Link invariants and $\mathbb{Z}/2\mathbb{Z}$-orbifolds

Or: What makes types ABCD special?

Daniel Tubbenhauer

Joint work in progress (take it with a grain of salt) with Catharina Stroppel and Arik Wilbert (Based on an idea of Mikhail Khovanov)

January 2018
Khovanov style homologies

"Homology easy, topology hard"

"Homology hard, topology easy"

Daniel Tubbenhauer
Link invariants and $\mathbb{Z}/2\mathbb{Z}$-orbifolds
January 2018
Khovanov style homologies

Hecke algebras

Lie theory

More...

Commutative algebra

Quantum groups

(Singular) TQFTs

Physics

Geometry

"Homology easy, topology hard"

"Homology hard, topology easy"
A quantum group of type E_7 is type A-braided!?
Outside of type A

The type A world

- Lie theory
- More...
- Commutative algebra
- Hecke algebras
- Khovanov style homologies
- Quantum groups
- (Singular) TQFTs
- Physics
- Geometry

Weyl group side <-> Quantum group side

A quantum group of type E_7 is type A-braided!?
Outside of type A

The type A world

- Lie theory
- More...
- Commutative algebra
- Khovanov style homologies
- Quantum groups
- (Singular) TQFTs
- Physics
- Geometry

Homologies!! for links??

Weyl group side

Weyl group ♥ Quantum group

Quantum group side

Homologies?? for links!!
Outside of type A

The type A world

- Lie theory
- More...
- Commutative algebra
- Quantum groups
- Geometry
- Physics
- (Singular) TQFTs

Homologies!! for links??

Weyl group side

Weyl group \heartsuit Quantum group

Quantum group side

"Homology easy, topology hard"

"Homology hard, topology easy"

A quantum group of type E_7 is type A-braided!?
Outside of type A

The type A world

Lie theory

Hecke algebras

Khovanov style homologies

Commutative algebra

Quantum groups

Physics

Geometry

(Singular) TQFTs

Weyl group side

Weyl group \heartsuit Quantum group

Quantum group side

Yes

Yes

Yes

Homologies!! for links??

Homologies?? for links!!

"Homology easy, topology hard"

"Homology hard, topology easy"

Daniel Tubbenhauer

Link invariants and $\mathbb{Z}/2\mathbb{Z}$-orbifolds

January 2018
Outside of type A

The type A world

Lie theory

Hecke algebras

Khovanov style homologies

Commutative algebra

Quantum groups

Physics

Geometry

(Singular) TQFTs

Weyl group side

Weyl group \xor Quantum group

Quantum group side

Homologies! for links??

Hecke algebras

Yes

"Homology easy, topology hard"

Outside of type A

"Homology hard, topology easy"

"Homology easy, topology hard"

"Homology hard, topology easy"

Yes

Yes

Yes

"Homology easy, topology hard"

"Homology hard, topology easy"

Outside of type A
1. **Tangle diagrams of $\mathbb{Z}/2\mathbb{Z}$-orbifold tangles**
 - Diagrams
 - Tangles in $\mathbb{Z}/2\mathbb{Z}$-orbifolds

2. **Topology of Artin braid groups**
 - The Artin braid groups: algebra
 - Hyperplanes vs. configuration spaces

3. **Invariants**
 - Reshetikhin–Turaev-like theory for some coideals
 - Polynomials and homologies for $\mathbb{Z}/2\mathbb{Z}$-orbifold tangles
Tangle diagrams with cone strands

Let $c\mathcal{T}an$ be the monoidal category defined as follows.

Generators. Object generators $\{+,-,c\}$, morphism generators

![Diagrams of usual crossings, usual cups and caps, and cone crossings.]

Relations. Reidemeister type relations, and the $\mathbb{Z}/2\mathbb{Z}$-relations:

![Diagrams of relation equations.]

Daniel Tubbenhauer

Link invariants and $\mathbb{Z}/2\mathbb{Z}$-orbifolds

January 2018
Tangle diagrams with cone strands

Let $cTan$ be the monoidal category defined as follows.

Generators. Object generators $\{+, -, c\}$, morphism generators $\{+, -, c\}$ usual crossings, $\{+, -, c\}$ usual cups and caps, $\{+, -, c\}$ cone crossings

Relations. Reidemeister type relations, and the $\mathbb{Z}/2\mathbb{Z}$-relations: $= \equiv$ and $= \equiv$

Examples.

Unknot

Essential unknot

Hopf link

Essential Hopf link

Exercise. The relations are actually equivalent.
Let $cTan$ be the monoidal category defined as follows.

Generators. Object generators

\[{\{+, -, c\}} \]

Morphism generators

\[\text{usual crossings}, \quad \text{usual cups and caps}, \quad \text{cone crossings} \]

Relations.

Reidemeister type relations, and the $\mathbb{Z}/2\mathbb{Z}$-relations:

\[\begin{align*}
\Uparrow & = \Uparrow \\
\Downarrow & = \Downarrow
\end{align*} \]
Let $cTan$ be the monoidal category defined as follows.

Generators. Object generators \{+, −, c\}, morphism generators usual crossings, usual cups and caps, cone crossings.

Relations. Reidemeister type relations, and the $\mathbb{Z}/2\mathbb{Z}$-relations:
Let $c\mathcal{T}an$ be the monoidal category defined as follows.

Generators. Object generators $\{+,-,c\}$, morphism generators $\{+,-,\text{usual crossings}, \text{usual cups and caps}, \text{cone crossings}\}$

Relations. Reidemeister type relations, and the $\mathbb{Z}/2\mathbb{Z}$-relations:

\[\begin{align*}
\xymatrix{+ & + & + & + \\
\ar@{.}@/^/[rr] & \ar@{.}@/^/[rr] & \ar@{.}@/^/[rr] & \ar@{.}@/^/[rr]}
\end{align*}\]

\[\begin{align*}
\xymatrix{+ & + & + & + \\
\ar@{.}@/^/[rr] & \ar@{.}@/^/[rr] & \ar@{.}@/^/[rr] & \ar@{.}@/^/[rr]}
\end{align*}\]
Tangle diagrams with cone strands

Let $cTan$ be the monoidal category defined as follows.

Generators. Object generators

$$\{ +, -, c \}$$

Morphism generators

$$+ + + + , - + + + , \text{usual crossings}$$

$$+ + + + , - + + + , \text{usual cups and caps}$$

$$c + c + c + c , c + c + c + c , c + c + c + c , c + c + c + c , \text{cone crossings}$$

Relations. Reidemeister type relations, and the $\mathbb{Z}/2\mathbb{Z}$-relations:

$$= \quad \text{and} \quad =$$
Let $cT an$ be the monoidal category defined as follows.

Generators. Object generators

- $+, -, c$

Morphism generators

- usual crossings
- usual cups and caps
- cone crossings

Relations. Reidemeister type relations, and the $\mathbb{Z}/2\mathbb{Z}$-relations:

$$\begin{align*}
\begin{tikzpicture}[baseline=(current bounding box.center)]
 \draw (-1,0) to [out=0,in=180] (1,0);
 \draw (-1,-1) to [out=0,in=180] (1,-1);
\end{tikzpicture}
\end{align*}
\quad =
\begin{align*}
\begin{tikzpicture}[baseline=(current bounding box.center)]
 \draw (-1,0) to [out=0,in=180] (1,0);
 \draw (-1,-1) to [out=0,in=180] (1,-1);
\end{tikzpicture}
\end{align*}
\quad \text{and} \quad
\begin{align*}
\begin{tikzpicture}[baseline=(current bounding box.center)]
 \draw (-1,0) to [out=0,in=180] (1,0);
 \draw (-1,-1) to [out=0,in=180] (1,-1);
\end{tikzpicture}
\end{align*}
\quad =
\begin{align*}
\begin{tikzpicture}[baseline=(current bounding box.center)]
 \draw (-1,0) to [out=0,in=180] (1,0);
 \draw (-1,-1) to [out=0,in=180] (1,-1);
\end{tikzpicture}
\end{align*}$$
Tangle diagrams with cone strands

Let $cT an$ be the monoidal category defined as follows.

Generators. Object generators $\{+, -, c\}$, morphism generators $\{+\}$, $\{+\}$, $\{-\}$, $\{\}$, usual crossings $\{\}$, $\{\}$, $\{\}$, $\{\}$, usual cups and caps $\{\}$, $\{\}$, $\{\}$, $\{\}$, cone crossings $\{\}$, $\{\}$, $\{\}$, $\{\}$.

Relations. Reidemeister type relations $\{\}$, and the $\mathbb{Z}/2\mathbb{Z}$-relations:

$\{\} = \{\}$ and $\{\} = \{\}$.
Let $cTan$ be the monoidal category defined as follows.

Generators. Object generators

$$+$, $-$, $c$$

Morphism generators

usual crossings

usual cups and caps

cone crossings

Relations. Reidemeister type relations, and the $\mathbb{Z}/2\mathbb{Z}$-relations:

$$= \quad \text{and} \quad =$$
Tangle diagrams with cone strands

Let $cTan$ be the monoidal category defined as follows.

Generators. Object generators\{+\}, \{-\}, \{c\}\}, morphism generators\{+, \(+, \(-, \(+\), \(-, \)-\}, \{+, \(+, \(-, \)+\}, \{-, \}-\}, \{+, \.plus\}, \{-, \}-\}, \{+, \(c\), \(c\), \(c\), \(c\))\}, \{c, \(-, \)+\}, usual crossings, cone crossings.

Relations. Reidemeister type relations, and the $\mathbb{Z}/2\mathbb{Z}$-relations:

```
\begin{align*}
\text{Example.} & \quad \text{Exercise. The relations are actually equivalent.}
\end{align*}
```

Exercise. The relations are actually equivalent.

Relations. Reidemeister type relations, and the $\mathbb{Z}/2\mathbb{Z}$-relations:

\begin{align*}
\text{Example.}
\end{align*}
“Definition”. An orbifold is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. $\mathbb{Z}/2\mathbb{Z}$ acts on \mathbb{R}^2 by rotation by π around a fixed point c:

$$c_{\text{1 orb}} = \mathbb{R}^2/\mathbb{Z}/2\mathbb{Z} \overset{\text{$\mathbb{Z}/2\mathbb{Z}$ action}}{\sim} X_{c_{\text{1 orb}}} \approx \mathbb{R}^2/\mathbb{Z}/2\mathbb{Z}$$

Philosophy. c is half-way in between a regular point and a puncture:
“Definition”. An orbifold is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. $\mathbb{Z}/2\mathbb{Z}$ acts on \mathbb{R}^2 by rotation by π around a fixed point c:

$$c_{10rb} = \mathbb{R}^2/\mathbb{Z}/2\mathbb{Z} \xrightarrow{\pi} X_{c_{10rb}} \cong$$

Philosophy. c is half-way in between a regular point and a puncture:
“Definition”. An orbifold is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. $\mathbb{Z}/2\mathbb{Z}$ acts on \mathbb{R}^2 by rotation by π around a fixed point c:

$$c_{10rb} = \mathbb{R}^2/\mathbb{Z}/2\mathbb{Z} \rightsquigarrow X_{c_{10rb}} \approx$$

Philosophy. c is half-way in between a regular point and a puncture:
An orbifold is locally modeled on the standard Euclidean space modulo an action of some finite group.

$\mathbb{Z}/2\mathbb{Z}$ acts on \mathbb{R}^2 by rotation by π around a fixed point c:

$$c_{1Orb} = \mathbb{R}^2/\mathbb{Z}/2\mathbb{Z} \xrightarrow{\mathbb{Z}/2\mathbb{Z} \text{ action}} X_{c_{1Orb}} \approx c$$

c is half-way in between a regular point and a puncture:
“Definition”. An orbifold is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. \(\mathbb{Z}/2\mathbb{Z} \) acts on \(\mathbb{R}^2 \) by rotation by \(\pi \) around a fixed point \(c \):

\[
\text{c Orb} = \mathbb{R}^2 / \mathbb{Z}/2\mathbb{Z} \quad \sim \quad X_{\text{c Orb}} \approx \text{cone point}
\]

Philosophy. \(c \) is half-way in between a regular point and a puncture:
Definition. An orbifold is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. \(\mathbb{Z}/2\mathbb{Z}\) acts on \(\mathbb{R}^2\) by rotation by \(\pi\) around a fixed point \(c\):

\[
\text{c}_1\text{0}rb = \mathbb{R}^2/\mathbb{Z}/2\mathbb{Z} \quad \xrightarrow{\mathbb{Z}/2\mathbb{Z}\text{ action}} \quad X_{\text{c}_1\text{0}rb} \approx \mathbb{R}^2/\mathbb{Z} = -z
\]

Philosophy. \(c\) is half-way in between a regular point and a puncture:
\(\mathbb{Z}/2\mathbb{Z}\)-orbifolds

“Definition”. An orbifold is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. \(\mathbb{Z}/2\mathbb{Z}\) acts on \(\mathbb{R}^2\) by rotation by \(\pi\) around a fixed point \(c\):

\[
c_1\text{Orb} = \mathbb{R}^2/\mathbb{Z}/2\mathbb{Z} \quad \overset{\mathbb{Z}/2\mathbb{Z} \text{ action}}{\longrightarrow} \quad X_{c_1\text{Orb}} \approx \c
\]

Philosophy. \(c\) is half-way in between a regular point and a puncture:
"Definition". An orbifold is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. $\mathbb{Z}/2\mathbb{Z}$ acts on \mathbb{R}^2 by rotation by π around a fixed point c:

$$c_{10rb} = \mathbb{R}^2/\mathbb{Z}/2\mathbb{Z} \simeq X_{c_{10rb}}$$

Philosophy. c is half-way in between a regular point and a puncture:
An orbifold is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. \(\mathbb{Z}/2\mathbb{Z} \) acts on \(\mathbb{R}^2 \) by rotation by \(\pi \) around a fixed point \(c \):

\[
\mathbb{C}_1 orb = \mathbb{R}^2 / \mathbb{Z}/2\mathbb{Z} \quad \Leftrightarrow \quad \mathbb{X}_c \approx \quad \text{cone point}
\]

Philosophy. \(c \) is half-way in between a regular point and a puncture:

- Regular point: \(\pi^0 orb = 1 \)
- Cone point: \(\pi^0 orb = \mathbb{Z} \)
- Puncture: never trivial
$\mathbb{Z}/2\mathbb{Z}$-orbifolds

“Definition”. An orbifold is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. $\mathbb{Z}/2\mathbb{Z}$ acts on \mathbb{R}^2 by rotation by π around a fixed point c:

$$\mathbb{C}_{Orb} = \mathbb{R}^2/\mathbb{Z}/2\mathbb{Z} \sim \mathbf{X}_{C_{Orb}} \approx \mathbb{R}^2/_{z=-z}$$

Philosophy. c is half-way in between a regular point and a puncture:
"Definition". An orbifold is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. \(\mathbb{Z}/2\mathbb{Z}\) acts on \(\mathbb{R}^2\) by rotation by \(\pi\) around a fixed point \(c\):

\[
c_{10rb} = \mathbb{R}^2/\mathbb{Z}/2\mathbb{Z}
\]

Philosophy. \(c\) is half-way in between a regular point and a puncture:
"Definition". An orbifold is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. \(\mathbb{Z}_2 \) acts on \(\mathbb{R}^2 \) by rotation by \(\pi \) around a fixed point \(c \):

\[
\mathcal{C}_{10rb} = \mathbb{R}^2 / \mathbb{Z}_2
\]

\(\mathbb{Z}_2 \) action \(\mathbb{R}^2 \mathcal{C}_{10rb} \approx \) cone point

Philosophy. \(c \) is half-way in between a regular point and a puncture:

\[
\pi^0_{1rb} = 1
\]

\[
\pi^0_{1rb} = \mathbb{Z}_2
\]

\[
\pi^0_{1rb} = \mathbb{Z}
\]
$\mathbb{Z}/2\mathbb{Z}$-orbifolds

“Definition”. An orbifold is locally modeled on the standard Euclidean space modulo an action of some finite group.

Main example. $\mathbb{Z}/2\mathbb{Z}$ acts on \mathbb{R}^2 by rotation by π around a fixed point c: $c_{1\text{orb}} = \mathbb{R}^2/\mathbb{Z}/2\mathbb{Z} \rightarrow X_c$.

Philosophy. c is half-way in between a regular point and a puncture:

- Regular point: $\pi^0_{\text{orb}} = 1$
- Cone point: $\pi^0_{\text{orb}} = \mathbb{Z}/2\mathbb{Z}$
- Puncture: $\pi^0_{\text{orb}} = \mathbb{Z}$
Pioneers of algebra

Let Γ be a Coxeter graph.

Artin ~ 1925, Tits ~ 1961. The Artin braid groups and its Coxeter group quotients are given by generators-relations:

$$\mathcal{A}_\Gamma = \langle b_i \mid \cdots b_i b_j b_i = \cdots b_j b_i b_j \rangle$$

$$W_\Gamma = \langle s_i \mid s_i^2 = 1, \cdots s_i s_j s_i = \cdots s_j s_i s_j \rangle$$

Artin braid groups generalize classical braid groups, Coxeter groups Weyl groups.

We want to understand these better.
Let Γ be a Coxeter graph.

Artin ∼1925, Tits ∼1961. The Artin braid groups and its Coxeter group quotients are given by generators-relations:

\[
\mathcal{A}_Γ = \langle b_i \mid \cdots b_j b_i b_j = \cdots b_j b_i b_j \rangle
\]

\[
\mathcal{W}_Γ = \langle s_i \mid s_i^2 = 1, \cdots s_j s_i s_j = \cdots s_j s_i s_j \rangle
\]

Artin braid groups generalize classical braid groups, Coxeter groups Weyl groups.

We want to understand these better.
$\mathcal{W}_{A_2} = \langle s, t \rangle$ acts faithfully on \mathbb{R}^2 by reflecting in hyperplanes (for each reflection):

\mathcal{W}_{A_2} acts freely on $M_{A_2} = \mathbb{R}^2 \setminus$ hyperplanes. Set $N_{A_2} = M_{A_2} / \mathcal{W}_{A_2}$.

Coxeter \sim 1934, Tits \sim 1961.

This works in ridiculous generality. (Up to some minor technicalities in the infinite case.)

Brieskorn \sim 1971, van der Lek \sim 1983.

This works in ridiculous generality. (Up to some minor technicalities in the infinite case.)
I follow hyperplanes

\(\mathcal{W}_{A_2} = \langle s, t \rangle \) acts faithfully on \(\mathbb{R}^2 \) by reflecting in hyperplanes (for each reflection):

\[t \]

\(\mathcal{W}_{A_2} \) acts freely on \(M_{A_2} = \mathbb{R}^2 \setminus \text{hyperplanes} \). Set \(N_{A_2} = M_{A_2} / \mathcal{W}_{A_2} \).
\[W_{A_2} = \langle s, t \rangle \] acts faithfully on \(\mathbb{R}^2 \) by reflecting in hyperplanes (for each reflection):

\[W_{A_2} \text{ acts freely on } M_{A_2} = \mathbb{R}^2 \setminus \text{hyperplanes. Set } N_{A_2} = M_{A_2} / W_{A_2}. \]
I follow hyperplanes

\(\mathcal{W}_{A_2} = \langle s, t \rangle \) acts faithfully on \(\mathbb{R}^2 \) by reflecting in hyperplanes (for each reflection):

\[\mathcal{W}_{A_2} \text{ acts freely on } M_{A_2} = \mathbb{R}^2 \setminus \text{hyperplanes. Set } N_{A_2} = M_{A_2} / \mathcal{W}_{A_2}. \]
I follow hyperplanes

\[W_{A_2} = \langle s, t \rangle \] acts faithfully on \(\mathbb{R}^2 \) by reflecting in hyperplanes (for each reflection):

\[
\begin{align*}
\text{Coxeter } &\sim 1934, \quad \text{Tits } \sim 1961. \\
&\text{This works in ridiculous generality.} \\
&\text{(Up to some minor technicalities in the infinite case.)}
\end{align*}
\]

\[W_{A_2} \] acts freely on \(M_{A_2} = \mathbb{R}^2 \setminus \text{hyperplanes} \). Set \(N_{A_2} = M_{A_2} / W_{A_2} \).
I follow hyperplanes

$W_{A_2} = \langle s, t \rangle$ acts faithfully on \mathbb{R}^2 by reflecting in hyperplanes (for each reflection):

W_{A_2} acts freely on $M_{A_2} = \mathbb{R}^2 \setminus \text{hyperplanes}$. Set $N_{A_2} = M_{A_2} / W_{A_2}$.

Complexifying the action: $\mathbb{R}^2 \rightsquigarrow \mathbb{C}^2$, $M_{A_2} \rightsquigarrow M_{A_2}^\mathbb{C}$, $N_{A_2} \rightsquigarrow N_{A_2}^\mathbb{C}$. Then:

$$\pi_1(N_{A_2}^\mathbb{C}) \cong \mathcal{A}r_{A_2} = \langle b_s, b_t \mid b_s b_t b_s = b_t b_s b_t \rangle$$
\(\mathcal{W}_{A_2} = \langle s, t \rangle \) acts faithfully on \(\mathbb{R}^2 \) by reflecting in hyperplanes (for each reflection):

\(\mathcal{W}_{A_2} \) acts freely on \(M_{A_2} = \mathbb{R}^2 \setminus \) hyperplanes. Set \(N_{A_2} = M_{A_2} / \mathcal{W}_{A_2} \).

Complexifying the action: \(\mathbb{R}^2 \leadsto \mathbb{C}^2, M_{A_2} \leadsto M_{A_2}^\mathbb{C}, N_{A_2} \leadsto N_{A_2}^\mathbb{C} \). Then:

\[
\pi_1(N_{A_2}^\mathbb{C}) \cong \mathcal{A}r_{A_2} = \langle b_s, b_t \mid b_s b_t b_s = b_t b_s b_t \rangle
\]
\(\mathcal{W}_{A_2} = \langle s, t \rangle \) acts faithfully on \(\mathbb{R}^2 \) by reflecting in hyperplanes (for each reflection):

\[\mathcal{W}_{A_2} \text{ acts freely on } M_{A_2} = \mathbb{R}^2 \setminus \text{hyperplanes}. \text{ Set } N_{A_2} = M_{A_2} / \mathcal{W}_{A_2}. \]

Complexifying the action: \(\mathbb{R}^2 \leadsto \mathbb{C}^2, M_{A_2} \leadsto M_{A_2}^\mathbb{C}, N_{A_2} \leadsto N_{A_2}^\mathbb{C} \). Then:

\[
\pi_1(N_{A_2}^\mathbb{C}) \cong \mathcal{A}r_{A_2} = \langle b_s, b_t \mid b_s b_t b_s = b_t b_s b_t \rangle
\]
\(\mathcal{W}_{A_2} = \langle s, t \rangle \) acts faithfully on \(\mathbb{R}^2 \) by reflecting in hyperplanes (for each reflection):

\[\begin{array}{ccc}
 \mathcal{W}_{A_2} \text{ acts freely on } M_{A_2} = \mathbb{R}^2 \setminus \text{hyperplanes. Set } N_{A_2} = M_{A_2} / \mathcal{W}_{A_2}. \\
\end{array} \]

Complexifying the action: \(\mathbb{R}^2 \leadsto \mathbb{C}^2, M_{A_2} \leadsto M_{A_2}^C, N_{A_2} \leadsto N_{A_2}^C. \) Then:

\[\pi_1(N_{A_2}^C) \cong \mathcal{A}_{r_{A_2}} = \langle b_s, b_t \mid b_s b_t b_s = b_t b_s b_t \rangle \]

\[\text{Coxeter } \sim 1934, \text{ Tits } \sim 1961. \text{ This works in ridiculous generality.} \]

\[\text{Brieskorn } \sim 1971, \text{ van der Lek } \sim 1983. \text{ This works in ridiculous generality.} \]

(Up to some minor technicalities in the infinite case.)
I follow hyperplanes

\(\mathcal{W}_{A_2} = \langle s, t \rangle \) acts faithfully on \(\mathbb{R}^2 \) by reflecting in hyperplanes (for each reflection):

\[\mathcal{B}_t \]

\textbf{Brieskorn} \(\sim 1971 \), \textbf{van der Lek} \(\sim 1983 \). This works in ridiculous generality.

(Up to some minor technicalities in the infinite case.)

\(\mathcal{W}_{A_2} \) acts freely on \(M_{A_2} = \mathbb{R}^2 \setminus \text{hyperplanes} \). Set \(N_{A_2} = M_{A_2} / \mathcal{W}_{A_2} \).

Complexifying the action: \(\mathbb{R}^2 \hookrightarrow \mathbb{C}^2 \), \(M_{A_2} \hookrightarrow M_{A_2}^\mathbb{C} \), \(N_{A_2} \hookrightarrow N_{A_2}^\mathbb{C} \). Then:

\[\pi_1(N_{A_2}^\mathbb{C}) \cong \mathcal{A}_r_{A_2} = \langle b_s, b_t \mid b_s b_t b_s = b_t b_s b_t \rangle \]
Configuration spaces

Artin \(\sim 1925\). There is a topological model of \(\mathcal{A}r_A\) via configuration spaces.

Example. Take \(Conf_{A_2} = (\mathbb{R}^2)^3 \setminus \text{fat diagonal}/S_3\). Then \(\pi_1(Conf_{A_2}) \cong \mathcal{A}r_{A_2}\).

Philosophy. Having a configuration spaces is the same as having braid diagrams:

![Diagram](image)

Crucial. Note that – by explicitly calculating the equations defining the hyperplanes – one can directly check that:

“Hyperplane picture equals configuration space picture.”
Configuration spaces

Artin ~1925. There is a topological model of Ar_A via configuration spaces.

Example. Take $Conf_{\mathbb{A}^2} = (\mathbb{R}^2)^3 \setminus \text{fat diagonal}/\text{fat diagonal}$. Then $\pi_1(Conf_{\mathbb{A}^2}) \cong Ar_{\mathbb{A}^2}$.

Philosophy. Having a configuration spaces is the same as having braid diagrams:

```
\begin{align*}
\sigma &= (13) \\
\text{a usual braid}
\end{align*}
```

Critical. Note that – by explicitly calculating the equations defining the hyperplanes – one can directly check that:

“Hyperplane picture equals configuration space picture.”
Configuration spaces

Artin ∼1925. There is a topological model of $\mathcal{A}r_A$ via configuration spaces.

Example. Take $\text{Conf}_A^2 = (\mathbb{R}^2)^3 \setminus \text{fat diagonal} / S_3$. Then $\pi_1(\text{Conf}_A^2) \cong A_r A^2$.

Philosophy. Having a configuration spaces is the same as having braid diagrams:

But we can’t compute the hyperplanes...

Crucial. Note that – by explicitly calculating the equations defining the hyperplanes – one can directly check that:

“Hyperplane picture equals configuration space picture.”
Configuration spaces

Artin ~ 1925. There is a topological model of Ar_A via configuration spaces.

Example. Take $Conf_{A^2} = (\mathbb{R}^2)^3 \setminus \text{fat diagonal} / S_3$. Then $\pi_1(Conf_{A^2}) \sim A_{A^2}$.

Philosophy. Having a configuration spaces is the same as having braid diagrams:

In words: The $\mathbb{Z}/2\mathbb{Z}$-orbifolds provide the framework to study Artin braid groups of classical (affine) type - one can directly compute the hyperplanes...

Crucial. "Hyperplane picture equals configuration space picture."

In those cases one can compute the hyperplanes! This is very special for (affine) types $ABCD$.

Hope. The same works for Coxeter diagrams which are “locally type ABCD”, e.g.:

In words: The $\mathbb{Z}/2\mathbb{Z}$-orbifolds provide the framework to study Artin braid groups of classical (affine) type - one can directly compute the hyperplanes...

"Hyperplane picture equals configuration space picture."

Link invariants and $\mathbb{Z}/2\mathbb{Z}$-orbifolds
Configuration spaces

Artin ~1925. There is a topological model of $\mathcal{A}r_A$ via configuration spaces.

Example. Take $\text{Conf}_{A_2} = (\mathbb{R}^2)^3 \setminus \text{fat diagonal}/S_3$. Then $\pi_1(\text{Conf}_{A_2}) \cong \mathcal{A}r_{A_2}$.

Philosophy. Having a configuration spaces is the same as having braid diagrams:

![Example.](image)

Crucial. Note that – by explicitly calculating the equations defining the hyperplanes – one can directly check that:

“Hyperplane picture equals configuration space picture.”
Configuration spaces

Artin \(\sim 1925\). There is a topological model of \(Ar_A\) via configuration spaces.

Example. Take \(Conf_{\mathbb{A}^2} = (\mathbb{R}^2)^3 \setminus \text{fat diagonal}/S_3\). Then \(\pi_1(Conf_{\mathbb{A}^2}) \cong Ar_{\mathbb{A}^2}\).

Philosophy. Having a configuration spaces is the same as having braid diagrams:

Crucial. Note that – by explicitly calculating the \(\text{equations defining the hyperplanes}\) – one can directly check that:

“Hyperplane picture equals configuration space picture.”
Configuration spaces

Artin \(\sim 1925\). There is a topological model of \(Ar_A\) via configuration spaces.

Example. Take \(Conf_{A_2} = (\mathbb{R}^2)^3 \setminus \text{fat diagonal}/S_3\). Then \(\pi_1(Conf_{A_2}) \cong Ar_{A_2}\).

Philosophy. Having a configuration spaces is the same as having braid diagrams:

\[b_i b'_i = b'_i b_i, \text{ if } b_i \]

Crucial. Note that – by explicitly calculating the equations defining the hyperplanes – one can directly check that:

“Hyperplane picture equals configuration space picture.”
Configuration spaces

Artin \(\sim 1925\). There is a topological model of \(\mathcal{A}r_A\) via configuration spaces.

Example. Take \(Conf_{A_2} = (\mathbb{R}^2)^3 \setminus \text{fat diagonal}/S_3\). Then \(\pi_1(Conf_{A_2}) \cong \mathcal{A}r_{A_2}\).

Philosophy. Having a configuration spaces is the same as having braid diagrams:

Crucial. Note that – by explicitly calculating the equations defining the hyperplanes – one can directly check that:

"Hyperplane picture equals configuration space picture."

Daniel Tubbenhauer
Link invariants and \(\mathbb{Z}/2\mathbb{Z}\)-orbifolds
January 2018
8 / 14
Configuration spaces

Artin \(\sim 1925\). There is a topological model of \(A_r\) via configuration spaces.

Example. Take \(\text{Conf}_{A_2} = (\mathbb{R}^2)^3 \setminus \text{fat diagonal}/S_3\). Then \(\pi_1(\text{Conf}_{A_2}) \cong A_r\).

Philosophy. Having a configuration spaces is the same as having braid diagrams:

Example.

\[
\begin{align*}
&\bullet \ b'_i \quad \uparrow \quad \uparrow \quad \uparrow \\
&\bullet \ b_i
\end{align*}
\]

\(b_i b'_i = b'_i b_i\), if

Crucial. Note that – by explicitly calculating the equations defining the hyperplanes – one can directly check that:

“Hyperplane picture equals configuration space picture.”

Daniel Tubbenhauer

Link invariants and \(\mathbb{Z}/2\mathbb{Z}\)-orbifolds

January 2018

8 / 14
Configuration spaces

Artin ~ 1925. There is a topological model of Ar_A via configuration spaces.

Example. Take $Conf_{A_2} = (\mathbb{R}^2)^3 \setminus \text{fat diagonal}/S_3$. Then $\pi_1(Conf_{A_2}) \cong Ar_{A_2}$.

Philosophy. Having a configuration spaces is the same as having braid diagrams:

Crucial. Note that – by explicitly calculating the equations defining the hyperplanes – one can directly check that:

"Hyperplane picture equals configuration space picture."
Reshetikhin–Turaev theory half-way in between

Reshetikhin–Turaev \(\sim 1991\). Construct link and tangle invariants as functors

\[uRT : uTan \to \text{well-behaved target category}. \]

Today: Target categories = \(\mathcal{R}ep(U_v(sl_2)) \) and friends.

Question. What could the \(\mathbb{Z}/2\mathbb{Z} \)-analog be?

Daniel Tubbenhauer

Link invariants and \(\mathbb{Z}/2\mathbb{Z} \)-orbifolds

January 2018 9 / 14
Reshetikhin–Turaev theory half-way in between

Reshetikhin–Turaev \(\sim 1991\). Construct link and tangle invariants as functors

\[uRT : uTan \to \text{well-behaved target category}. \]

Today: Target categories = \(\text{Rep}(\mathcal{U}_v(\mathfrak{sl}_2)) \) and friends.

Question. What could the \(\mathbb{Z}/2\mathbb{Z} \)-analog be?

\[\text{C}(v) = \text{ground field}, \quad \text{V}_v = \text{vector representation of} \quad \mathcal{U}_v(\mathfrak{sl}_2). \]

\[\text{?? : V}_v \to V_v \text{should be non-trivial.} \]

But \(V_v \) is irreducible for \(\mathcal{U}_v \)...

Same issue...

Orbifold-philosophy. We need something half-way in between \(\text{C}(v) \) and \(\mathcal{U}_v \).
Reshetikhin–Turaev theory half-way in between

Reshetikhin–Turaev ~ 1991. Construct link and tangle invariants as functors

$$u\mathcal{RT} : u\mathcal{T}an \rightarrow \text{well-behaved target category}.$$

Today: Target categories $= \mathcal{R}ep(\mathcal{U}_v(sl_2))$ and friends.

Question. What could the $\mathbb{Z}/2\mathbb{Z}$-analog be?

$\mathbb{C}(v)$

$\mathbb{C}(v)$
Reshetikhin–Turaev theory half-way in between

Reshetikhin–Turaev \(\sim 1991\). Construct link and tangle invariants as functors

\[
u\mathcal{RT} : u\mathcal{T}an \rightarrow \text{well-behaved target category.}
\]

Today: Target categories = \(\text{Rep}(u_v(\mathfrak{sl}_2))\) and friends.

Question. What could the \(\mathbb{Z}/2\mathbb{Z}\)-analog be?

![Diagram](image)

\(\mathbb{C}(v)\) = ground field,
\(V_v = \text{vector representation of } u_v = u_v(\mathfrak{sl}_2)\).

\(V_v \otimes V_v \overset{\text{ev}^*}{\rightarrow} \mathbb{C}(v)\)
Reshetikhin–Turaev theory half-way in between

Reshetikhin–Turaev ~ 1991. Construct link and tangle invariants as functors

\[u\mathcal{RT} : u\mathcal{T}an \to \text{well-behaved target category}. \]

Today: Target categories $= Rep(\mathcal{U}_v(\mathfrak{sl}_2))$ and friends.

Question. What could the $\mathbb{Z}/2\mathbb{Z}$-analog be?

\[C(v) = \text{ground field}, \quad V_v = \text{vector representation of } \mathcal{U}_v(\mathfrak{sl}_2). \]

??: $V_v \to V_v$ should be non-trivial.

But V_v is irreducible for \mathcal{U}_v...?

Same issue...

Orbifold-philosophy. We need something half-way in between $C(v)$ and \mathcal{U}_v.

Daniel Tubbenhauer

Link invariants and $\mathbb{Z}/2\mathbb{Z}$-orbifolds
Reshetikhin–Turaev theory half-way in between

Reshetikhin–Turaev \(\sim 1991 \). Construct link and tangle invariants as functors

\[uRT : uTan \to \text{well-behaved target category} \]

Today: Target categories = \(\mathcal{R}ep(u_v(\mathfrak{sl}_2)) \) and friends.

Question. What could the \(\mathbb{Z}/2\mathbb{Z} \)-analog be?

\[\mathbb{C}(v) \]

\[\mathbb{C}(v) \]

??

??: \(V_v \to V_v \) should be non-trivial.

But \(V_v \) is irreducible for \(u_v \)...

\[V_v \otimes V_v \otimes V_v \otimes V_v \]

\[V_v \otimes V_v \otimes V_v \otimes V_v \]

\[\uparrow \text{id} \otimes \text{id} \otimes \text{id} \]

\[\text{id} \otimes \text{id} \otimes \text{ev}^* \]

\[\text{ev}^* \]

\[\mathbb{C}(v) \]
Reshetikhin–Turaev theory half-way in between

Reshetikhin–Turaev ~ 1991. Construct link and tangle invariants as functors

$$u\mathcal{RT} : u\mathcal{T}an \rightarrow \text{well-behaved target category}.$$ Today: Target categories $= \mathcal{R}ep(\mathcal{U}_v(sl_2))$ and friends.

Question. What could the $\mathbb{Z}/2\mathbb{Z}$-analog be?

$$\mathbb{C}(v)$$

$$V_v \otimes V_v \otimes V_v \otimes V_v$$

$$\uparrow \text{id} \otimes \mathcal{R} \otimes \text{id}$$

$$V_v \otimes V_v \otimes V_v \otimes V_v$$

$$\uparrow ?? \otimes \text{id} \otimes \text{id} \otimes \text{id}$$

$$V_v \otimes V_v \otimes V_v \otimes V_v$$

$$\uparrow \text{id} \otimes \text{id} \otimes \text{ev}^*$$

$$V_v \otimes V_v$$

$$\uparrow \text{ev}^*$$

$$\mathbb{C}(v)$$
Reshetikhin–Turaev theory half-way in between

Reshetikhin–Turaev ~ 1991. Construct link and tangle invariants as functors

$$u\mathcal{RT} : u\mathcal{T} an \rightarrow \text{well-behaved target category}.$$

Today: Target categories $= \mathcal{R} ep(\mathcal{U}_v(\mathfrak{sl}_2))$ and friends.

Question. What could the $\mathbb{Z}/2\mathbb{Z}$-analog be?

$\mathbb{C}(v)$

$\mathbb{V}_v \otimes \mathbb{V}_v \otimes \mathbb{V}_v \otimes \mathbb{V}_v$

$\uparrow \text{id} \otimes \text{R} \otimes \text{id}$

$\mathbb{V}_v \otimes \mathbb{V}_v \otimes \mathbb{V}_v \otimes \mathbb{V}_v$

$\uparrow \text{id} \otimes \text{R} \otimes \text{id}$

$\mathbb{V}_v \otimes \mathbb{V}_v \otimes \mathbb{V}_v \otimes \mathbb{V}_v$

$\uparrow ?? \otimes \text{id} \otimes \text{id} \otimes \text{id}$

$\mathbb{V}_v \otimes \mathbb{V}_v \otimes \mathbb{V}_v \otimes \mathbb{V}_v$

$\uparrow \text{id} \otimes \text{id} \otimes \text{ev}^*$

$\mathbb{V}_v \otimes \mathbb{V}_v$

$\uparrow \text{ev}^*$

$\mathbb{C}(v)$

??
Reshetikhin–Turaev theory half-way in between

Reshetikhin–Turaev ~ 1991. Construct link and tangle invariants as functors

$$uRT : uTan \to \text{well-behaved target category}.$$

Today: Target categories = $\mathcal{R}ep(\mathcal{U}_v(sl_2))$ and friends.

Question. What could the $\mathbb{Z}/2\mathbb{Z}$-analog be?

$$\mathbb{C}(v)$$

Same issue...

$$\mathbb{C}(v)$$

$$V_v \otimes V_v \otimes V_v \otimes V_v$$

$$\uparrow \quad ?? \otimes \text{id} \otimes \text{id} \otimes \text{id}$$

$$V_v \otimes V_v \otimes V_v$$

$$\uparrow \quad \text{id} \otimes R \otimes \text{id}$$

$$V_v \otimes V_v \otimes V_v \otimes V_v$$

$$\uparrow \quad \text{id} \otimes R \otimes \text{id}$$

$$V_v \otimes V_v \otimes V_v \otimes V_v$$

$$\uparrow \quad ?? \otimes \text{id} \otimes \text{id} \otimes \text{id}$$

$$V_v \otimes V_v \otimes V_v \otimes V_v$$

$$\uparrow \quad \text{id} \otimes \text{id} \otimes \text{ev}^*$$

$$V_v \otimes V_v$$

$$\uparrow \quad \text{ev}^*$$
Reshetikhin–Turaev theory half-way in between

Reshetikhin–Turaev ~ 1991. Construct link and tangle invariants as functors $u\mathcal{R}\mathcal{T} : u\mathcal{T}an \to$ well-behaved target category.

Today: Target categories $= \mathcal{R}ep(\mathcal{U}_v(sl_2))$ and friends.

Question. What could the $\mathbb{Z}/2\mathbb{Z}$-analog be?

$$C(v)$$

$$V_v \otimes V_v$$

$\uparrow \text{id} \otimes \text{id} \otimes \text{ev}$

$$V_v \otimes V_v \otimes V_v$$

$\uparrow \text{id} \otimes \text{id} \otimes \text{id}$

$$V_v \otimes V_v \otimes V_v \otimes V_v$$

$\uparrow \text{id} \otimes \text{id} \otimes \text{id}$

$$V_v \otimes V_v \otimes V_v \otimes V_v$$

$\uparrow \text{id} \otimes \text{id} \otimes \text{id}$

$$V_v \otimes V_v \otimes V_v \otimes V_v$$

$\uparrow \text{id} \otimes \text{id} \otimes \text{id}$

$$V_v \otimes V_v \otimes V_v \otimes V_v$$

$\uparrow \text{id} \otimes \text{id} \otimes \text{id}$

$$V_v \otimes V_v \otimes V_v \otimes V_v$$

$\uparrow \text{id} \otimes \text{id} \otimes \text{id}$

$$\mathbb{C}(v)$$
Reshetikhin–Turaev theory half-way in between

Reshetikhin–Turaev ~ 1991. Construct link and tangle invariants as functors

$$u\mathcal{R}\mathcal{T} : u\mathcal{T}an \to \text{well-behaved target category}.$$

Today: Target categories $= \mathcal{R}ep(\mathcal{U}_v(sl_2))$ and friends.

Question. What could the $\mathbb{Z}/2\mathbb{Z}$-analog be?

\[C(v) \quad \xrightarrow{ev} \quad V_v \otimes V_v \quad \xrightarrow{id \otimes id \otimes ev} \quad V_v \otimes V_v \otimes V_v \otimes V_v \quad \xrightarrow{id \otimes id \otimes id} \quad V_v \otimes V_v \otimes V_v \otimes V_v \quad \xrightarrow{id \otimes R \otimes id} \quad V_v \otimes V_v \otimes V_v \otimes V_v \quad \xrightarrow{id \otimes R \otimes id} \quad V_v \otimes V_v \otimes V_v \otimes V_v \quad \xrightarrow{?? \otimes id \otimes id \otimes id} \quad V_v \otimes V_v \otimes V_v \otimes V_v \quad \xrightarrow{id \otimes id \otimes ev^*} \quad V_v \otimes V_v \quad \xrightarrow{ev^*} \quad C(v) \]
Reshetikhin–Turaev theory half-way in between

Reshetikhin–Turaev ~ 1991. Construct link and tangle invariants as functors

$$uRT : u\mathcal{T}an \rightarrow \text{well-behaved target category}.$$

Today: Target categories $=$ $\mathcal{R}ep(\mathcal{U}_v(\mathfrak{sl}_2))$ and friends.

Question. What could the $\mathbb{Z}/2\mathbb{Z}$-analog be?

Orbifold-philosophy. We need something half-way in between $\mathbb{C}(v)$ and \mathcal{U}_v.

$$\mathbb{C}(v)$$

$$\uparrow$$

$$\text{ev}$$

$$V_v \otimes V_v$$

$$\uparrow$$

$$\text{id} \otimes \text{id} \otimes \text{ev}$$

$$V_v \otimes V_v \otimes V_v \otimes V_v$$

$$\uparrow$$

$$?? \otimes \text{id} \otimes \text{id} \otimes \text{id}$$

$$V_v \otimes V_v \otimes V_v \otimes V_v$$

$$\uparrow$$

$$\text{id} \otimes R \otimes \text{id}$$

$$V_v \otimes V_v \otimes V_v \otimes V_v$$

$$\uparrow$$

$$?? \otimes \text{id} \otimes \text{id} \otimes \text{id}$$

$$V_v \otimes V_v \otimes V_v \otimes V_v$$

$$\uparrow$$

$$\text{id} \otimes \text{id} \otimes \text{ev}^*$$

$$V_v \otimes V_v$$

$$\uparrow$$

$$\text{ev}^*$$

$$\mathbb{C}(v)$$
Half-way in between trivial $\subset \mathbb{U}_v \subset \mathbb{U}_v$ – part I

Kulish–Reshetikhin ~1981. \mathbb{U}_v is the associative, unital $\mathbb{C}(v)$-algebra generated by $E, F, K^{\pm 1}$ subject to the usual relations.

$V_v:
\begin{align*}
E v_+ &= 0, & F v_+ &= v_-, & K v_+ &= v v_+, \\
E v_- &= v_+, & F v_- &= 0, & K v_- &= v^{-1} v_-.
\end{align*}$

Define \mathbb{U}_v-intertwiners:

$\mathcal{C} : \mathbb{C}(v) \to V_v \otimes V_v, \quad 1 \mapsto v_- \otimes v_+ - v^{-1} v_+ \otimes v_-,$

$\mathcal{C} : V_v \otimes V_v \to \mathbb{C}(v), \quad \begin{cases} v_+ \otimes v_+ \mapsto 0, & v_+ \otimes v_- \mapsto 1, \\
v_- \otimes v_+ \mapsto -v, & v_- \otimes v_- \mapsto 0,\end{cases}$

$\mathcal{Y} : V_v \otimes V_v \to V_v \otimes V_v, \quad \mathcal{Y} = v | | + v^2 \mathcal{C}.$

Not really important...
Half-way in between trivial $\subset ?? \subset \mathcal{U}_v$ – part I

Kulish–Reshetikhin ~ 1981. \mathcal{U}_v is the associative, unital $\mathbb{C}(v)$-algebra generated by $E, F, K^{\pm 1}$ subject to the usual relations.

V_v:
- $E_v^+ = 0$, $F_v^+ = v^-$, $K_v^+ = v v^+$,
- $E_v^- = v^+$, $F_v^- = 0$, $K_v^- = v^{-1} v^{-}$.

Fact. \mathcal{U}_v is a Hopf algebra \Rightarrow We can tensor representations.

Define \mathcal{U}_v-intertwiners:

- $\mathcal{O}: \mathbb{C}(v) \rightarrow V_v \otimes V_v$, $\quad 1 \mapsto v^- \otimes v^+ - v^{-1} v^+ \otimes v^-,$
- $\mathcal{C}: V_v \otimes V_v \rightarrow \mathbb{C}(v)$,
 \[\begin{cases}
 v^+ \otimes v^+ & \mapsto 0, \\
 v^- \otimes v^+ & \mapsto -v, \\
 v^- \otimes v^- & \mapsto 0, \\
 v^+ \otimes v^- & \mapsto 1,
 \end{cases} \]
- $\mathcal{Y}: V_v \otimes V_v \rightarrow V_v \otimes V_v$, $\quad \mathcal{Y} = v|l| + v^2 \mathcal{O}.$
Half-way in between trivial $\subset \mathcal{U}_v - $ part I

Kulish–Reshetikhin ~ 1981. \mathcal{U}_v is the associative, unital $\mathbb{C}(v)$-algebra generated by $E, F, K^{\pm 1}$ subject to the usual relations.

\[V_v: \quad E v_+ = 0, \quad F v_+ = v_, \quad K v_+ = v v_+; \]

\[V_v: \quad E v_- = v_+, \quad F v_- = 0, \quad K v_- = v^{-1} v_. \]

Define \mathcal{U}_v-intertwiners:

\[\bigcirc: \mathbb{C}(v) \to V_v \otimes V_v, \quad 1 \mapsto v_+ \otimes v_- - v^{-1} v_+ \otimes v_-; \]

\[\bigcirc: V_v \otimes V_v \to \mathbb{C}(v), \quad \begin{cases} v_+ \otimes v_+ \mapsto 0, & v_+ \otimes v_- \mapsto 1, \\ v_- \otimes v_+ \mapsto -v, & v_- \otimes v_- \mapsto 0, \end{cases} \]

\[\chi: V_v \otimes V_v \to V_v \otimes V_v, \quad \chi = v_+ \bigcirc + v^2 \bigcirc. \]
Half-way in between trivial $\subset \mathbb{R} \subset \mathcal{U}_v$ – part I

Kulish–Reshetikhin ~ 1981. \mathcal{U}_v is the associative, unital $\mathbb{C}(v)$-algebra generated by $E, F, K^{\pm 1}$ subject to the usual relations.

$V_v :$

Define \mathcal{U}_v-intertwiners:

$\mathcal{C}(v) \rightarrow V_v \otimes V_v, \quad 1 \mapsto v \otimes v + v \otimes 1$.

Example. We can not see the cone strands.
Half-way in between trivial \(\subset \mathcal{U}_v \subset \mathcal{U}_v - \text{part I} \)

Kulish–Reshetikhin \(\sim 1981 \). \(\mathcal{U}_v \) is the associative, unital \(\mathbb{C}(v) \)-algebra generated by \(E, F, K^{\pm 1} \) subject to the usual relations.

\[
\begin{align*}
V_v: & \quad E_v + v = 0, \\
& \quad E_v - v = v + 1, \\
& \quad F_v + v = v - 1, \\
& \quad F_v - v = 0, \\
& \quad K_v + v = v v + 1, \\
& \quad K_v - v = v - 1 v - 1.
\end{align*}
\]

Define \(\mathcal{U}_v \)-intertwiners:

- \(\mathcal{U}_v \rightarrow V_v \otimes V_v, \quad 1 \mapsto v \}

Not really important...

Example. We can not see the cone strands.
Half-way in between trivial $\subset \mathcal{U}_v$ – part II

Let $c\mathcal{U}_v$ be the coideal subalgebra of \mathcal{U}_v generated by $B = v^{-1}EK^{-1} + F$.

$$V_v: Bv_+ = v_-, \quad Bv_- = v_+.$$

Define $c\mathcal{U}_v$-intertwiners:

$\dagger: V_v \to V_v$, \quad $v_+ \mapsto v_-, \quad v_- \mapsto v_+$,

$\Upsilon: \mathbb{C}(v) \to V_v \otimes V_v$, \quad $1 \mapsto v_+ \otimes v_+ - v^{-1}v_- \otimes v_-,$

$\Lambda: V_v \otimes V_v \to \mathbb{C}(v)$, \quad \begin{align*}
 v_+ \otimes v_+ & \mapsto -v, \quad v_+ \otimes v_- \mapsto 0, \\
 v_- \otimes v_+ & \mapsto 0, \quad v_- \otimes v_- \mapsto 1,
\end{align*}

$\Upsilon = \dagger = \Lambda$ and $\Upsilon = \mid = \Lambda$.

Aside. This drops out of a coideal version of Schur–Weyl duality.
Let $c U_v$ be the coideal subalgebra of U_v generated by $B = v^{-1}EK^{-1} + F$.

\[V_v : Bv_+ = v_-, \quad Bv_- = v_+ \]

Define $c U_v$-intertwiners:

- $\Upsilon : \mathbb{C}(v) \to V_v \otimes V_v$, $1 \mapsto v_+ \otimes v_+ - v^{-1}v_- \otimes v_-$,

- $\Lambda : V_v \otimes V_v \to \mathbb{C}(v)$, $\begin{cases} v_+ \otimes v_+ \mapsto -v, & v_+ \otimes v_- \mapsto 0, \\ v_- \otimes v_+ \mapsto 0, & v_- \otimes v_- \mapsto 1, \end{cases}$

\[\Upsilon = \downarrow = \downarrow \quad \text{and} \quad \Lambda = | = \uparrow. \]

Aside. This drops out of a coideal version of Schur–Weyl duality.
Half-way in between trivial $\subset \mathcal{U}_v - \text{part II}$

Let $c\mathcal{U}_v$ be the coideal subalgebra of \mathcal{U}_v generated by $B = v^{-1}EK^{-1} + F$.

\[V_v: Bv_+ = v_-, \quad Bv_- = v_+. \]

Define $c\mathcal{U}_v$-intertwiners:

\[\triangledown: V_v \to V_v, \quad v_+ \mapsto v_-, \quad v_- \mapsto v_+. \]

\[\triangledown: \mathbb{C}(v) \to V_v \otimes V_v, \quad 1 \mapsto v_+ \otimes v_+ - v_+ \otimes v_- - v_- \otimes v_-. \]

\[\triangledown: V_v \otimes V_v \to \mathbb{C}(v), \]

\[\left\{ \begin{array}{c}
 v_+ \otimes v_+ \mapsto -v, & v_+ \otimes v_- \mapsto 0, \\
 v_- \otimes v_+ \mapsto 0, & v_- \otimes v_- \mapsto 1,
\end{array} \right. \]

\[\triangledown = \triangledown = \triangledown \quad \text{and} \quad \triangledown = \triangledown = \triangledown. \]

Aside. This drops out of a coideal version of Schur–Weyl duality.
Half-way in between trivial ⊂ 𝑈_v ⊂ 𝑈_v − part II

Let $c\mathcal{U}_v$ be the coideal subalgebra of \mathcal{U}_v generated by $B = v^{-1}EK^{-1} + F$.

Example. We can see the cone strands.

Aside. This drops out of a coideal version of Schur–Weyl duality.
Half-way in between trivial $\subset \square \subset \mathcal{U}_v$ – part II

Let $c\mathcal{U}_v$ be the coideal subalgebra of \mathcal{U}_v generated by $B = v^{-1} E K^{-1} + F$.

Example. We can see the cone strands.

Aside. This drops out of a coideal version of Schur–Weyl duality.

We have now $\neq \neq \neq$.

Define $c\mathcal{U}_v$-inertwiners:

$$V_v \rightarrow V_v, \quad v \mapsto v - v, \quad v \mapsto v + v - v + B B$$

$$C(v) \rightarrow V_v \otimes V_v,$$

$$\{v \mapsto v + v - v + B B, 1 \mapsto v + v - v + B B\}$$

$$V_v \otimes V_v \rightarrow C(v),$$

$$\{v \mapsto v + v - v + B B, 1 \mapsto v + v - v + B B\}$$
Let $c\mathcal{U}_v$ be the coideal subalgebra of \mathcal{U}_v generated by $B = v^{-1}EK^{-1} + F$.

Define $c\mathcal{U}_v$.

But what is the replacement of $c\mathcal{U}_v$ outside of classical or affine classical type?

(Affine) ABCD are again very special.

Aside. This drops out of a coideal version of Schur–Weyl duality.
Let mArc be the monoidal category defined as follows.

Generators. Object generator $\{\circ\}$, morphism generators

![Diagram of cups and caps, m cups and caps, and markers]

Relations. “Coideal” relations:

![Diagram with relations and technicality]

A technicality: $q = -v$. \circ circle removal, m circle removals

marker removal, marker isotopies
Let \mathcal{Arc} be the monoidal category defined as follows.

Generators. Object generator $\{o\}$, morphism generators $o \circ o$, $o \circ o \circ \circ$, cups and caps $o \circ o$.

Relations. “Coideal” relations:
- $q + q^{-1} - 1 = 0$, circle removal,
- $q + q^{-1} = 0 = m$, circle removals,
- $q + q^{-1} = 0$ and marker isotopies.

Examples.
- $(q + q^{-1})^2 = (q + q^{-1})^2$,
- $0 = 0$,
- $= 0$ and $= 0$.

Marker removal,
- marker isotopies.
A polynomial invariant à la Jones & Kauffman

We define a monoidal functor $\langle _ \rangle_c : \mathcal{T}an \rightarrow \mathcal{A}rc$ as follows. On objects,

$$\langle + \rangle_c = \circ \quad , \quad \langle - \rangle_c = \circ \quad , \quad \langle c \rangle_c = \emptyset$$

and on morphisms by

$$\langle \quad \rangle_c = q^0 \text{reso.} \quad , \quad \langle \quad \rangle_c = q^{-1} \text{reso.}$$

The skein relations.

$$\langle \quad \rangle_c = q \quad , \quad \langle \quad \rangle_c = -q^2 \text{reso.} \quad , \quad \langle \quad \rangle_c = -q^{-2} \text{reso.} \quad + q^{-1}$$

and

$$\langle \quad \rangle_c = \quad \quad \text{and} \quad \langle \quad \rangle_c = \quad$$

adds a marker

$$\langle \quad \rangle_c = \quad \quad \text{and} \quad \langle \quad \rangle_c = \quad$$

does not add a marker

Theorem.

This is a $\mathbb{Z}/2\mathbb{Z}$-tangle invariant.

Proof.

Check relations, e.g.:

$$\langle \quad \rangle_c = \quad = \quad = \quad$$

Example.

Here the Hopf link.

Its cube:

$$q \quad , \quad -q^2 \quad , \quad -q^{-2} \quad + q^{-1}$$

Hence, they are different.

A homological invariant à la Khovanov & Bar-Natan. Works mutatis mutandis. Here is the picture:

cone crossings

usual crossings

$$\langle \quad \rangle_c = q^0 \quad , \quad \langle \quad \rangle_c = q^{-1}$$

$$\langle \quad \rangle_c = \quad \quad \text{and} \quad \langle \quad \rangle_c = \quad$$

adds a marker

$$\langle \quad \rangle_c = \quad \quad \text{and} \quad \langle \quad \rangle_c = \quad$$

does not add a marker
We define a monoidal functor \(\langle - \rangle_c : \mathcal{C}Tan \rightarrow \mathcal{M}Arc \) as follows. On objects,
\[
\langle + \rangle_c = \circ \quad , \quad \langle - \rangle_c = \circ \quad , \quad \langle c \rangle_c = \emptyset
\]
and on morphisms by
\[
\langle \ \rangle_c = q^{0\text{-reso.}} - q^{2\text{-reso.}} \quad , \quad \langle \ \rangle_c = -q^{-2\text{-reso.}} + q^{-1\text{-reso.}}
\]

The skein relations.

The \(\mathbb{Z}/2\mathbb{Z} \)-skein relations.

adds a marker

does not add a marker

A homological invariant à la Khovanov & Bar-Natan.

Works mutatis mutandis.

A homological invariant à la Khovanov & Rozansky.

Everything generalizes to higher ranks.

一名代数描述
A polynomial invariant à la Jones & Kauffman

We define a monoidal functor \(\langle - \rangle_c : c\mathcal{T}an \to m\mathcal{A}rc \) as follows. On objects,

\[
\langle + \rangle_c = o , \quad \langle - \rangle_c = o , \quad \langle c \rangle_c = \emptyset
\]

and on morphisms by

\[
\langle \begin{array}{c}
\text{usual crossings} \\
\text{cone crossings}
\end{array} \rangle_c = q + \text{resolvant terms} + q^{-1}
\]

Theorem. This is a \(\mathbb{Z}/2\mathbb{Z} \)-tangle invariant.

Proof. Check relations, e.g.:

\[
\langle \text{usual crossings} \rangle_c = \text{resolvant terms} = \langle \text{cone crossings} \rangle_c \\
\text{and}
\]

does not add a marker.
A polynomial invariant à la Jones & Kauffman

We define a monoidal functor \(\langle _ \rangle_c : \mathcal{T}an \to \mathcal{M}Arc \) as follows. On objects,

\[
\langle + \rangle_c = \circ , \quad \langle - \rangle_c = \circ , \quad \langle c \rangle_c = \emptyset
\]

Example. Here the Hopf link.

\[
\langle h \rangle_c = q^2(q + q^{-1})^2 - 2q^3(q + q^{-1}) + q^4(q + q^{-1})^2
\]

does not add a marker
A polynomial invariant à la Jones & Kauffman

We define a monoidal functor \(\langle - \rangle_c : cTan \to mArc \) as follows. On objects,

\[
\langle + \rangle_c = \emptyset, \quad \langle - \rangle_c = \emptyset, \quad \langle c \rangle_c = \emptyset
\]

Example. Here the essential Hopf link.

\[
\langle eh \rangle_c = q^2(q + q^{-1})^2 - 2q^3(q + q^{-1}) + 0
\]

does not add a marker
A polynomial invariant à la Jones & Kauffman

We define a monoidal functor $\langle - \rangle_c : \mathcal{C}Tan \to \mathcal{M}Arc$ as follows. On objects,

$\langle + \rangle_c = o, \quad \langle - \rangle_c = o, \quad \langle c \rangle_c = \emptyset$

Example. Here the essential Hopf link.

Example. Here the Hopf link.

Hence, they are different.

$\langle e h \rangle_c = q^2(q + q^{-1})^2 - 2q^3(q + q^{-1}) + 0$

does not add a marker
We define a monoidal functor $\langle - \rangle_c : c\mathcal{T}an \to m\mathcal{A}rc$ as follows. On objects,

A homological invariant à la Khovanov & Bar-Natan.
Works mutatis mutandis. Here is the picture:

\[
m\mathcal{Z} \left(\begin{array}{c} \text{cone crossings} \\ \text{usual crossings} \end{array} \right) = \begin{cases} \mathbb{Z}[X]/(X^2), & \text{if } m \text{ is even}, \\ 0, & \text{if } m \text{ is odd}, \end{cases}
\]

does not add a marker
A polynomial invariant à la Jones & Kauffman

We define a monoidal functor \(\langle - \rangle_c : \mathcal{C} \text{Tan} \to \mathcal{M} \text{Arc} \) as follows. On objects,

\[
\langle + \rangle_c = o, \quad \langle - \rangle_c = o, \quad \langle C \rangle_c = \emptyset
\]

and on morphisms by

\[
\langle \rangle_c = q_0\text{-reso.} - q_2 q_1, \quad \langle h \rangle_c = - q_{-2} q_{-1}, \quad \langle h \rangle_c = \text{adds a marker,} \quad \langle \rangle_c = \text{does not add a marker}
\]

The skein relations.

The \(\mathbb{Z}/2\mathbb{Z} \)-skein relations.

Theorem. This is a \(\mathbb{Z}/2\mathbb{Z} \)-tangle invariant.

Proof. Check relations, e.g.:

\[
\langle h \rangle_c = \text{and } \langle \rangle_c
\]

Example. Here the Hopf link. Its \(\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \) cube

\[
\begin{align*}
q_3 & 10 \\
q_2 & 00 \\
q_1 & 11 \\
q_0 & \quad (q_0 + q_0 - 1)^2 \\
q_2 & 2 \quad q_3 \quad q_4 \quad (q_0 + q_0 - 1)^2
\end{align*}
\]

\[
\langle h \rangle_c = - + \quad \langle \rangle_c
\]

Example. Here the essential Hopf link. Its \(\rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \) cube

\[
\begin{align*}
q_3 & 10 \\
q_2 & 00 \\
q_1 & 11 \\
q_0 & \quad (q_0 + q_0 - 1)^2 \\
q_2 & 2 \quad q_3 \quad q_4 \quad (q_0 + q_0 - 1)^2
\end{align*}
\]

\[
\langle h \rangle_c = - + \quad \langle \rangle_c
\]

Hence, they are different.

A homological invariant à la Khovanov & Bar-Natan.

Works mutatis mutandis. Here is the picture:

In case of type ABCD this comes from a categorification of the Schur–Weyl-coideal duality. (“Web and arc algebras of type D”.)

\[
\mathcal{M} \mathcal{Z} \begin{pmatrix} m \\ m \end{pmatrix} = \begin{cases} \mathbb{Z}[X]/(X^2), & \text{if } m \text{ is even}, \\ 0, & \text{if } m \text{ is odd}, \end{cases}
\]

does not add a marker
We define a monoidal functor \(\langle - \rangle_c : \mathcal{C}Tan \to \mathcal{M}Arc \) as follows. On objects,

\[
\langle + \rangle_c = \circ, \quad \langle - \rangle_c = \circ, \quad \langle c \rangle_c = \emptyset
\]

and on morphisms by

\[
\begin{align*}
\langle \begin{array}{c}
\text{usual crossings} \\
\end{array} \rangle_c &= q \begin{array}{c} \text{cone crossings} \end{array} - q^2 \begin{array}{c} \text{cone crossings} \end{array}, \\
\langle \begin{array}{c}
\text{usual crossings} \\
\end{array} \rangle_c &= -q^{-2} \begin{array}{c} \text{cone crossings} \end{array} + q^{-1} \begin{array}{c} \text{cone crossings} \end{array}
\end{align*}
\]

A homological invariant à la Khovanov & Rozansky.
Everything generalizes to higher ranks.
(“Webs”, “foams”, etc.)
Tangle diagrams with cone strands

Let \mathcal{C} be the monoidal category defined as follows.

Generators. Object generators $\{x, y\}$ and the $\mathbb{Z}/2\mathbb{Z}$ relations:

$$x \sim y \quad \text{and} \quad x \sim x^{-1}$$

Relations. To \mathcal{C} add the $\mathbb{Z}/2\mathbb{Z}$ relations:

$$x \sim y \quad \text{and} \quad x \sim x^{-1}$$

I follow hyperplanes

$W_m = \langle x, y \rangle$ acts faithfully on \mathbb{R}^2 by reflecting in hyperplanes (for each reflection):

$$W_m = \langle x, y \rangle$$

Complicating the action: $\mathbb{R}^2 \rightarrow \mathbb{C}$, $\mathcal{H}_m \rightarrow \mathcal{H}_m$, $\mathcal{H}_m \rightarrow \mathcal{H}_m$. Then:

$$\mathcal{H}_m(W_m) \cong \mathcal{H}_m = (k, k \mid A A A = A)$$

Configuration spaces

Artin -- 1925. There is a topological model of \mathcal{H}_m via configuration spaces.

Example. Take $\text{Conf}_m = \{\mathbb{R}^2, \text{fat diagram}\}$. Then $\tau_x(\text{Conf}_m) \cong \mathcal{H}_m$.

Philosophy. Having a configuration space is the same as having braid diagrams:

$$\mathcal{H}_m \cong \text{Braids}$$

Crucial. Note that -- by explicitly calculating the configuration space -- one can directly check that:

"Hyperplane picture equals configuration space picture."

A polynomial invariant à la Jones & Kauffman

We define a monoidal functor $(-)_m : \mathcal{C} \rightarrow \text{Vec}$ as follows. On objects,

$$x \mapsto x_m \quad \text{and} \quad y \mapsto y_m$$

Example. Here the essential Hopf tie:

$$h \circ \alpha$$

A version of Schur's remarkable duality.

$$\mathcal{U}(\mathcal{C}) \otimes \mathcal{U}(\mathcal{C}) \cong \mathcal{U}(\mathcal{C})$$

Ehrig-Stroppel, Bau-Wang -- 2013. The actions of $\mathcal{U}(\mathcal{C})$ and $\mathcal{U}(\mathcal{C})$ on \mathbb{R}^2 commute and generate each other's centralizer.

A polynomial invariant à la Jones & Kauffman

We define a monoidal functor $(-)_m : \mathcal{C} \rightarrow \text{Vec}$ as follows. On objects, and on:

$$m \mapsto \mathcal{U}(\mathcal{C})$$

A homological invariant à la Khovanov & Bar-Natan.

Works mutatis mutandis. Here is the picture:

$$\mathcal{U}(\mathcal{C})$$

There is still much to do...
Configuration spaces

Artin – 1925. There is a topological model of TX via configuration spaces.

Example. Take $\text{Conf}_n = (\mathbb{R}^3)^n \setminus \text{fat diagonal}$, then $\tau_0(\text{Conf}_n) = TX$.

Philosophy. Having a configuration space is the same as having braid diagrams:

![Braid diagrams](image)

A polynomial invariant à la Jones & Kauffman

We define a monoidal functor $(\cdot)_! : \mathcal{O} \to \operatorname{Ob} \mathsf{Gr}$ as follows. On objects,

$$\mathcal{O}(c) \mapsto \bigoplus_n c^n \otimes \mathcal{O}(c^n)$$

Example. Here the essential Hopf map:

![Essential Hopf map](image)

A version of Schur’s remarkable duality.

$$\mathcal{O}(c) \otimes \mathcal{O}(d) \ni x \otimes y \mapsto (x \otimes y)(c)$$

Ehrig–Stroppel, Bau–Wang – 2013. The actions of $\mathcal{O}(c^n)$ and $\mathcal{O}(d^n)$ commute and generate each other’s centralizer.

A homological invariant à la Khovanov & Bar-Natan.

Works mutates mutations. Here is the picture:

![Mutation](image)

I follow hyperplanes

$W_0 = (x/1)$ acts faithfully on \mathbb{R}^2 by reflecting in hyperplanes (for each reflection):

W_0 acts freely on $\mathbb{R}^2 \setminus \text{hyperplanes}$. Set $\mathbb{R}_0 = \mathbb{R}_0 / W_0$:

Compositifying the action: $\mathbb{R}^2 \to \mathbb{C}^2$, $\mathbb{R}_0 \to \mathbb{C}^2$, $\mathbb{R}_0 \to \mathbb{C}^2$. Then:

$$n_1(B^3_2) \cong \mathbb{R}_0 = (k,k \mid \text{AAA} = \text{AAA})$$

Half-way in between trivial $\subset \mathbb{F}_v$ – part II

Let \mathbb{F}_v be the \mathbb{C}-subalgebra of \mathcal{O}_v generated by $v = e^{i \pi/2} - i$.

Example. We can see the cone strands.

![Cone strands](image)

Aside. This drops out of a new version of Schur–Weyl duality.

A polynomial invariant à la Jones & Kauffman

We define a monoidal functor $(\cdot)_! : \mathcal{O} \to \operatorname{Ob} \mathsf{Gr}$ as follows. On objects, and on:

![Monoidal functor](image)

Thanks for your attention!
These guys and friends come for free.

$\in Hom_{\mathcal{T}an}(c, -c)$
These guys and friends come for free.

I see them as diagrams – no topological interpretation intended at the moment.
Satake ∼1956 ("V-manifold"), Thurston ∼1978, Haefliger ∼1990 ("orbihedron"), etc. A triple $\text{Orb} = (X_{\text{orb}}, \bigcup_i U_i, G_i)$ of a Hausdorff space X_{orb}, a covering $\bigcup_i U_i$ of it (closed under finite intersections) and a collection of finite groups G_i is called an orbifold (of dimension m) if for each U_i there exists a open subset $V_i \subset \mathbb{R}^m$ carrying an action of G_i, and some compatibility conditions.

Fact. A two-dimensional ("smooth") orbifold is locally modeled on:

- Cone points \leftrightarrow rotation action of $\mathbb{Z}/l\mathbb{Z}$.
- Reflector corners \leftrightarrow reflection action of the dihedral group.
- Mirror points \leftrightarrow reflection action of $\mathbb{Z}/2\mathbb{Z}$.
Satake ~1956 ("V-manifold"), Thurston ~1978, Haefliger ~1990 ("orbihedron"), etc.

A triple $O_{rb} = (X_{rb}, \bigcup_i U_i, G_i)$ of a Hausdorff space X_{rb}, a covering $\bigcup_i U_i$ of it (closed under finite intersections) and a collection of finite groups G_i is called an orbifold (of dimension m) if for each U_i there exists an open subset $V_i \subset \mathbb{R}^m$ carrying an action of G_i, and some compatibility conditions.

Fact. A two-dimensional ("smooth") orbifold is locally modeled on:

- Cone points \leftrightarrow rotation action of $\mathbb{Z}/l\mathbb{Z}$.
- Reflector corners \leftrightarrow reflection action of the dihedral group.
- Mirror points \leftrightarrow reflection action of $\mathbb{Z}/2\mathbb{Z}$.

Topologically an orbifold is sometimes the same as its underlying space. So all notions concerning orbifolds have to take this into account.
Satake ∼1956 ("V-manifold"), Thurston ∼1978, Haefliger ∼1990
("orbihedron").

A triple \(O = (X_{orb}, \bigcup_i U_i, G_i) \) of a Hausdorff space \(X_{orb} \), a covering \(\bigcup_i U_i \) of it (closed under finite intersections) and a collection of finite groups \(G_i \) is called an orbifold (of dimension \(m \)) if for each \(U_i \) there exists an open subset \(V_i \subset \mathbb{R}^m \) carrying an action of \(G_i \), and some compatibility conditions.

Fact. A two-dimensional ("smooth") orbifold is locally modeled on: \(\exists \) Cone points \(\leftrightarrow \) rotation action of \(\mathbb{Z}/l\mathbb{Z} \). \(\exists \) Reflector corners \(\leftrightarrow \) reflection action of the dihedral group. \(\exists \) Mirror points \(\leftrightarrow \) reflection action of \(\mathbb{Z}/2\mathbb{Z} \).

Topologically an orbifold is sometimes the same as its underlying space. So all notions concerning orbifolds have to take this into account. Below the following of a two-dimensional orbifold (with \(\mathbb{Z}/3\mathbb{Z} \) and \(\mathbb{Z}/2\mathbb{Z} \) actions).

Quote by Thurston about the name orbifold:

“This terminology should not be blamed on me. It was obtained by a democratic process in my course of 1976-77. An orbifold is something with many folds; unfortunately, the word ‘manifold’ already has a different definition. I tried ‘foldamani’, which was quickly displaced by the suggestion of ‘manifolded’. After two months of patiently saying ‘no, not a manifold, a manifold dead,’ we held a vote, and ‘orbifold’ won.”
Satake ∼1956 ("V-manifold"), Thurston ∼1978, Haefliger ∼1990 ("orbihedron"), etc. A triple $\text{O}rb = (X_{\text{orb}}, \mathbin{\cup_i\mathcal{U}_i}, G_i)$ of a Hausdorff space X_{orb}, a covering $\mathbin{\cup_i\mathcal{U}_i}$ of it (closed under finite intersections) and a collection of finite groups G_i is called an orbifold (of dimension m) if for each \mathcal{U}_i there exists an open subset $V_i \subset \mathbb{R}^m$ carrying an action of G_i, and some compatibility conditions.

Fact. A two-dimensional ("smooth") orbifold is locally modeled on:

- Cone points \rightsquigarrow rotation action of $\mathbb{Z}/l\mathbb{Z}$.
- Reflector corners \rightsquigarrow reflection action of the dihedral group.
- Mirror points \rightsquigarrow reflection action of $\mathbb{Z}/2\mathbb{Z}$.

Not super important. Only one thing to stress: Topologically an orbifold is sometimes the same as its underlying space. So all notions concerning orbifolds have to take this into account.

Quote by Thurston about the name orbifold:

"This terminology should not be blamed on me. It was obtained by a democratic process in my course of 1976-77. An orbifold is something with many folds; unfortunately, the word 'manifold' already has a different definition. I tried 'foldamani', which was quickly displaced by the suggestion of 'manifolded'. After two months of patiently saying 'no, not a manifold, a manifoldead', we held a vote, and 'orbifold' won."

Examples. $A \mathbb{Z}/2\mathbb{Z}$-orbifold tangle $= A \mathbb{Z}/3\mathbb{Z}$-orbifold tangle etc. "Puncture = lim$_{l \to \infty} l$-cone point".
Satake ~1956 ("V-manifold"), Thurston ~1978, Haefliger ~1990 ("orbihedron"), etc.

A triple \(\mathcal{O}rb = (X_{\mathcal{O}rb}, \bigcup_i U_i, G_i) \) of a Hausdorff space \(X_{\mathcal{O}rb} \), a covering \(\bigcup_i U_i \) of it (closed under finite intersections) and a collection of finite groups \(G_i \) is called an orbifold (of dimension \(m \)) if for each \(U_i \) there exists an open subset \(V_i \subset \mathbb{R}^m \) carrying an action of \(G_i \), and some compatibility conditions.

Fact. A two-dimensional ("smooth") orbifold is locally modeled on:

- **Cone points** \(\cong \) rotation action of \(\mathbb{Z}/l\mathbb{Z} \).
- **Reflector corners** \(\leftrightarrow \) reflection action of the dihedral group.
- **Mirror points** \(\leftrightarrow \) reflection action of \(\mathbb{Z}/2\mathbb{Z} \).

"Puncture = \(\lim_{l \to \infty} l \)-cone point".

Examples.

\begin{align*}
\text{A } \mathbb{Z}/2\mathbb{Z}\text{-orbifold tangle} & \quad \text{A } \mathbb{Z}/3\mathbb{Z}\text{-orbifold tangle} \\
\Rightarrow & \quad \Rightarrow \\
\text{ Examples. } & \quad \\
\text{ "Puncture = } \lim_{l \to \infty} l \text{-cone point". } & \\
\end{align*}
Figure: The Coxeter graphs of finite type.

Example. The type A family is given by the symmetric groups using the simple transpositions as generators.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)
Example. The type A family is given by the symmetric groups using the simple transpositions as generators.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)
Example. The type A family is given by the symmetric groups using the simple transpositions as generators.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)
Example. The type A family is given by the symmetric groups using the simple transpositions. I want to answer ??? in this case, and partially in general.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)
Figure: The Coxeter graphs of affine type.

Example. The type \tilde{A}_n corresponds to the affine Weyl group for \mathfrak{sl}_n.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)
Hyperplane Equations

- **A₂**
 - Positive root: \(\alpha_1 = (1, -1, 0) \), \(\alpha_2 = (0, 1, -1) \), \(\alpha_1 + \alpha_2 = (1, 0, -1) \)
 - Reflection action:
 - \(x_1 \leftrightarrow x_2 \)
 - \(x_2 \leftrightarrow x_3 \)
 - \(x_1 \leftrightarrow x_3 \)
 - \(\perp \)-hyperplane:
 - \(\{ (x, x, 0) \} \)
 - \(\{ (0, y, y) \} \)
 - \(\{ (z, 0, z) \} \)

Hyperplane equations: \(\{(x, y, z) \in (\mathbb{R}^2)^3 | x = y \text{ or } y = z \text{ or } x = z \} \)

This is gl-notation.
positive root	$\alpha_1 = (1, -1, 0)$	$\alpha_2 = (0, 1, -1)$	$\alpha_1 + \alpha_2 = (1, 0, -1)$
reflection action	$x_1 \leftrightarrow x_2$	$x_2 \leftrightarrow x_3$	$x_1 \leftrightarrow x_3$
\perp-hyperplane	$\{(x, x, 0)\}$	$\{(0, y, y)\}$	$\{(z, 0, z)\}$

Hyperplane equations: $\{(x, y, z) \in (\mathbb{R}^2)^3 \mid x = y \text{ or } y = z \text{ or } x = z\}$

Observe that this matches the diagonal of the configuration space picture.
<table>
<thead>
<tr>
<th>positive root</th>
<th>$\alpha_1 = (1, -1, 0)$</th>
<th>$\alpha_2 = (0, 1, -1)$</th>
<th>$\alpha_1 + \alpha_2 = (1, 0, -1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>reflection action</td>
<td>$x_1 \leftrightarrow x_2$</td>
<td>$x_2 \leftrightarrow x_3$</td>
<td>$x_1 \leftrightarrow x_3$</td>
</tr>
<tr>
<td>\perp-hyperplane</td>
<td>${(x, x, 0)}$</td>
<td>${(0, y, y)}$</td>
<td>${(z, 0, z)}$</td>
</tr>
</tbody>
</table>

Hyperplane equations: $\{(x, y, z) \in (\mathbb{R}^2)^3 \mid x = y$ or $y = z$ or $x = z\}$

<table>
<thead>
<tr>
<th>positive root</th>
<th>$\alpha'_1 = (1, 1, 0)$</th>
<th>$\alpha_1 = (1, -1, 0)$</th>
<th>more “type A-like”</th>
</tr>
</thead>
<tbody>
<tr>
<td>reflection action</td>
<td>$x'_1, x_1 \leftrightarrow -x'_1, -x_1$</td>
<td>$x_1 \leftrightarrow x_2$</td>
<td>more “type A-like”</td>
</tr>
<tr>
<td>\perp-hyperplane</td>
<td>${(x, -x, 0, 0)}$</td>
<td>${(x, x, 0, 0)}$</td>
<td>more “type A-like”</td>
</tr>
</tbody>
</table>

Hyperplane equations: $\{(x, y, z, w) \in \mathbb{C}^4 \mid x = \pm y$ etc.$\}$
Positive root	$\alpha_1 = (1, -1, 0)$	$\alpha_2 = (0, 1, -1)$	$\alpha_1 + \alpha_2 = (1, 0, -1)$
Reflection action	$x_1 \leftrightarrow x_2$	$x_2 \leftrightarrow x_3$	$x_1 \leftrightarrow x_3$
\perp-Hyperplane	$\{(x, x, 0)\}$	$\{(0, y, y)\}$	$\{(z, 0, z)\}$

Hyperplane equations: $\{(x, y, z) \in (\mathbb{R}^2)^3 \mid x = y \text{ or } y = z \text{ or } x = z\}$

Observe that this matches the diagonal of the configuration space picture up to a 2-fold covering $(x, y, z, w) \mapsto (x^2, y^2, z^2, w^2)$.

Positive root	$\alpha'_1 = (1, 1, 0)$	$\alpha_1 = (1, -1, 0)$	more “type A-like”
Reflection action	$x'_1, x_1 \leftrightarrow -x'_1, -x_1$	$x_1 \leftrightarrow x_2$	more “type A-like”
\perp-Hyperplane	$\{(x, -x, 0, 0)\}$	$\{(x, x, 0, 0)\}$	more “type A-like”

Hyperplane equations: $\{(x, y, z, w) \in \mathbb{C}^4 \mid x = \pm y \text{ etc.}\}$
<table>
<thead>
<tr>
<th>(\alpha_1)</th>
<th>(\alpha_2)</th>
<th>(\alpha_1 + \alpha_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1, -1, 0))</td>
<td>((0, 1, -1))</td>
<td>((1, 0, -1))</td>
</tr>
</tbody>
</table>

Reflection Action

- \(x_1 \leftrightarrow x_2\)
- \(x_2 \leftrightarrow x_3\)
- \(x_1 \leftrightarrow x_3\)

\(\perp\)-hyperplane

- \(\{(x, x, 0)\}\)
- \(\{(0, y, y)\}\)
- \(\{(z, 0, z)\}\)

Hyperplane equations: \(\{(x, y, z) \in (\mathbb{R}^2)^3 \mid x = y \text{ or } y = z \text{ or } x = z\}\)

Similarly in (affine) types ABCD.

<table>
<thead>
<tr>
<th>(\alpha_1')</th>
<th>(\alpha_1)</th>
<th>more “type A-like”</th>
</tr>
</thead>
<tbody>
<tr>
<td>((1, 1, 0))</td>
<td>((1, -1, 0))</td>
<td>more “type A-like”</td>
</tr>
</tbody>
</table>

Reflection Action

- \(x_1', x_1 \leftrightarrow -x_1', -x_1\)
- \(x_1 \leftrightarrow x_2\)

\(\perp\)-hyperplane

- \(\{(x, -x, 0, 0)\}\)
- \(\{(x, x, 0, 0)\}\)

Hyperplane equations: \(\{(x, y, z, w) \in \mathbb{C}^4 \mid x = \pm y \text{ etc.}\}\)
Noumi–Sugitani \(\sim 1994\), Letzter \(\sim 1999\). Quantum groups have few Hopf subalgebras, but plenty of coideal subalgebras.

\(c\mathcal{U}_v\) is not a Hopf algebra, but rather a right coideal (subalgebra) of \(\mathcal{U}_v\):

\[
\Delta(B) = B \otimes K^{-1} + 1 \otimes B \in c\mathcal{U}_v \otimes \mathcal{U}_v,
\]

which gives \(\text{Rep}(c\mathcal{U}_v)\) the structure of a right \(\text{Rep}(\mathcal{U}_v)\)-category \(\Rightarrow\) right handedness of diagrams, e.g.:

\begin{align*}
\text{Ok from this picture} & \quad \text{Not ok from this picture}
\end{align*}
\textbf{Noumi–Sugitani} \sim 1994, \textbf{Letzter} \sim 1999. Quantum groups have few Hopf subalgebras, but plenty of coideal subalgebras.

\(\mathcal{U}_v \) is not a Hopf algebra, but rather a right coideal (subalgebra) of \(\mathcal{U}_v \):

\textbf{Example.} The vector representations of \(\mathfrak{gl}_n \), \(\mathfrak{so}_n \) and \(\mathfrak{sp}_n \) all agree, and indeed \(\mathfrak{so}_n \hookrightarrow \mathfrak{gl}_n \) and \(\mathfrak{sp}_n \hookrightarrow \mathfrak{gl}_n \).

But the quantum vector representations do not agree, i.e.
\[\mathcal{U}_v(\mathfrak{so}_n) \not\hookrightarrow \mathcal{U}_v(\mathfrak{gl}_n) \text{ and } \mathcal{U}_v(\mathfrak{sp}_n) \not\hookrightarrow \mathcal{U}_v(\mathfrak{gl}_n). \]

This is bad. Idea: Invent new quantizations such that \(\mathcal{U}_v'(\mathfrak{so}_n) \hookrightarrow \mathcal{U}_v(\mathfrak{gl}_n) \) and \(\mathcal{U}_v'(\mathfrak{sp}_n) \hookrightarrow \mathcal{U}_v(\mathfrak{gl}_n) \).

\[\xrightarrow{\text{Ok from this picture}} \quad \xrightarrow{\text{Not ok from this picture}} \]
Noumi–Sugitani \(\sim 1994\), Letzter \(\sim 1999\). Quantum groups have few Hopf subalgebras, but plenty of coideal subalgebras.

\(\mathfrak{c}U_v\) is not a Hopf algebra, but rather a right coideal (subalgebra) of \(\mathfrak{c}U_v\):

Example. The vector representations of \(\mathfrak{gl}_n\), \(\mathfrak{so}_n\) and \(\mathfrak{sp}_n\) all agree, and indeed \(\mathfrak{so}_n \hookrightarrow \mathfrak{gl}_n\) and \(\mathfrak{sp}_n \hookrightarrow \mathfrak{gl}_n\).

But the quantum vector representations do not agree, i.e.

\[\mathfrak{c}U_v(\mathfrak{so}_n) \nrightarrow \mathfrak{c}U_v(\mathfrak{gl}_n)\] and \[\mathfrak{c}U_v(\mathfrak{sp}_n) \nrightarrow \mathfrak{c}U_v(\mathfrak{gl}_n)\].

This is bad. Idea: Invent new quantizations such that

\[\mathfrak{c}U'_v(\mathfrak{so}_n) \hookrightarrow \mathfrak{c}U_v(\mathfrak{gl}_n)\] and \[\mathfrak{c}U'_v(\mathfrak{sp}_n) \hookrightarrow \mathfrak{c}U_v(\mathfrak{gl}_n)\].

Observation. This happens repeatedly.
Noumi–Sugitani \~1994, Letzter \~1999. Quantum groups have few Hopf subalgebras, but plenty of coideal subalgebras.

\(c \mathcal{U}_v \) is not a Hopf algebra, but rather a right coideal (subalgebra) of \(\mathcal{U}_v \):

\[
\Delta(B) = B \otimes K^{-1} + 1 \otimes B \in c \mathcal{U}_v \otimes \mathcal{U}_v,
\]

which gives

\[
\text{This happens really often. In our case we have basically right handedness on}
\]

\[
\mathfrak{gl}_1 \hookrightarrow \mathfrak{sl}_2, \quad (t) \mapsto \begin{pmatrix} 0 & t \\ t & 0 \end{pmatrix}
\]

which does not quantize properly...

\textbf{Observation.} This happens repeatedly.

Ok from this picture

Not ok from this picture
A version of Schur’s remarkable duality.

Plain old \mathfrak{sl}_2: Acts by matrices.
The symmetric group: Acts by permutation.

$\mathcal{U}_1(\mathfrak{sl}_2) \circ \underbrace{V_1 \otimes \cdots \otimes V_1}_d \circ \mathcal{H}_1(A)$

Schur ~ 1901. The natural actions of $\mathcal{U}_1(\mathfrak{sl}_2)$ and $\mathcal{H}_1(A)$ on $V_1^\otimes d = (\mathbb{C}^2)^\otimes d$ commute and generate each other’s centralizer.
A version of Schur’s remarkable duality.

\[\mathcal{U}_1(\mathfrak{sl}_2) \curvearrowright V_1 \otimes \cdots \otimes V_1 \curvearrowright \mathcal{H}_1(A) \]

\[\parallel \]

\[V_1 \otimes \cdots \otimes V_1 \]

\(d \) times
A version of Schur's remarkable duality.

\[\mathcal{U}_1(\mathfrak{sl}_2) \circ \bigotimes_{d \text{ times}} V_1 \circ \mathcal{H}_1(A) \]

\[\bigcap \bigotimes_{d \text{ times}} V_1 \quad \mathcal{H}_1(D) \times \mathbb{Z}/2\mathbb{Z} \]

Ignore the component group \(\mathbb{Z}/2\mathbb{Z} \).
A version of Schur’s remarkable duality.

\[\mathcal{U}_1(\mathfrak{sl}_2) \cap V_1 \otimes \cdots \otimes V_1 \cap \mathcal{H}_1(A) \]

\[\mathcal{H}_1(D) \times \mathbb{Z}/2\mathbb{Z} \]

\[V_1 \otimes \cdots \otimes V_1 \cap \mathcal{H}_1(D) \times \mathbb{Z}/2\mathbb{Z} \]

\[d \text{ times} \]

Acts by signed permutations.
A version of Schur's remarkable duality.

\[\mathcal{U}_1(\mathfrak{sl}_2) \Join V_1 \otimes \cdots \otimes V_1 \Join \mathcal{H}_1(A) \]

\[\mathcal{U}_1(\mathfrak{gl}_1) \Join V_1 \otimes \cdots \otimes V_1 \Join \mathcal{H}_1(D) \rtimes \mathbb{Z}/2\mathbb{Z} \]

\[d \text{ times} \]

\[\mathcal{U}_1(\mathfrak{gl}_1) \Join V_1 \otimes \cdots \otimes V_1 \Join \mathcal{H}_1(D) \rtimes \mathbb{Z}/2\mathbb{Z} \]
A version of Schur’s remarkable duality.

\[\mathcal{U}_1(\mathfrak{sl}_2) \supset V_1 \otimes \cdots \otimes V_1 \supset \mathcal{H}_1(\mathfrak{A}) \]

\[\mathcal{U}_1(\mathfrak{gl}_1) \supset V_1 \otimes \cdots \otimes V_1 \supset \mathcal{H}_1(\mathfrak{D}) \rtimes \mathbb{Z}/2\mathbb{Z} \]

The antidiagonal embedding: \(\mathfrak{gl}_1 \hookrightarrow \mathfrak{sl}_2, \ (t) \mapsto \begin{pmatrix} 0 & t \\ t & 0 \end{pmatrix} \)

Acts by restriction.

Regev \sim 1983. The actions of \(\mathcal{U}_1(\mathfrak{gl}_1) \) and \(\mathcal{H}_1(\mathfrak{D}) \rtimes \mathbb{Z}/2\mathbb{Z} \) on \(V_1 \otimes^d \) commute and generate each other’s centralizer.
A version of Schur’s remarkable duality.

\[\mathcal{U}_v(\mathfrak{sl}_2) \circ V_v \otimes \cdots \otimes V_v \circ \mathcal{H}_v(A) \]

Jimbo \sim 1985. The natural actions of \(\mathcal{U}_v(\mathfrak{sl}_2) \) and \(\mathcal{H}_v(A) \) on \(V_v^\otimes d = (\mathbb{C}(v)^2)^\otimes d \) commute and generate each other’s centralizer.
A version of Schur’s remarkable duality.

\[\mathcal{U}_v(\mathfrak{sl}_2) \circ V_v \otimes \cdots \otimes V_v \circ \mathcal{H}_v(A) \]

\[\| \]

\[V_v \otimes \cdots \otimes V_v \]

\[d \text{ times} \]
A version of Schur’s remarkable duality.

\[\mathcal{U}_v(\mathfrak{sl}_2) \otimes V_v \otimes \cdots \otimes V_v \subset \mathcal{H}_v(A) \]

\[\mathcal{U}_v(\mathfrak{sl}_2) \otimes V_v \otimes \cdots \otimes V_v \subset \mathcal{H}_v(D) \rtimes \mathbb{Z}/2\mathbb{Z} \]

\[d \text{ times} \]
A version of Schur’s remarkable duality.

\[\mathcal{U}_v(\mathfrak{sl}_2) \supseteq V_v \otimes \cdots \otimes V_v \supseteq \mathcal{H}_v(A) \]

\[\mathcal{V}_v \otimes \cdots \otimes \mathcal{V}_v \supseteq \mathcal{H}_v(D) \rtimes \mathbb{Z}/2\mathbb{Z} \]

Quantizes nicely.
A version of Schur's remarkable duality.

\[\mathcal{U}_v(\mathfrak{sl}_2) \supseteq V_v \otimes \cdots \otimes V_v \supseteq \mathcal{H}_v(A) \]

\[\bigcup \quad \| \quad \bigcap \]

\[\overset{\text{??}}{\mathcal{U}_v(\mathfrak{sl}_2)} \supseteq V_v \otimes \cdots \otimes V_v \supseteq \mathcal{H}_v(D) \rtimes \mathbb{Z}/2\mathbb{Z} \]

\[d \text{ times} \]
A version of Schur’s remarkable duality.

\[\mathcal{U}_v(sl_2) \circ V_v \otimes \cdots \otimes V_v \circ \mathcal{H}_v(A) \]

\[\mathcal{U}_v(gl_1) \circ V_v \otimes \cdots \otimes V_v \circ \mathcal{H}_v(D) \ltimes \mathbb{Z}/2\mathbb{Z} \]

d times
A version of Schur’s remarkable duality.

\[
\mathcal{U}_v(sl_2) \circ V_v \otimes \cdots \otimes V_v \circ \mathcal{H}_v(A)
\]

\[
\mathcal{U}_v(gl_1) \circ V_v \otimes \cdots \otimes V_v \circ \mathcal{H}_v(D) \rtimes \mathbb{Z}/2\mathbb{Z}
\]

Does not embed.

\[d \text{ times}\]
A version of Schur’s remarkable duality.

\[\mathcal{U}_v(sl_2) \circ V_v \otimes \cdots \otimes V_v \circ \mathcal{H}_v(A) \]

\[\mathcal{U}_v(gl_1) \circ V_v \otimes \cdots \otimes V_v \circ \mathcal{H}_v(D) \times \mathbb{Z}/2\mathbb{Z} \]

No commuting action.

\[d \text{ times} \]

Back
A version of Schur’s remarkable duality.

\[U_v(sl_2) \otimes V_v \otimes \cdots \otimes V_v \otimes \mathcal{H}_v(A) \]

\[\mathcal{U}_v(sl_1) \otimes V_v \otimes \cdots \otimes V_v \otimes \mathcal{H}_v(D) \times \mathbb{Z}/2\mathbb{Z} \]

\[d \text{ times} \]
A version of Schur’s remarkable duality.

\[\mathcal{U}_v(\mathfrak{sl}_2) \circ V_v \otimes \cdots \otimes V_v \circ \mathcal{H}_v(A) \]

\[\mathcal{U}_v(\mathfrak{gl}_1) \]

\[\mathcal{C} \mathcal{U}_v(\mathfrak{gl}_1) \]

\[\text{d times} \]

\[\mathcal{H}_v(D) \times \mathbb{Z}/2\mathbb{Z} \]
A version of Schur's remarkable duality.

\[\mathcal{U}_v(\mathfrak{sl}_2) \circlearrowleft V_v \otimes \cdots \otimes V_v \circlearrowright \mathcal{H}_v(A) \]

Is a subalgebra.

\[c \mathcal{U}_v(\mathfrak{gl}_1) \]

\[V_v \otimes \cdots \otimes V_v \circlearrowright \mathcal{H}_v(D) \rtimes \mathbb{Z}/2\mathbb{Z} \]

d times

\[\Gamma = \Gamma((\tilde{B}_4, \tilde{D}_4, D_4, \tilde{C}_3, D_4)) \]

But, again, only in the special case of type ABCD this is known.

Message to take away. Coideal naturally appear in Schur–Weyl-like games. And these pull the strings from the background for tangle and link invariants.
A version of Schur’s remarkable duality.

\[\mathcal{U}_v(\mathfrak{sl}_2) \circ V_v \otimes \cdots \otimes V_v \circ \mathcal{H}_v(A) \]

\[\cup \quad \| \quad \cap \]

\[c \mathcal{U}_v(\mathfrak{gl}_1) \circ V_v \otimes \cdots \otimes V_v \circ \mathcal{H}_v(D) \times \mathbb{Z}/2\mathbb{Z} \]

Act by restriction.

\[\text{d times} \]

Message to take away. Coideal naturally appear in Schur–Weyl-like games. And these pull the strings from the background for tangle and link invariants.
A version of Schur’s remarkable duality.

\[\mathcal{U}_v(\mathfrak{sl}_2) \circ V_v \otimes \cdots \otimes V_v \circ \mathcal{H}_v(A) \]

\[\bigcup \big\| \bigcap \]

\[\mathfrak{c} \mathcal{U}_v(\mathfrak{gl}_1) \circ V_v \otimes \cdots \otimes V_v \circ \mathcal{H}_v(D) \rtimes \mathbb{Z}/2\mathbb{Z} \]

\[d \text{ times} \]

Ehrig–Stroppel, Bao–Wang \(\sim 2013 \). The actions of \(\mathfrak{c} \mathcal{U}_v(\mathfrak{gl}_1) \) and \(\mathcal{H}_v(D) \rtimes \mathbb{Z}/2\mathbb{Z} \) on \(V_v^\otimes d \) commute and generate each other’s centralizer.
A version of Schur’s remarkable duality.

\[\mathcal{U}_\mathfrak{v}(\mathfrak{sl}_2) \subset V_\mathfrak{v} \otimes \cdots \otimes V_\mathfrak{v} \subset \mathcal{H}_\mathfrak{v}(A) \]

Hope.

The same works for the Coxeter diagrams

\[\Gamma = \Gamma((\tilde{B}_4, \tilde{D}_4, D_4, \tilde{C}_3, D_4)) \]

\[x(\Gamma) = \times + + c + c + + \times + + \times + + c + \]

But, again, only in the special case of type ABCD this is known.
A version of Schur’s remarkable duality.

\[
\mathcal{U}_v(\mathfrak{sl}_2) \ominus V_v \otimes \cdots \otimes V_v \ominus \mathcal{H}_v(A) \\
\bigcup \quad \quad \quad \quad \quad \bigcap \\
\mathcal{c} \mathcal{U}_v(\mathfrak{gl}_1) \ominus V_v \otimes \cdots \otimes V_v \ominus \mathcal{H}_v(D) \rtimes \mathbb{Z}/2\mathbb{Z}
\]

Message to take away. Coideal naturally appear in Schur–Weyl-like games. And these pull the strings from the background for tangle and link invariants.