Handlebodies, Artin—Tits and HOMFLYPT

Or: All I know about Artin—Tits groups; and a filler for the remaining 59 minutes
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@ Links and braids in handlebodies
@ Braid diagrams
@ Links in handlebodies

© Some “low-genus-coincidences”
@ The ball
@ The torus and the double torus

e Arbitrary genus
@ What we should do
@ What we can do
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Let Br(g,n) be the group defined as follows.

Generators. Braid and twist generators

1 g 1 iitln 1 i g 2 n
...A...1
a3 & o 1922 1
! \ ! =
1 g 1 iitln 1 i g 1 2 n
Relations. , type C relations and special relations, e.g.

Involves three players and inverses!
/\ | (P>

brtobots = 126,120, ﬁlfzﬁ V23 = 25( ﬁlfg
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Let Br(g,n) be the group defined as follows.

Example.

Generators. Braid and twis L l ,\

1 1 i g 1 2 n
...0...1H
i |- I.<—4..|...: [-1
1 / 1 i gl 2n
Relations. j special relations, e.g.

Involves three players and inverses!
/~ | [P
& |ﬁ ]

ﬁlfzﬁlfz = fgﬁlfzﬁl ﬁlfgﬁ 53 = {3 ﬁllg

UQ_UQ
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Let Br(g,n) be the group defined as follows.

Generators. Braid and twig

Example.
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i special relations, e.g.

Involves three players and inverses!

1 g
by o I I
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Relations.
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LA ]9

The “full wrap”.
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1220119 = 12012307
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Let Br(g,n) be the group defined as follows.

Generators. Braid and twist generators

1 i i+l n 1 2 n
Fact (type A embedding).
Br(g,n) is a subgroup of the usual braid group &r(g+n).
Relatiqg I i T T A 4 &
| \ (_/ T |_\ erses!
|' 1 Y Il
| I— | s
A visualization exercise. J
— T —
—_ | /\ - | e
ﬁlfgﬂlfz :{Qﬂlfzﬁl (ﬁlfgﬁ )Zq —Zg(ﬁlfzﬁ )
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The group Br(g,n) of braid in a g-times punctures disk 95 x [0,1]:

Two types of braidings, the usual ones and “winding around cores”, e.g.
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Th Theorem (Héring-Oldenburg—Lambropoulou ~2002, Vershinin ~1998).
g

The map

Tw

[1]°A-

is an isomorphism of groups Br(g,n) — %Br(g,n).
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The group Br(g,n) of braid in a g-times punctures disk 93 x [0,1]:

Two types

From this perspective the type A embedding
is just shrinking holes to points!

shrink

Daniel Tubbenhauer
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The group Br(g,n) of braid in a g-times punctures disk 22 x [0, 1]:

Twaqtunes of hraidines the nsiial ones and “windine around cores” e o
Note.

For the proof it is crucial that 992 and the boundary points of the braids e
are only defined up to isotopy, e.g.

@3 . 93?
o ~
(@) = O O O o °

= one can always “conjugate cores to the left”.

This is useful to define %Br(g, o).
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The Alexander closure on Br(g,c0) is given by merging core strands at infinity.
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The Alexander closure on Br(g, o) is given by merging core strands at infinity.
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Theorem (Lambropoulou ~1993).

...."~~
For any link Z in the genus g handlebody % thereisa [ZZ7~~ . 0.‘
braid in %Br(g, c0) whose (correct!) closure is isotopic to Z.[~~ "> Y %
A F 1 : R oo
s & 5 -
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"= == ' m
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The Alexander closure on Br(g, o) is given by merging core strands at infinity.

Theorem (Lambropoulou ~1993).

For any link ¢ in the genus g handlebody 7, thereisa [_Z~~ -
braid in Br(g, c0) whose (correct!) closure is isotopic to Z.[~~, >

I I I A 1

Fact.

neighborhood of the embedded graph obtained
by gluing g + 1 unknotted “core” edges to two vertices.

7
- ’

.

-

the 3-ball %y = a torus #1

1
1
1
:
1
4 is given by a complement in the 3-sphere &3 by an open tubular :
1
1
1
1
1
1

e

This is
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The Markov moves on %Br(g, o) are conjugation and stabilization.

Conjugation.

b~ 363" I I
for & € Br(g,n),s € (61,...,0n-1) = Ilﬁ

Stabilization.
P11+ 4+ 1011+
(eT)én (67) T T R S — J
st R gl NIDtod Hl NS B B
forﬂoE%r(g, )7 ‘I lﬂl |‘ ‘I lﬁl |‘
They are weaker than the Markov moves.
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The Markaxrmovees an @r(n ~n) are coningation and ctahilizatinn

Theorem (Héaring-Oldenburg—Lambropoulou ~2002).

Two links in % are equivalent if and only if
Conjugalthey are equal in Br(g,00) up to conjugation and stabilization.

b~ 363"
for & € Br(g,n),s € (61,...,0n_1)

Stabilization.

(e1)bn(87)
~ ¢l ~ (Db (61 =
for &, ¢ € Br(g,n),

They are weaker than the Markov moves.
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The Markaxrmovees an @r(n ~n) are coningation and ctahilizatinn

Theorem (Héaring-Oldenburg—Lambropoulou ~2002).

Two links in % are equivalent if and only if

Conjugalthey are equal in Br(g,00) up to conjugation and stabilization.
Example. A
‘--llll Emy “|Illll...
os® anmm Ny * o,
for 6 € g $Ne** ----- . . el 8,
~ . - Yo ¢ _— ~ .
N ] S '\ m
] 1 1 ™
I e A "
n -
e - n
Stabilizatior : o o= .:
& A ———- K
~ ‘0 n
LT TTT L L e

(e
~ ¢l ~ (4 correct closure

for &, ¢ €

They are weg

not stuck
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The Markov moves on %r(g, o) are conjugation and stabilization.

Conjugation.

b~ 4A4=1 I I
The upshot.
for & € Br(g,n),

Together with Alexander’s theorem,

this gives a way to algebraically study ! '
Stabilization. links in .
(e1)én(41)

~ ¢l ~ (Db (61 =
for 4, ¢ € Br(g,n),

They are weaker than the Markov moves.
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The Markov moves on %r(g, o) are conjugation and stabilization.

Conjugation.

b~ 44~ 1 I I
The upshot.
for & € Br(g,n),

Together with Alexander’s theorem,
this gives a way to algebraically study
Stabilization. links in %,.

(6T) (#1) |Let me explain what we can do. | 4 ,}L

~ ¢l ~ (N1 () = ..
for &, ¢ € Br(g,n), —

They are weaker than the Markov moves.
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Let I be a Coxeter graph.

Artin ~1925, Tits ~1961-+. The Artin—Tits group and its Coxeter group
quotient are given by generators-relations:

A

—

L) = |---:b;6; = - b6;6:0;)
—_—

m; factors my; factors

W) =(o; |6} =1,---0;0j0, = - 0;0,0;)
—_—

m; factors m;; factors
Artin—Tits groups classical braid groups, Coxeter groups
polyhedron groups.
Daniel Tubbenhauer Handlebodies, Artin-Tits and HOMFLYPT March 2019
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Let I" be a My failure. What | would like to understand, but | do not.

Artin—Tits groups come in four main flavors.
Question: Why are these special? What happens in general type?
9, Tits ~I9bI+f. The Artin—Tits group and i1ts Coxeter group

Artin ~19
quotient ar

Artin—Tits
(braid) groups

Flavor one. Finite

helps helps
and affine types

Flavor three. Map-
ping class groups

Many open
problems, e.g. the
word problem.

Artin—Tits Flavor four. Right
g led
polyhedron iguration spaces angled groups

Vanilla fla-

A different idea for today:
What can Artin—Tits groups tell you about flavor two?

Daniel Tubbenhauer Handlebodies, Artin-Tits and HOMFLYPT March 2019 8/15



Let I be a Coxeter graph.

Jones ~1987, Geck—Lambropoulou ~1997, Gomi ~2006

Artin ~192 r group
quotient are In finite type: ' Markov trace on the Hecke algebras .

G| b,6;6;, =---6;6,6;)

AT(T
—— ——
){/ m;; factors m;; factors
= (0; | 0?

=1,---0,0j0,="--0;0,0;)
——— S

m; factors m; factors
Artin—Tits groups classical braid groups, Coxeter groups
polyhedron groups.
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Let I be a Coxeter graph.

Jones ~1987, Geck—Lambropoulou ~1997, Gomi ~2006

Artin ~192 r group
quotient are In finite type: ' Markov trace on the Hecke algebras .

AT(D) = (i | -+ bilhj6; = - - 6,6:8;)

1
Khovanov ~2005, Rouquier ~2012, Webster—Williamson ~2009; categorification.

In finite type: 'Hochschild homology on |complexes of the Hecke category .
—_— W ——

my; factors m;; factors

Artin—Tits groups classical braid groups, Coxeter groups
polyhedron groups.
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Let I be a Coxeter graph.

Jones ~1987, Geck—Lambropoulou ~1997, Gomi ~2006

Artin ~192 r group
quotient are In finite type: ' Markov trace on the Hecke algebras .

AT(T) = (4, | --- 66,8, = --- 6;6,8,)

1
Khovanov ~2005, Rouquier ~2012, Webster—Williamson ~2009; categorification.

In finite type: 'Hochschild homology on |complexes of the Hecke category .
—_— W ——

my; factors m;; factors

Artin Corollary.
polyhg
HOMFLYPT polynomial/homology for links in 7777

q=Hecke parameter ; t=homological parameter ; a=trace parameter .
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cos(m/3) on a line:

type A 1: l==2== ==pn—2==n-—1
The classical case. Consider the map
1 i i+1 n )\ k
Bi — TXT braid rel.: %: y
1 i i+1 n \ \\
Artin ~1925. This gives an isomorphism of groups AT(A,_1) =, Br(0,n).

Daniel Tubbenhauer Handlebodies, Artin-Tits and HOMFLYPT March 2019 9/15



cos(m/4) on a line:

type C,: 0=1=—2=——...—n—1=—n

The semi-classical case. Consider the map

1 2 n T, =
Bo i—\1 IT & B I T/XT braid rel.: I—\ = I

n P 1o 1 I—\
I N\

Brieskorn ~1973. This gives an isomorphism of groups AT(C,,) =N FBr(l,n).

Daniel Tubbenhauer Handlebodies, Artin-Tits and HOMFLYPT March 2019 10/15



cos(m/4) twice on a line:

0l== 1= 2 =1 =—n==02

type Cn :

Affine adds genus. Consider the map

1 i i+l 1 1 n 2
IS i
i i+l 11 n 2

1

Allcock ~1999. This gives an isomorphism of groups AT(C,,) — %Br(2,n).

Daniel Tubbenhauer Handlebodies, Artin-Tits and HOMFLYPT March 2019
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This case is strange — it only arises under conjugation:
cos(m/4) twice

Affine adds g¢ By a miracle, one can avoid the special relation

I ‘\ c'_ﬂ‘ This relation

involves three n

Bor — ] players and inverses. T )
I P Bad! e

Allcock ~1999. This gives an isomorphism of groups AT(C,,) — %Br(2,n).
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This case is strange — it only arises under conjugation:
cos(m/4) twice

Affine adds g¢ By a miracle, one can avoid the special relation

I ‘\ c'_ﬂ‘ This relation

involves three n

Bor — ] players and inverses. L )
I P Bad! -

|Current|y, not much seems to be known, but | think the same story works. |

Alicock ~1999. This gives an isomorphism of groups AT(C,,) —» Br(2,n).
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cos(m/4) t

Affine ad

Bor — ] players and inverses.
I P Bad!

This case is strange — it only arises under conjugation:

wice

By a miracle, one can avoid the special relation

ds gg¢
I ‘\ c'_T This relation

involves three

n

|Current|y, not much seems to be known, but | think the same story works. |

n).

Allcock

“
o
—

PULLITN
0 o,

R

o
To mmEmE o EmEmm

o 8 o 8

But the special relation makes it a mere quotient.
So: In the remaining time | tell you what works.

However, this is where it seems to end, e.g. genus g = 3 wants to be

March 2019

Handlebodies, Artin-Tits and HOMFLYPT
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cos(m/4) twice on a line:

Aff

Allg

Currently known (to the best of my knowledge).

Genus H type A ‘ type C
g= 0 %r(n) = AT(An—l)
g=1| Br(l,n)=2Zx AT(A,_1) 2 AT(A,_1) | Br(1,n) = AT(C,)
g=2 Br(2,n) = AT(C,)
g23

And some Z/2Z-orbifolds (Z/ooZ =puncture):
Genus H type D type B
g =
g=1 %r(l,n)Z/QZ = AT(Dn) %’r(l,n)z/mz = AT(Bn)
g=2 Br(2,n)z/22x2/22 = AT(Dy) | Br(2,n)z/00zx2/22 = AT(Bn)
g=>3

(For orbifolds “genus” is just an analogy.)

Daniel Tubbenhauer
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cos(m/4) twice on a line:
Example.
t - 0?
YP§ type B, n—1 r
4 d
) 0] e 2 e . n—2
Affine adds genus \
n
1
— .
‘801 —> c T
5 1
‘L)L U YARYA
Allcock ~1999. T =
R aaad
1 n
(i__\T order co order 2 ’\\i
n

Daniel Tubbenhauer

Handlebodies, Artin-Tits and HOMFLYPT

Br(2,n).
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The handlebody Hecke algebra H9(g,n) is the quotient of Z[q,q~!|Br(g,n) by:

X—XZ(q—q_l)T :

Example (g = 0). H9(0,n) is the classical type A Hecke algebra.
» Markov trace exists and gives a HOMFLYPT polynomial for ¢ € %,.
» Kazhdan-Lusztig bases exist , categorified by Soergel bimodules.
» Markov 2-trace  exists and gives a HOMFLYPT homology for £ € %#,.

Example (g = 1). H9(1,n) is the extended affine type A Hecke algebra.
» Markov trace exists and gives a HOMFLYPT polynomial for ¢ € #.
» Kazhdan-Lusztig bases exist , categorified by Soergel bimodules.
» Markov 2-trace  exists and gives a HOMFLYPT homology for £ € #.

Daniel Tubbenhauer Handlebodies, Artin-Tits and HOMFLYPT March 2019 12 /15



The handlebody Hecke algebra H9(g,n) is the quotient of Z[q,q!|Br(g,n) by:

1 i

1

y—}\f (a—a- TTbutC ;—T (q—q‘l)l":IT

General genus"

Open. (Work in progress; we are having some progress now and then.)
Example (g = 0). H(0, n) is the classical type A Hecke algebra.

» Markov trace exists and gives a HOMFLYPT polynomial for ¢ € #.
» Kazhdan-Lusztig bases exist , categorified by Soergel bimodules.
» Markov 2-trace exists and gives a HOMFLYPT homology for £ € #.

Example (g = 1). H9(1,n) is the extended affine type A Hecke algebra.
» Markov trace exists and gives a HOMFLYPT polynomial for ¢ € #.
» Kazhdan-Lusztig bases exist , categorified by Soergel bimodules.
» Markov 2-trace exists and gives a HOMFLYPT homology for £ € #.

Daniel Tubbenhauer Handlebodies, Artin-Tits and HOMFLYPT March 2019
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The handlebody He

cke algebra H4(g, n) is the quotient of Z|[q,

Nt

General genus?

Example (g =0).
» Markov trace
» Kazhdan—Luszi

HI(0 n) ic the clacaical tyvne A Hecke dloehr

However, computer calculations (SAGE) suggest
the existence of Markov traces
and bases with positive structure constants.

rZ e #y.

ules.

» Markov 2-trace exists and gives a HOMFLYPT homology for £ € #.

Example (g = 1). H9(1,n) is the extended affine type A Hecke algebra.

» Markov trace exists and gives a HOMFLYPT polynomial for ¢ € #.

» Kazhdan—Lusztig bases  exist , categorified by Soergel bimodules.
» Markov 2-trace exists and gives a HOMFLYPT homology for £ € #.

Daniel Tubbenhauer

Handlebodies, Artin-Tits and HOMFLYPT
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The handlebody Hecke algebra H%(g, n) is the quotient of Z[q,

TT but(_T =;:—ﬁ}

K-

General genus?

» Markov trace

the existence of Markov traces

rZ e #y.

» Kazhdan—Lusz{ and bases with positive structure constants. |yles.

» Markov 2-trace ' exi{

Example (g = 1). H4(1

Let me instead show you what works.

bgy for £ € #.

cke algebra.

7T

» Markov trace exists and gives a HOMFLYPT polynomial for ¢ € #.

» Kazhdan—Lusztig bases  exist , categorified by Soergel bimodules.
» Markov 2-trace exists and gives a HOMFLYPT homology for £ € #.

Daniel Tubbenhauer

Handlebodies, Artin-Tits and HOMFLYPT
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Singular Soergel bimodules #£3(W) for W = W(Ax_1).

Tuples I = (kq,...,kn) € NJZVI with k1 + -+ -+ ky = N «~ parabolic subgroups
WI = W(Aklfl) X oo X W(Akal) C W.

W acts on R = Ry = k[x1,...,xy] via permutation ~~ rings of invariants RT.

Bimodules. Identities, restriction (“merge”) and induction ( “split"), e.g.

1011 2 1
| | | o ROVLD — R | | s RZD — ROt — k[x1 + x2,x1X2,X3].
101 1 2 1
K+l k 1
/l\ s REHD @p gy RED, \H o R%D @p 40y RFFD,
k l k+1

Define &9(W) as the full 2-subcategory of the rings&bimodules 2-category.

Daniel Tubbenhauer Handlebodies, Artin-Tits and HOMFLYPT March 2019 13 /15



Singular Soergel bimodules #£3(W) for W = W(Ax_1).

Tuples I = (kq,...,kn) € NJZVI with k1 + -+ -+ ky = N «~ parabolic subgroups
WI = W(Aklfl) X oo X W(Akal) C W.

: N . . I
W acts on R = Ry {Everything is Z-graded, called q-grading. ps ©f invariants R".
| just omit this for simplicity.

Bimodules. Identities, restriction (“merge”) and induction ( “split"), e.g.

1011 2 1
| | | o ROVLD — R | | s RZD — ROt — k[x1 + x2,x1X2,X3].
1011 2 1
K+l k 1
/]\ s R0 Dpksn R(k,l)’ \IJ s RED QR (k+0) R+D.
k 1 k41

Define &9(W) as the full 2-subcategory of the rings&bimodules 2-category.

Daniel Tubbenhauer Handlebodies, Artin-Tits and HOMFLYPT March 2019 13 /15



Singular Soergel bimodules #3(W) for W = W(Ax_1).

A monoidal structure is given by

1 1

2 11
x = fj\ < glue — \[j «~ R ®roi R 2 R ®ro1 R7! ®greo1 R.
11 2

1 1

This gives a way to define bimodules associated to any web built out of merge and split.

Bimodules. Identities, restriction (“merge”) and induction (“split"), e.g.

1 1 1 2 1
| | | ew RIWLD =R, | | ors R2D = RO1 = k[x; + %2, X1%2, X3).
Bt k1
H\ o R<k+l) QR +D) R(k”l)’ HJ A R(k’l> QR k+1) R<k+l>.
k 12 k41

Define #£9(W) as the full 2-subcategory of the rings&bimodules 2-category.

Daniel Tubbenhauer Handlebodies, Artin-Tits and HOMFLYPT March 2019 13 /15



Singular Soergel

bimodules Z4(W) for W = W(Ay_1).

1

1

This gives a way to

1
2 1
X - A cdes Y —RowmR
2
1 1

A monoidal structure is given by
1

= R ®gro1

1

define bimodules associated to any

R7* ®re1 R.

web built out of merge and split.

Bimodules. |denti

There are several bimodule isomorphisms, e.g.

k+1l+m k+i+m

pRFSER ER

k+i+m k+i+m

Hence, we can unambiguously write

kit ... +kp k1 kp
A ¢ Y
B k14 ... +ke

Define 4(W) as

Tplit”),

e.g.

:‘R,U"‘*’) R<k+l> .

which one could call thick merge and split.

Daniel Tubbenhauer

Handlebodies, Artin-Tits and HOMFLYPT

es 2-category.

March 2019

1 -+ X2, X1X2, X3).
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Singular Soergel bimodules #3(W) for W = W(Ax_1).
Soergel ~1992, Williamson ~2010.

Tuples T ST categorifies t}l'ne Hecke algebra (or rather, the allgebroid). subgroups
Wi =W(Ag, —1) X - X W(Agy—1) C W.
W acts on R = Ry = k[x1,...,xy] via permutation ~~ rings of invariants RT.

Bimodules. Identities, restriction (“merge”) and induction (“split"), e.g.

111 2 1
| | | oy R(l’l"l) = R, | | s R(Q-,l) = Rt — ﬂ{[xl + Xo, X1X27X3].
k41 k l
H\ oy R(k+D QR (k+1) R(k’l), \lj e R(ED QR (k+1) R0,
k 12 k41

Define &9(W) as the full 2-subcategory of the rings&bimodules 2-category.

Daniel Tubbenhauer Handlebodies, Artin-Tits and HOMFLYPT March 2019 13 /15



Singular Soergel bimodules #3(W) for W = W(Ax_1).
Soergel ~1992, Williamson ~2010.

ST categorifies the Hecke algebra (or rather, the algebroid).

Tuples I = subgroups

Rouquier ~2004, Mackaay—Stosic—Vaz ~2008, Webster—Williamson ~2009, etc.

There are certain complex (“t-graded”) of singular Soergel bimodules, e.g.

[[61]]1\4 / H = qt H qltl H

k 1

providing a categorical action of the Artin—Tits group of type A.

1 1 1 2 1

ket koo
H\ oy R(k+D QR k+D R,(k"w, \H e RED QR (k+D R+D,

k 1 k41

Define #£9(W) as the full 2-subcategory of the rings&bimodules 2-category.

Daniel Tubbenhauer Handlebodies, Artin-Tits and HOMFLYPT March 2019 13 /15



Singular Soergel bimodules #3(W) for W = W(Ax_1).
Soergel ~1992, Williamson ~2010.

ST categorifies the Hecke algebra (or rather, the algebroid).

Tuples I = subgroups

Rouquier ~2004, Mackaay—Stosic—Vaz ~2008, Webster—Williamson ~2009, etc.

There are certain complex (“t-graded”) of singular Soergel bimodules, e.g.

[[61]]1\4 / H = qt H qltl H

k 1

providing a categorical action of the Artin—Tits group of type A.

1 1 1 2 1

Hence, we are in business by taking M >> n:

H\ J M 1 R*&+D
1 M M ’

k l [ ] \
T s and I “n | = and (ﬁ n ) etc.
1 M

M 1
i q
R Fact. This gives a faithful invariant of [#],, of & € Br(g,n).

tegory.

Daniel Tubbenhauer Handlebodies, Artin-Tits and HOMFLYPT March 2019 13 /15



Partial Hochschild homology (a la Hogancamp ~2015). R-f%im3?
category of (EEIEEED of ) g-graded, free Ry-bimodules. Adjoint pair (Z,7):

I:R-fRBimy?d; — R-f Bimy? B

]3}—>13<<n“\,7‘(HA\-/(X,\'lelxxx')) —s I() o
extending scalars |

T: R-f Bimy? — R-f Bimyd, ’T() =

B — (B X222, 4g°B) s

deniing ef-ight acton 3

Skein relations. One gets e.g.

o~

A

|| 1 | i || 1 |

D 1 D _ 1 =\ 1 1 = 1
I 1T 1 H L T 1T / j
| 16 | 122 [6) ] ! & V :%atq‘ll & x = |
[ T 1 [ I B \ :
[ B ] H [ B ] 1 ~_v 1 1 ~_7 1
I 1T 1 ! T 1

Daniel Tubbenhauer Handlebodies, Artin-Tits and HOMFLYPT March 2019 14 /15



Partial Hochschild homology (a la Hogancamp ~2015). R-f%im3"
category of ( of) g-graded, free R -bimodules. Adjoint pair (Z, T ):

toy oy

Theorem (after normalization).

We get a triply-graded invariant HHH}, (£) € k-Vect®*? for & € Br(g,n),
which respects Markov stabilization, i.e.

HHH}, ~ [HHY,
Skein relations. One gets e.g.
L1 i L1
[ lD [ ] 1 lD l ] n TN 1 1 o= 1
l c ] T & S i ~ atq® & Z =
o - PR = ata’| ~ i
[ IB I | i [ IB : | 1 S 1 1 v 1

Daniel Tubbenhauer Handlebodies, Artin-Tits and HOMFLYPT March 2019 14 /15



atq

Partial Hochschild homology (a la Hogancamp ~2015). R-fZimY;
category of ( of) g-graded, free R -bimodules. Adjoint pair (Z, T ):

toy +

Theorem (after normalization).

We get a triply-graded invariant HHH}, (#) € k-Vect®*? for & € Br(g, n),
which respects Markov stabilization, i.e.

Skein relations—Qsoa catc o o -
However, we are not quite there:

g one gets a too strong Markov conjugation, i.e.

Daniel Tubbenhauer Handlebodies, Artin-Tits and HOMFLYPT March 2019 14 /15



atq

Partial Hochschild homology (a la Hogancamp ~2015). R-fZimY;

category of ( of) g-graded, free R -bimodules. Adjoint pair (Z, T ):
I:R—f%im?\}gl %R—f%iln%q I(I Cl‘ |> :
Idea: Flank them!
M+ ... +M M M
:i.‘ & —'é; should be thought as A & v
M M M+ ... +M

and things get stuck, e.g.

2M 1
I .Y
topologically stuck: 1— &  algebraically stuck: .
Skein rg 4= l L‘J |
-
- oM 1

I —————

l D | v D I . TN 1 1 o= 1
[V, L \ P 4 J i~
=~ ] | & PR oFatat | & X = |

= 1 1 ~_ 1
:

Daniel Tubbenhauer Handlebodies, Artin-Tits and HOMFLYPT March 2019 14 /15



Partial Hochschild homology (a la Hogancamp ~2015). R-f%im3"
category of ( of) g-graded, free R -bimodules. Adjoint pair (Z, T ):

T: R-[ Bimyy?, - R-f Biniy z(=) -

s

Theorem (after normalization and flanking).

We get a triply-graded invariant HHH}, (#) € k-Vect®*? for & € Br(g,n),
which respects Markov conjugation and stabilization, i.e.

A 4

HHH?, | | 5 ~ HHH}, ||

Daniel Tubbenhauer Handlebodies, Artin-Tits and HOMFLYPT March 2019 14 /15



Let By, ) b thegroup dfined s fallns.

Generstors. Brsid and it genertors

Foct Tiype 7 ombeding]

Relat
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rum 109, Aecander 1825, For an ok ¢ e 531 5 e s>

i in Fr(ox) whoss closure s stope

There are varios oo of Shis rsul, ar ll bsed o th same ida: “Eiminate

e by ane the arce o the diagram tht have the o

isan sxample which works forgeneral 3-manifs, the Limove: “Mar the

locs maim and mina ofth

functon and cut pen wrong subacs

~
o2

ik iagram it rspec t some eght

,‘/,’%

™ ~

L

Larbes

AT grovps com in four i s
Jowston Wy e s et Wt b e |
Artin 19 tup

Atin-Tis|
polhedror

Daniel Tubbenhauer

There is still much to do...

[Tt o O Combrapontos 2003, Vg 1999

roups a0 0.

The Markoy moves on 8+(y, ) v confugaton andstbizaton

Conjugation.

for € g o € 6,

Stabizaton.

- HH HE
e - EEES

Ty s wesker tha the GEEED Mirkow moves

4 v on  ne

The Aesander closure o 8. ) is g by merging coe siands at iy

Gosure conct cosure
-

Markow 1936, W 0, Lombropoulou~1990. Tus ks in the
bl 1 s st o ad ol ey r sl m 1) u 0 congation
and stbizstion.

Tk g s he s ad s s il 3 n
they ae saual i (o) p to Lo

Here i an example whichverks i th or general 3 s, th L-mave sgsn

o }\ e } e
il ETOE cample (- 0). 1°0.1) i the casicl tpe A Hocke algebra
T 2 AT = AT ) | B = AT e o o
B =ATE)

A s 22 2/ =puncure):
Goms | e |

1) = ATD
T

il 1 = AT
=N

B ) = ATIB)

(For oo “geus” s st on snegy)

Handlebodies, Artin-Tits and HOMFLYPT

Example (5 = 1). 11,1 i th extended afine type A Hecke lgeia
- Mackow trace [GBER nd gives 3 HOMFLYPT polynormia for ¢ < 7,
' Kaahdan-Lut bses BB, cotgorfid by Sosrgel bimarues,
> Marhow 2race (@B and gives 2 HOMFLYPT homology or £ & 7,
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Let By, ) b thegroup dfined s fallns.

Generstors. Brsid and it genertors

{81 R e

Relat

o 107, Asandr 1925, oy i 0 0 27
i in Fr(ox) whoss closure s stope

Thre are varios proos o ehis rsu, ar ll based o th same idea: “Efiminate
e by one the rcs o te disgram tht have the wrong sene

Here i an cxampl whichverks for generl - maifolds, the Lmave. “Mark the
loca masima and mina of the ik dsgram wih respectto ome hight

|
ool

L

S e e
AT grovps com in four i s
Jowston Wy e s et Wt b e |
Artin 19 m tup

Atin-Tis|
polhedror

Daniel Tubbenhauer

[ e O oo 0% Vi T
T
= T—
_J
o Tt .

The Markoy moves on 8+(y, ) v confugaton andstbizaton

Conjugatc

Stabizaton.

(et
for .0 € ()

Ty s wesker tha the GEEED Mirkow moves

4 v on  ne

s | e

The Aesander closure o 8. ) is g by merging coe siands at iy

Gosure conct cosure
-

Markoy 0, Lombropoulou~1990. Tus ks in the
bl 1 s st o ad ol ey r sl m 1) u 0 congation
and stbizstion.

Tk g s he s ad s s il 3 n
they ae saual i (o) p to Lo

Here i an example whichverks i th or general 3 s, th L-mave sgsn

The handicbody Hecke algbra H1(g, ) is the auotent o Zla.a B, by

() = AT 1) I
1 2 AT(R1) = AT 1) | M0 = AT(C,)
n(2.n) = AT(C)

[

(For oo “geus” s st on snegy)

Thanks for your attention!

Handlebodies, Artin-Tits and HOMFLYPT

Example (5 0). 10,1 s th clsicl type A Hecke algetra
- Mikow trace GRER nc gives 3 HOMFLYPT polyromia for ¢ ¢ 7,
> Koahdan-Lust bases BB, coteortid by Soergel bimorues
> Markow 2 race [ @88 an gives 3 HOMFLYPT homoogy o £ € 7,

Example (5 = 1). 11,1 i th extended afine type A Hecke lgeia
- Mackow trace [GBER nd gives 3 HOMFLYPT polynormia for ¢ < 7,
' Kaahdan-Lut bses BB, cotgorfid by Sosrgel bimarues,
> Marhow 2race (@B and gives 2 HOMFLYPT homology or £ & 7,

March 2019
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The Reidemeister braid relations:

These hold for usual strands only since core strands do not cross each other, e.g.

R -



Brunn ~1897, Alexander ~1923. For any link # in the 3-ball 23 there is a
braid in %Br(co) whose closure is isotopic to ¢.

There are various proofs of this result, are all based on the same idea: "“Eliminate
one by one the arcs of the diagram that have the wrong sense.”.

Here is an example which works for general 3-manifolds, the L-move: “Mark the
local maxima and minima of the link diagram with respect to some height
function and cut open wrong subarcs.”, e.g.

e
A%
7N



Brunn ~1897, Alexander ~1923. For any link # in the 3-ball 23 there is a
braid in %Br(co) whose closure is isotopic to ¢.

There are various proofs of this result, are all based on the same idea: "“Eliminate
one by one the arcs of the diagram that have the wrong sense.”.

Here is an example which works for general 3-manifolds, the L-move: “Mark the
local maxima and minima of the link diagram with respect to some height
function and cut open wrong subarcs.”, e.g.
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Brunn ~1897, Alexander ~1923. For any link # in the 3-ball 23 there is a
braid in %Br(co) whose closure is isotopic to ¢.

There are various proofs of this result, are all based on the same idea: "“Eliminate
one by one the arcs of the diagram that have the wrong sense.”.

Here is an example which works for general 3-manifolds, the L-move: “Mark the
local maxima and minima of the link diagram with respect to some height
function and cut open wrong subarcs.”, e.g.

L
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Markov ~1936. Two links in the 3-ball 23 are equivalent if and only if they are
equal in %Br(oo) up to conjugation and stabilization.

Conjugation.
4+ 4+ 4+ 4 4.4+ +1 1+1+ 1.1
m l < ] z ‘
e e [ [~[ [ []
[ s ] e ]
1T 11 1T 11

Stabilization.




Markov ~1936. Two links in the 3-ball 23 are equivalent if and only if they are
equal in %Br(oo) up to conjugation and stabilization.

Conjugation.

+tt+*Tt+T 4+ 4+ 4 + 4+ 4+ 4
The upshot.

Together with Alexander’s theorem,
this gives a way to algebraically study
Stabilization. links in the 3-ball %

TTT:J
LLI )
IIII

’r’r’nr]’rtfr’"rlj
LI~ []
- 1



Markov ~1936, Weinberg ~1939, Lambropoulou~1990. Two links in the
3-ball 22 are equivalent if and only if they are equal in %Br(c0) up to conjugation
and stabilization.

Trick: Again, use the L-move and show that two links are equivalent if and only if
they are equal in %Br(oo) up to L-moves.

Here is an example which works in the for general 3-manifolds, the L-move again:
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Trick: Again, use the L-move and show that two links are equivalent if and only if
they are equal in %Br(oo) up to L-moves.

Here is an example which works in the for general 3-manifolds, the L-move again:




Markov ~1936, Weinberg ~1939, Lambropoulou~1990. Two links in the
3-ball 22 are equivalent if and only if they are equal in %Br(c0) up to conjugation
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Trick: Again, use the L-move and show that two links are equivalent if and only if
they are equal in %Br(oo) up to L-moves.

Here is an example which works in the for general 3-manifolds, the L-move again:




Markov ~1936, Weinberg ~1939, Lambropoulou~1990. Two links in the
3-ball 22 are equivalent if and only if they are equal in %Br(c0) up to conjugation
and stabilization.

Trick: Again, use the L-move and show that two links are equivalent if and only if
they are equal in %Br(oo) up to L-moves.

Here is an example which works in the for general 3-manifolds, the L-move again:
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Figure: The first ever “published” braid diagram. (Page 283 from GauB’ handwritten
notes, volume seven, <1830).

Tits ~1961-+. GauB’ braid group is the type A case of more general groups.
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Artin's approach: “Arithmetrization of braids”.
However, he still needs topological arguments.

And this is one main problem why general Artin—Tits groups are so complicated:
Basically, they are “infinite groups without extra structure”.
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Figure: The first ever “published” braid diagram. (Page 283 from GauB’ handwritten
notes, volume seven, <1830).

Tits ~1961-+. GauB’ braid group is the type A case of more general groups.



Figure: The Coxeter graphs of finite type (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type Ag « tetrahedron «~ symmetric group Sy.

Type B3 «~ cube/octahedron «~ Weyl group (Z/2Z)3 x S3.

Type H3 e~ dodecahedron/icosahedron «~ exceptional Coxeter group.
For Ig we have a 4-gon:

|Idea (Coxeter ~1934+|—).|



https://en.wikipedia.org/wiki/Coxeter_group

Figure: The Coxeter graphs of finite type (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

| I | PR fal
Type Az e~ tetr Fact. The symmetries are given by exchanging flags.
Type B3 «~ cub -
Type H3 e~ dodecahedron/icosahedron «~ exceptional Coxeter group.
For Ig we have a 4-gon:

Fix a flag . [Idea (Coxeter ~1934++).]
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Figure: The Coxeter graphs of finite type (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type Ag « tetrahedron «~ symmetric group Sy.

Type B3 «~ cube/octahedron «~ Weyl group (Z/2Z)3 x S3.

Type H3 e~ dodecahedron/icosahedron «~ exceptional Coxeter group.
For Ig we have a 4-gon:

Fix a flag F. [Idea (Coxeter ~1934-++).|

Fix a hyperplane Hy permuting ,\

the adjacent 0-cells of F'.
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Figure: The Coxeter graphs of finite type (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type Ag « tetrahedron «~ symmetric group Sy.

Type B3 «~ cube/octahedron «~ Weyl group (Z/2Z)3 x S3.

Type H3 e~ dodecahedron/icosahedron «~ exceptional Coxeter group.
For Ig we have a 4-gon:

Fix a flag F. [Idea (Coxeter ~1934-++).|

Fix a hyperplane Hy permuting
the adjacent 0-cells of F'.

Fix a hyperplane H; permuting
the adjacent 1-cells of F', etc.
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Figure: The Coxeter graphs of finite type (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples.

Type Ag « tetrahedron «~ symmetric group Sy.

Type B3 «~ cube/octahedron «~ Weyl group (Z/2Z)3 x S3.

Type H3 e~ dodecahedron/icosahedron «~ exceptional Coxeter group.
For Ig we have a 4-gon:

Fix a flag F. [Idea (Coxeter ~1934-++).|

Fix a hyperplane Hy permuting
the adjacent 0-cells of F'.

Fix a hyperplane H; permuting °
the adjacent 1-cells of F', etc.

[Write a vertex i for each H; .|
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Figure: The Coxeter graphs of finite type (Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Examples. This glves a generator-relation presentation.
Type Az «~ tetrahed 1.

Type Bs M|And the braid relat|on measures the angle between hyperplanes. |
Type H3 e~ dodecahedron/icosahedron «~ exceptional Coxeter group.
For Ig we have a 4-gon:

Fix a flag F. [Idea (Coxeter ~1934-++).|

Fix a hyperplane Hy permuting
the adjacent 0-cells of F'.

A - o

Fix a hyperplane H; permuting i
the adjacent 1-cells of F, etc. cos(r/4)

[Write a vertex i for each H; .|

Connect ¢, j by an n-edge for
H;, H; having angle cos(w/n).
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Three gradings:

q < internal & t «~ homological & a «~ Hochschild

Example. To compute Hochschild cohomology take the Koszul resolution
®£V:1 <Re "R RoP (% ®1-1®x;) aq2R6> ’

Tensor it with B, gives a complex with differentials x; ® 1 — 1 ® x;, of which we
think as identifying the variables. This gives a chain complex having non-trivial
chain groups in a-degree 0, ...,n. Here the i*" chain group consists of (") copies
of B, with differentials given by the various ways of identifying 4 variables. The
a'h cohomology = a'* Hochschild cohomology.

Example. If B is already a t-graded complex, then one can take homology of it
and gets “triple H".
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