morrison ∼2012

U(gl1|1)-U(glk)
∧•(C1|1 ⊗ Ck) Sartori ∼2013, Grant ∼2014

U(gln)-U(glk) Sym•(Cn ⊗ Ck) Rose and coauthors ∼2015

U(glm|n)-U(glk)
∧•(Cm|n ⊗ Ck) Queffelec–Sartori, Grant ∼2015

U(glm|n)-U(gll|k)
∧•(Cm|n ⊗ Cl|k) Vaz–Wedrich and coauthors ∼2015

U(son)-U(so2k)
∧•(Cn ⊗ Ck)

U(son)-U(sp2k) Sym•(Cn ⊗ Ck) Sartori

U(spn)-U(sp2k)
∧•(Cn ⊗ Ck) and coauthors ∼2017

U(spn)-U(so2k) Sym•(Cn ⊗ Ck)

Up to quantization, all of this (and more) is basically already in Howe’s paper.

Type A is in a fairly good shape:
The story partially works “integrally” (Elias ∼2015).

Applications to link polynomials (e.g. Wedrich–Vaz and coauthors ∼2015).
Partially categorified (e.g. Huerfano–Khovanov ∼2002, Mackaay ∼2009).

Applications to link homologies (e.g. Lauda–Queffelec–Rose ∼2012).
Applications to canonical bases and geometry (e.g. Cautis–Kamnitzer ∼2016).

...

Types BCD are not really understood.

Back

Monoidal generators of Web :

a

a+b

b

,

a

a+b

b

type A generators

,

a a

: ∅ → a⊗ a ,

a a

: a⊗ a→ ∅.

new generators

Relations are the type A relations and e.g.:

a a b b

=

a a b b

interchange law

,

1

1

= −
1

1

,

1 1

= −

1 1

“Reidemeister relations”

No orientations needed in types BCD.

Recall:

1

1

1

1

= -

1

1

1

1

+

1 1

1 1

Back

q-Monoidal generators of Webq,qn :

a

a+b

b

,

a

a+b

b

type A generators

,

a a

,

a a

new generators

Relations are the type A relations and e.g.:

a a b b

= q∗

a a b b

q-interchange law
∗ =some power depending on a, b

,

1

1

= −q−n

1

1

,

1 1

= −q−1

1 1

“q-Reidemeister relations”

Type A crossing:

1

1

1

1

= −q−1

1

1

1

1

+

1 1

1 1

Back

Uq(son) U′q(son)

Subalgebra of Uq(gln)

Hopfalgebra

Quantization of U(son)

“Nice quantum numbers”

“Nice topology”

Connected to Peng’s talk yesterday: θ = ω, the Chevalley involution

ω(Ei ) = −Fi , ω(Fi ) = −Ei , ω(Hi ) = −Hi .

U′q(son) is a (left) coideal:

∆: U′q(son)→ Uq(gln)⊗U′q(son).

Hence, Rep′q(son) is only q-monoidal and carries a left action of Repq(gln).

5

8

3

4

3

9

3

6

3 1

1 1 1 1

7

A-web new part

Back
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There is still much to do...

Thanks for your attention!
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Brauer’s remarkable relationship between gn = son, spn and the Brauer algebra Brkn :

Brauer ∼1937. Let V = Cn. There are commuting actions

U(gn)

�

V ⊗ · · · ⊗V︸ ︷︷ ︸
k times

	 Brkn

generating each other’s centralizer. The U(gn)-Brkn-bimodule decomposes as

⊕

λ∈P
L(gn, λ)⊗ L(Brkn , λ

T).

The λ’s are partitions of k, k − 2, k − 4, . . . whose precise form depend on gn.

Be careful: One needs to work with on in type D.
Today, I silently stay with son, and thus, in type B.
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Still alive: The diagrammatic presentation machine

U(gln)
∧•

V ⊗ · · · ⊗∧•
V U(glk)

U(son)
∧•

V ⊗ · · · ⊗∧•
V︸ ︷︷ ︸

k times

U(so2k)

�
�

	
	

⊂ ⊃=

fix use

Howe’s 11/2th statement defines a diagrammatic category Web such that

U̇(so2k) Rep(son)

Brn Web

Φext
BD

full

Γext
BDfull

fully faithful

β

commutes. In particular, Web is a thick version of the Brauer algebra.

Restricting the
action

on one side

Increases the
centralizer

on the other

Hence, we get
“old diagram generators”

and
“new diagram generators”
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Some delicate quantizations

Uq(gln)
∧•

qVq ⊗ · · · ⊗
∧•

qVq Uq(glk)

Uq(son)
∧•

qVq ⊗ · · · ⊗
∧•

qVq︸ ︷︷ ︸
k times

Uq(so2k)

�
6�

	

???

6⊂ ⊃=

Quantum skew Howe duality:
Lehrer–Zhang–Zhang ∼2009.

(But its quite easy and not their main point.)

Does not quantize! Quantizes easily

No action at all. Action unclear.

The quantum dimension of Vgl
q is [n].

The quantum dimension of Vso
q is [n−1]+1.

Hence, Vso
q does not come from Vgl

q !
This “flaw” propagates all the way trough:∧a

qV
so
q have “weird” quantum dimensions.

The quantum dimension of V
so5
q

↑

Above: Kuperberg’s B2 web relations ∼1995.

We wanted to
generalize Kuperberg’s

results. We failed
because quantization

is hard outside
of type A.

But let me explain
what we can do.

Using a coideal
subalgebra

does the trick.

The action is
constructed using
the unquantized
diagrammatics.
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�
�

	
	

⊂ ⊃=
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functor Φext
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BD

Γext
BD

fully faithful

β
define

Hereby, Rep′q(son) is the q-monoidal representation category of U′q (son) , and
Brq,qn is Molev’s q-Brauer category (∼ 2002).
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No action at all. Action unclear.

The quantum dimension of Vgl
q is [n].

The quantum dimension of Vso
q is [n−1]+1.

Hence, Vso
q does not come from Vgl

q !
This “flaw” propagates all the way trough:∧a

qV
so
q have “weird” quantum dimensions.

The quantum dimension of V
so5
q

↑
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is hard outside
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what we can do.

Using a coideal
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The action is
constructed using
the unquantized
diagrammatics.
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Dual pair Module M q-version and web calculi

U(gln)-U(glk)
∧•(Cn ⊗ Ck) Cautis–Kamnitzer–Morrison ∼2012

U(gl1|1)-U(glk)
∧•(C1|1 ⊗ Ck) Sartori ∼2013, Grant ∼2014

U(gln)-U(glk) Sym•(Cn ⊗ Ck) Rose and coauthors ∼2015

U(glm|n)-U(glk)
∧•(Cm|n ⊗ Ck) Queffelec–Sartori, Grant ∼2015

U(glm|n)-U(gll|k)
∧•(Cm|n ⊗ Cl|k) Vaz–Wedrich and coauthors ∼2015

U(son)-U(so2k)
∧•(Cn ⊗ Ck)

U(son)-U(sp2k) Sym•(Cn ⊗ Ck) Sartori

U(spn)-U(sp2k)
∧•(Cn ⊗ Ck) and coauthors ∼2017

U(spn)-U(so2k) Sym•(Cn ⊗ Ck)

Up to quantization, all of this (and more) is basically already in Howe’s paper.

Type A is in a fairly good shape:
The story partially works “integrally” (Elias ∼2015).

Applications to link polynomials (e.g. Wedrich–Vaz and coauthors ∼2015).
Partially categorified (e.g. Huerfano–Khovanov ∼2002, Mackaay ∼2009).

Applications to link homologies (e.g. Lauda–Queffelec–Rose ∼2012).
Applications to canonical bases and geometry (e.g. Cautis–Kamnitzer ∼2016).

...

Types BCD are not really understood.

Back

Monoidal generators of Web :

a

a+b

b

,

a

a+b

b

type A generators

,

a a

: ∅ → a⊗ a ,

a a

: a⊗ a→ ∅.

new generators

Relations are the type A relations and e.g.:

a a b b

=

a a b b

interchange law

,

1

1

= −
1

1

,

1 1

= −

1 1

“Reidemeister relations”

No orientations needed in types BCD.

Recall:

1

1

1

1

= -

1

1

1

1

+

1 1

1 1

Back

q-Monoidal generators of Webq,qn :

a

a+b

b

,

a

a+b

b

type A generators

,

a a

,

a a

new generators

Relations are the type A relations and e.g.:

a a b b

= q∗

a a b b

q-interchange law
∗ =some power depending on a, b

,

1

1

= −q−n

1

1

,

1 1

= −q−1

1 1

“q-Reidemeister relations”

Type A crossing:

1

1

1

1

= −q−1

1

1

1

1

+

1 1

1 1

Back

Uq(son) U′q(son)

Subalgebra of Uq(gln)

Hopfalgebra

Quantization of U(son)

“Nice quantum numbers”

“Nice topology”

Connected to Peng’s talk yesterday: θ = ω, the Chevalley involution

ω(Ei ) = −Fi , ω(Fi ) = −Ei , ω(Hi ) = −Hi .

U′q(son) is a (left) coideal:

∆: U′q(son)→ Uq(gln)⊗U′q(son).

Hence, Rep′q(son) is only q-monoidal and carries a left action of Repq(gln).

5

8

3

4

3

9

3

6

3 1

1 1 1 1

7

A-web new part

Back
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There is still much to do...

Thanks for your attention!
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Figure: Two of the main players for today: Schur and Brauer.

Curtis, C.W. Pioneers of representation theory: Frobenius, Burnside, Schur, and Brauer.
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Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).
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Monoidal generator of S:

: 2→ 2.

Relations e.g.:

=

interchange law

, = , =

“Reidemeister relations”
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Dual pair Module M q-version and web calculi
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Up to quantization, all of this (and more) is basically already in Howe’s paper.

Type A is in a fairly good shape:
The story partially works “integrally” (Elias ∼2015).

Applications to link polynomials (e.g. Wedrich–Vaz and coauthors ∼2015).
Partially categorified (e.g. Huerfano–Khovanov ∼2002, Mackaay ∼2009).

Applications to link homologies (e.g. Lauda–Queffelec–Rose ∼2012).
Applications to canonical bases and geometry (e.g. Cautis–Kamnitzer ∼2016).

...

Types BCD are not really understood.
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Monoidal generators of Web :

a

a+b

b

: a⊗ b → a + b and

a

a+b

b

: a + b → a⊗ b.

Relations e.g.:

a

a+b

b a

a+b

b

=

a

a+b

b a

a+b

b

interchange law

,

a b c

a+b+c

=

cba

a+b+c

Associativity

One needs orientations in type A,
but I am going to ignore them.
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Monoidal generators of Web :

a

a+b

b

: a⊗ b → a + b and

a

a+b

b

: a + b → a⊗ b.

Relations e.g.:

a b c

a+b+c

=

cba

a+b+c
Coassociativity

,

a

a

b

b

=

a

a

b

b

+ (a− b)

a

a

b

b

square switch

One needs orientations in type A,
but I am going to ignore them.
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Root conventions is type A:

· · ·
α1 α2 αk−2 αk−1

ε1−ε2 ε2−ε3 εk−2−εk−1 εk−1−εk

Thus, because of statement 11/2, we should set

Ei1λ 7−→

a1

a1

. . . . . .

. . . . . .

. . . . . .

ai

ai +1

ai+1

ai+1−1

ak

ak

, for all i = 1, . . . , k − 1,

Fi1λ 7−→

a1

a1

. . . . . .

. . . . . .

. . . . . .

ai

ai−1

ai+1

ai+1+1

ak

ak

, for all i = 1, . . . , k − 1.

Back

F1E21(1,5,6) 7−→

1

F1

5

7

6

6

E2



Root conventions is type A:

· · ·
α1 α2 αk−2 αk−1

ε1−ε2 ε2−ε3 εk−2−εk−1 εk−1−εk

Thus, because of statement 11/2, we should set

Ei1λ 7−→

a1

a1

. . . . . .

. . . . . .

. . . . . .

ai

ai +1

ai+1

ai+1−1

ak

ak

, for all i = 1, . . . , k − 1,

Fi1λ 7−→

a1

a1

. . . . . .

. . . . . .

. . . . . .

ai

ai−1

ai+1

ai+1+1

ak

ak

, for all i = 1, . . . , k − 1.

Back

F1E21(1,5,6) 7−→

1

F1

5

7

6

6

E2



βA : S →Web

7−→
1

1

1

1

= −
1

1

1

1

+

1 1

1 1

C[Sk ]
∼=−→ EndWeb (1⊗k)

Back



Monoidal generators of Brn:

, : ∅ → 2 , : 2→ ∅.

Relations e.g.:

=

interchange law

, = ±n.

circle removal

From “Brauer, R. On algebras which are connected with the semisimple continuous groups.

Ann. of Math. (2) 38 (1937), no. 4, 857–872.”

Back



Monoidal generators of Brn:
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Relations e.g.:

=

interchange law

, = ±n.

circle removal

From “Brauer, R. On algebras which are connected with the semisimple continuous groups.

Ann. of Math. (2) 38 (1937), no. 4, 857–872.”
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Monoidal generators of Web :

a

a+b

b

,

a

a+b

b

type A generators

,

a a

: ∅ → a⊗ a ,

a a

: a⊗ a→ ∅.

new generators

Relations are the type A relations and e.g.:

a a b b

=

a a b b

interchange law

,

1

1

= −
1

1

,

1 1

= −

1 1

“Reidemeister relations”

No orientations needed in types BCD.

Recall:

1

1

1

1

= -

1

1

1

1

+

1 1

1 1

Back
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,
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type A generators

,

a a
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a a b b

interchange law

,

1

1

= −
1

1
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No orientations needed in types BCD.

Recall:

1

1

1

1

= -

1

1

1

1

+

1 1

1 1
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Root conventions is type D:

· · ·
α1 α2 αk−3 αk−2

αk−1

αk εk−1+εk

Thus, because of statement 11/2, we should set

Ek1λ 7−→

a1

a1

. . .

. . .

. . .

ak−2

ak−2

ak−1

ak−1+1

ak

ak+1

Fk1λ 7−→

a1

a1

. . .

. . .

. . .

ak−2

ak−2

ak−1

ak−1−1

ak

ak−1

FE1(−n/2,−n/2) 7−→
F

E

Back
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β : Brn →Web

7−→
1

1

1

1

= −
1

1

1

1

+

1 1

1 1

7−→

1 1

, 7−→

1 1

Brkn
∼=−→ EndWeb (1⊗k)
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q-Monoidal generators of Webq,qn :

a

a+b

b

,

a

a+b

b

type A generators

,

a a

,

a a

new generators

Relations are the type A relations and e.g.:

a a b b

= q∗

a a b b

q-interchange law
∗ =some power depending on a, b

,

1

1

= −q−n

1

1

,

1 1

= −q−1

1 1

“q-Reidemeister relations”

Type A crossing:

1

1

1

1

= −q−1

1

1

1

1

+

1 1

1 1
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“q-Reidemeister relations”
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1

1

1

1
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1

1

1

1
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Via restriction, we see that the Uq(gln)-intertwiners a+b
a,b and a,b

a+b are
U′q(son)-equivariant as well.

Note that V ⊗V contains a copy of the trivial U(son)-module. One shows that
the same holds with q and one gets inclusions and projections

: Cq → Vq ⊗Vq, : Vq ⊗Vq → Cq.

As before, use these to quantize Howe’s duality.
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Uq(son) U′q(son)

Subalgebra of Uq(gln)

Hopfalgebra

Quantization of U(son)

“Nice quantum numbers”

“Nice topology”

Connected to Peng’s talk yesterday: θ = ω, the Chevalley involution

ω(Ei ) = −Fi , ω(Fi ) = −Ei , ω(Hi ) = −Hi .

U′q(son) is a (left) coideal:

∆: U′q(son)→ Uq(gln)⊗U′q(son).

Hence, Rep′q(son) is only q-monoidal and carries a left action of Repq(gln).

5

8

3

4

3

9

3

6

3 1

1 1 1 1

7

A-web new part

Back
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