$\overline{\mathbf{U}_q(\mathfrak{gl}_N)}$ diagram categories via super q-Howe duality

Or: the diagrammatic presentation machine

Daniel Tubbenhauer

Joint work with David Rose, Pedro Vaz and Paul Wedrich

June 2015

Daniel Tubbenhauer June 2015

- 1 Exterior \mathfrak{gl}_N -web categories
 - Graphical calculus via N-webs
 - Proof? Skew quantum Howe duality!

- 2 Exterior-symmetric \mathfrak{gl}_N -web categories
 - Its cousins: the green-red N-webs
 - Proof? Super quantum Howe duality!

Daniel Tubbenhauer June 2015 2 / 15

History of diagrammatic presentations in a nutshell

- Rumer, Teller, Weyl (1932): $\mathbf{U}(\mathfrak{sl}_2)$ -tensor category generated by \mathbb{C}^2 .
- Temperley-Lieb, Jones, Kauffman, Lickorish, Masbaum-Vogel ... (\geq 1971): $\mathbf{U}_q(\mathfrak{sl}_2)$ -tensor category generated by \mathbb{C}_q^2 .
- Kuperberg (1995): $\mathbf{U}_q(\mathfrak{sl}_3)$ -tensor category generated by $\bigwedge_q^1 \mathbb{C}_q^3 \cong \mathbb{C}_q^3$ and $\bigwedge_q^2 \mathbb{C}_q^3$.
- Cautis-Kamnitzer-Morrison (2012): $\mathbf{U}_q(\mathfrak{sl}_N)$ -tensor category generated by $\bigwedge_q^k \mathbb{C}_q^N$.
- Sartori (2013), Grant (2014): $\mathbf{U}_q(\mathfrak{gl}_{1|1})$ -tensor category generated by $\bigwedge_q^k \mathbb{C}_q^{1|1}$.
- Rose-T. (2015): $\mathbf{U}_q(\mathfrak{sl}_2)$ -tensor category generated by $\operatorname{Sym}_q^k \mathbb{C}_q^2$.
- Link polynomials: Queffelec-Sartori (2015); "algebraic": Grant (2015): $\mathbf{U}_q(\mathfrak{gl}_{N|M})$ -tensor category generated by $\bigwedge_q^k \mathbb{C}_q^{N|M}$.

"Howe" do they fit in one framework?

Daniel Tubbenhauer June 2015

\mathfrak{gl}_N -webs

An N-web is an oriented, labeled, trivalent graph locally made of

$$\mathbf{m}_{k,l}^{k+l} =$$
, $\mathbf{s}_{k+l}^{k,l} =$, $\mathbf{k}, l, k+l \in \mathbb{N}$

(and no pivotal things today).

Example

Let us form a category

relation

Define the (braided) monoidal, \mathbb{C}_q -linear category N-**Web** $_g$ by using:

Definition(Cautis-Kamnitzer-Morrison 2012)

The *N*-web space $\operatorname{Hom}_{N\text{-Web}_{\mathbb{S}}}(\vec{k}, \vec{l})$ is the free \mathbb{C}_q -vector space generated by *N*-webs with \vec{k} and \vec{l} at the bottom and top modulo isotopies and:

$$\mathfrak{gl}_m$$
 "ladder": $k-1$ $k-$

Daniel Tubbenhauer Graphical calculus via N-webs June 2015

Diagrams for intertwiners

Observe that there are (up to scalars) unique $\mathbf{U}_q(\mathfrak{gl}_N)$ -intertwiners

$$\mathbf{m}_{k,l}^{k+l} \colon \textstyle \bigwedge_{q}^{k} \mathbb{C}_{q}^{\textit{N}} \otimes \textstyle \bigwedge_{q}^{l} \mathbb{C}_{q}^{\textit{N}} \twoheadrightarrow \textstyle \bigwedge_{q}^{k+l} \mathbb{C}_{q}^{\textit{N}} \quad \text{and} \quad \mathbf{s}_{k+l}^{k,l} \colon \textstyle \bigwedge_{q}^{k+l} \mathbb{C}_{q}^{\textit{N}} \hookrightarrow \textstyle \bigwedge_{q}^{k} \mathbb{C}_{q}^{\textit{N}} \otimes \textstyle \bigwedge_{q}^{l} \mathbb{C}_{q}^{\textit{N}}$$

given by projection and inclusion.

Let \mathfrak{gl}_N - \mathbf{Mod}_e be the (braided) monoidal, \mathbb{C}_q -linear category whose objects are tensor generated by $\bigwedge_q^k \mathbb{C}_q^N$. Define a functor $\Gamma \colon N$ - $\mathbf{Web}_g \to \mathfrak{gl}_N$ - \mathbf{Mod}_e :

$$\vec{k} = (k_1, \dots, k_m) \mapsto \bigwedge_{q}^{k_1} \mathbb{C}_q^N \otimes \dots \otimes \bigwedge_{q}^{k_m} \mathbb{C}_q^N,$$

$$\downarrow^{k+l} \mapsto \mathbf{m}_{k,l}^{k+l} , \qquad \downarrow^{k} \mapsto \mathbf{s}_{k+l}^{k,l}$$

Theorem(Cautis-Kamnitzer-Morrison 2012)

 $\Gamma \colon \textit{N-Web}^{\oplus}_{\mathrm{g}} \to \mathfrak{gl}_{\textit{N}}\text{-}\mathsf{Mod}_{e} \text{ is an equivalence of (braided) monoidal categories}.$

"Howe" to prove this?

Howe: the commuting actions of $\mathbf{U}_q(\mathfrak{gl}_m)$ and $\mathbf{U}_q(\mathfrak{gl}_N)$ on

$$\bigwedge_q^K(\mathbb{C}_q^m\otimes\mathbb{C}_q^N)\cong\bigoplus_{k_1+\cdots+k_m=K}(\bigwedge_q^{k_1}\mathbb{C}_q^N\otimes\cdots\otimes\bigwedge_q^{k_m}\mathbb{C}_q^N)$$

introduce an $\mathbf{U}_q(\mathfrak{gl}_m)$ -action f on the right term with \vec{k} -weight space $\wedge_q^{\vec{k}}\mathbb{C}_q^N$.

In particular, there is a functor

$$\begin{split} \Phi^m_{\mathrm{skew}} \colon \dot{\mathbf{U}}_q(\mathfrak{gl}_m) &\to \mathfrak{gl}_{N^{\text{-}}}\mathbf{Mod}_e, \\ \vec{k} &\mapsto \bigwedge_q^{\vec{k}} \mathbb{C}_q^N, \quad X \in 1_{\vec{l}} \mathbf{U}_q(\mathfrak{gl}_m) 1_{\vec{k}} \mapsto f(X) \in \mathrm{Hom}_{\mathfrak{gl}_{N^{\text{-}}}\mathbf{Mod}_e} (\bigwedge_q^{\vec{k}} \mathbb{C}_q^N, \bigwedge_q^{\vec{l}} \mathbb{C}_q^N). \end{split}$$

Howe: Φ_{skew}^m is full. Or in words:

relations in $\dot{\mathbf{U}}_q(\mathfrak{gl}_m)$ + kernel of $\Phi^m_{\mathrm{skew}} \leadsto \text{relations in } \mathfrak{gl}_N\text{-}\mathbf{Mod}_e$.

Define the diagrams to make this work

Theorem(Cautis-Kamnitzer-Morrison 2012)

Define **N-Web**_g such there is a commutative diagram

with

$$\Upsilon^m(F_i 1_{\vec{k}}) \mapsto$$

$$\downarrow_{k_i}^{k_{i-1}}
\qquad , \qquad \Upsilon^m(E_i 1_{\vec{k}}) \mapsto$$

$$\downarrow_{k_i}^{k_{i+1}}
\qquad \downarrow_{k_{i+1}}^{k_{i+1}-1}$$

 $\Upsilon^m \leadsto "\mathfrak{gl}_m \text{ ladder" relations} \quad , \quad \ker(\Phi^m_{\mathrm{skew}}) \leadsto \text{ exterior relation}.$

Could there be a pattern?

A green-red N-web is a colored, labeled, trivalent graph locally made of

$$\mathbf{m}_{k,l}^{k+l} = \bigwedge_{k=l}^{k+l}$$
 , $\mathbf{m}_{k,l}^{k+l} = \bigwedge_{k=l}^{k+l}$, $\mathbf{m}_{k,1}^{k+l} = \bigwedge_{k=1}^{k+1}$, $\mathbf{m}_{k,1}^{k+l} = \bigwedge_{k=1}^{k+1}$

And of course splits and some mirrors as well!

Example

The green-red *N*-web category

Define the (braided) monoidal, \mathbb{C}_q -linear category N-**Web**_{gr} by using:

Definition

Given $\vec{k} \in \mathbb{Z}_{\geq 0}^{m+n}, \vec{l} \in \mathbb{Z}_{\geq 0}^{m'+n'}$. The green-red *N-web space* $\operatorname{Hom}_{N\mathsf{Web}_{\mathrm{gr}}}(\vec{k}, \vec{l})$ is the free \mathbb{C}_q -vector space generated by *N*-webs between \vec{k} and \vec{l} modulo isotopies and:

 $\mathfrak{gl}_m + \mathfrak{gl}_n$ "ladder": same as before, but now in red as well! relations

Dumbbell: [2] = 2 + 2 relation

Exterior: k = 0, if k > N. relation

Diagrams for intertwiners - Part 2

Observe that there are (up to scalars) unique $\mathbf{U}_q(\mathfrak{gl}_N)$ -intertwiners

$$\mathbf{m}_{k,1}^{k+1} \colon \bigwedge_q^k \mathbb{C}_q^N \otimes \mathbb{C}_q^N \twoheadrightarrow \bigwedge_q^{k+1} \mathbb{C}_q^N \quad \text{and} \quad \mathbf{m}_{k,1}^{k+1} \colon \mathrm{Sym}_q^k \mathbb{C}_q^N \otimes \mathbb{C}_q^N \twoheadrightarrow \mathrm{Sym}_q^{k+1} \mathbb{C}_q^N$$

plus others as before.

Let \mathfrak{gl}_N - $\mathbf{Mod}_{\mathrm{es}}$ be the (braided) monoidal, \mathbb{C}_q -linear category whose objects are tensor generated by $\bigwedge_q^k \mathbb{C}_q^N$, $\operatorname{Sym}_q^k \mathbb{C}_q^N$. Define a functor $\Gamma \colon N$ - $\mathbf{Web}_{\mathrm{gr}} \to \mathfrak{gl}_N$ - $\mathbf{Mod}_{\mathrm{es}}$:

$$\vec{k} = (k_1, \dots, k_m, \frac{k_{m+1}}{q}, \dots, \frac{k_{m+n}}{q}) \mapsto \bigwedge_q^{k_1} \mathbb{C}_q^N \otimes \dots \otimes \operatorname{Sym}_q^{\frac{k_{m+n}}{q}} \mathbb{C}_q^N,$$

Theorem

 $\Gamma \colon \textit{N-Web}_{\mathrm{gr}}^{\oplus} \to \mathfrak{gl}_\textit{N}\text{-}Mod_{\mathrm{es}} \text{ is an equivalence of (braided) monoidal categories.}$

Super $\mathfrak{gl}_{n|n}$

Definition

The quantum general linear superalgebra $\mathbf{U}_q(\mathfrak{gl}_{m|n})$ is generated by $L_i^{\pm 1}$ and F_i, E_i subject the some relations, most notably, the super relations:

$$\begin{split} F_m^2 &= 0 = E_m^2 \quad , \quad \frac{L_m L_{m+1}^{-1} - L_m^{-1} L_{m+1}}{q - q^{-1}} = F_m E_m + E_m F_m, \\ [2] F_m F_{m+1} F_{m-1} F_m &= F_m F_{m+1} F_m F_{m-1} + F_{m-1} F_m F_{m+1} F_m \\ &+ F_{m+1} F_m F_{m-1} F_m + F_m F_{m-1} F_m F_{m+1} \text{ (plus an E version)}. \end{split}$$

There is a Howe pair $(\mathbf{U}_q(\mathfrak{gl}_{m|n}), \mathbf{U}_q(\mathfrak{gl}_N))$ with $\vec{k} = (k_1, \dots, k_{m+n})$ -weight space under the $\mathbf{U}_q(\mathfrak{gl}_{m|n})$ -action on $\bigwedge_q^K(\mathbb{C}_q^{m|n}\otimes\mathbb{C}_q^N)$ given by

$$\bigwedge_{q}^{k_1}\mathbb{C}_q^N\otimes\cdots\bigwedge_{q}^{k_m}\mathbb{C}_q^N\otimes\operatorname{Sym}_q^{\underset{m+1}{k_{m+1}}}\mathbb{C}_q^N\otimes\cdots\otimes\operatorname{Sym}_q^{\underset{m+n}{k_{m+n}}}\mathbb{C}_q^N.$$

Define the diagrams to make this work

$\mathsf{Theorem}$

Define N-Webgr such there is a commutative diagram

with

 $\Upsilon^{m|n}_{\mathrm{su}} \leadsto \mathrm{"gl}_{m|n}$ ladder" relations , $\ker(\Phi^{m|n}_{\mathrm{su}}) \leadsto$ the exterior relation.

Some concluding remarks

- Feed the machine with the *Howe pair* $(\mathfrak{gl}_{m|n},\mathfrak{gl}_{N|M})$ and one gets a diagrammatic presentation of $\mathfrak{gl}_{N|M}$ -**Mod**_{es}.
- Taking $N, M \to \infty$, one obtains a diagrammatic presentation ∞ -**Web**_{gr} of some form of the Hecke algebroid. Roughly: the machine spits it out, if you feed it with *Schur-Weyl duality*. This also gives a new presentation of the super *q*-Schur algebra without the fancy super relations.
- ullet $\infty ext{-Web}_{
 m gr}$ is completely symmetric in green-red which allows us to prove a symmetry of HOMFLY-PT polynomials diagrammatically:

$$\mathcal{P}^{a,q}(\mathcal{L}(\vec{\lambda})) = (-1)^{co} \mathcal{P}^{a,q^{-1}}(\mathcal{L}(\vec{\lambda}^{\mathrm{T}})).$$

- Homework: feed the machine with your favorite duality (e.g. Howe dualities in other types) and see what it spits out.
- Everything is (hopefully) amenable to categorification!

There is still much to do...

Thanks for your attention!