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Let A(I") be the adjacency matrix of a finite, connected, loopless graph T'. Let
Uet1(X) be the

Classification problem (CP). Classify all I such that Uey1(A(I)) = 0.
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Let A(I") be the adjacency matrix of a finite, connected, loopless graph T'. Let
Uet1(X) be the

Classification problem (CP). Classify all I such that Uey1(A(I)) = 0.

Us(X) = (X — 2cos(%))X(X — 2cos(3T7'))

103 2 0 01
A3= oe—o o —~> A(A3)=|0 0 1| —~— Sa; = {2cos(F),0,2cos(3F)}
1

1 0
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Let A(I") be the adjacency matrix of a finite, connected, loopless graph T'. Let
Uet1(X) be the

Classification problem (CP). Classify all I such that Uey1(A(I)) = 0.

Us(X) = (X — 2cos(%))X(X — 2cos(3T7'))

1 3 2 0 0 1
A3= oe—o o —~> A(A3)=|0 0 1| —~— Sa; = {2cos(F),0,2cos(3F)}
1 1 0
Us(X) = (X — 2cos(Z))(X — 2cos(2E))X(X — 2 cos(4Z))(X — 2 cos(3X))
2
0O 0 0 1
Dy = o 4 s A= [0 0 0 My s, = {2c0s(%), 02, 2cos(5E
4 = (Ds) = 0 0 0 1 D4—{ C°5(€)707 COS(T)}
1 1 1 0
3
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Let A(I") be the adjacency matrix of a finite, connected, loopless graph T'. Let
Uet1(X) be the

Classification problem (CP). Classify all I such that Ue,1(A(l)) =0

Us(X) = (X — 2cos(%))X(X — 2cos(3T7'))

1 3 5 0 0 1
A3 = e——e——o —~—> AA3)=({0 0 1 Ny = {2cos(%),0,2cos(3F)}
1 1 0

v~ fore=2

Us(X) = (X — 2cos(Z))(X — 2cos(2E))X(X — 2 cos(4Z))(X — 2 cos(3X))

2
0 0 0 1
D : 4 —n A 0 0 0 1 bl 2 57
= (D4) = 00 o0 1|7 Sp, = {2cos( %), 0%, 2cos(F)}
1 1 1 0

3 v fore=4
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Let A(T') be the adjacency matrix of a finite, connected, loopless graph I'. Let

Ue+1(x)
Cla

1

Az =

i

Dy =

el

Smith ~1969. The graphs solutions to (CP) are precisely

ADE graphs for e + 2 being the Coxeter number. —0.

Type Am: fore=m-—1
Type Dp: < fore=2m—4
cos(BT“)}

Type Es: I for e =10
Type E7: - - - ] ‘ ) for e =16 cos(32)}
Type Es: [ for e = 28
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© Dihedral representation theory
o Classical vs. N-representation theory
@ Dihedral N-representation theory

© Non-semisimple fusion rings
@ The asymptotic limit
@ The limit v — 0 of the N-representations

© Beyond

Daniel Tubbenhauer Dihedral groups, SL(2)y and beyond July 2019

3/13



The dihedral groups are of Coxeter type lx(e + 2):

2 2 — _
Weip=(s,t]|s*°=t"=1, Sepp=_..sts =wp =_..tst = Teta),
e+2 e+2
eg : Wy=(s,t]|s?=1t2=1, tsts = wy = stst)

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2:
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The dihedral groups are of Coxeter type lx(e + 2):

2 2 — _
Weip=(s,t]|s*°=t"=1, Sepp=_..sts =wp =_..tst = Teta),
e+2 e+2
eg : Wy=(s,t]|s?=1t2=1, tsts = wy = stst)

Idea (Coxeter ~1934-++).
Example. These are the sym + 2-gons, e.g. for e = 2:
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The dihedral groups are of Coxeter type lx(e + 2):
We

L 2 2 —
+2 = <S| Fact. The symmetries are given by exchanging flags.lz Tet2),
e+2 e+2

eg : Wy=(s,t]|s?=1t2=1, tsts = wy = stst)

: Idea (Coxeter ~1934--).
Examp F'.X aflag F.| the syerTerry(-g'ron'pvm—regmm—)eJ—i— 2-gons, e.g. for e = 2:
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The dihedral groups are of Coxeter type lx(e + 2):
2 2 - =
Weip=(s,t]|s*°=t"=1, Sepp=_..sts =wp =_..tst = Teta),
e+2 e+2
eg : Wy=(s,t]|s?=1t2=1, tsts = wy = stst)

: Idea (Coxeter ~1934-+4).
Examor 2228 F 1 110 <verwy£gmpvmegmm—)eJ+ 2-gons, e.g. for e =2

Fix a hyperplane Hy permuting

the adjacent O-cells of F.
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The dihedral groups are of Coxeter type lx(e + 2):
2 2 - =
Weip=(s,t]|s*°=t"=1, Sepp=_..sts =wp =_..tst = Teta),
e+2 e+2
eg : Wy=(s,t]|s?=1t2=1, tsts = wy = stst)

: Idea (Coxeter ~1934-+4).
Examor 2228 F 1 110 <verwy£gmpvmegmm—LJ+ 2-gons, e.g. for e =2

Fix a hyperplane Hy permuting
the adjacent O-cells of F.

Fix a hyperplane H; permuting
the adjacent 1-cells of F, etc.
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The dihedral groups are of Coxeter type lx(e + 2):

2 2 — _
Weip=(s,t]|s*°=t"=1, Sepp=_..sts =wp =_..tst = Teta),
e+2 e+2
eg : Wy=(s,t]|s?=1t2=1, tsts = wy = stst)

: Idea (Coxeter ~1934-+4).
Examor 2228 F 1 110 <vr1Lrwwy£gmpvmegmm—)eJ+ 2-gons, e.g. for e =2

Fix a hyperplane Hy permuting
the adjacent O-cells of F.

Fix a hyperplane H; permuting
the adjacent 1-cells of F, etc.

[Write a vertex i for each H.|
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The dihedral groups f C AT _
This gives a generator-relation presentation.

Wep=(s.t1s=1"=1 S, o= . sts=Wn=_. . tst="Tao),
|And the braid relation measures the angle between hyperplanes.l

eg : Wy=(s,t]|s?=1t2=1, tsts = wy = stst)

: Idea (Coxeter ~1934-+4).
Examor 2228 F 1 110 <vr1Lrwwy£gmpvmegmm—)eJ+ 2-gons, e.g. for e =2

Fix a hyperplane Hy permuting
the adjacent O-cells of F.

Fix a hyperplane H; permuting
the adjacent 1-cells of F, etc.

4
A

[Write a vertex i for each H.|

cos( /4)

Connect /,j by an n-edge for
H;, H; having angle cos(7/(e + 2)).
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The dihedral groups are of Coxeter type lx(e + 2):

2 2 — _
Weip=(s,t]|s*°=t"=1, Sepp=_..sts =wp =_..tst = Teta),
e+2 e+2
eg : Wy=(s,t]|s?=1t2=1, tsts = wy = stst)

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2:
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The dihedral groups are of Coxeter type lx(e + 2):

2 2 — _
Weip=(s,t]|s*°=t"=1, Sepp=_..sts =wp =_..tst = Teta),
e+2 e+2
eg : Wy=(s,t]|s?=1t2=1, tsts = wy = stst)

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2:
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The dihedral groups are of Coxeter type lx(e + 2):

2 2 - -
Weip=(s,t]|s*°=t"=1, Sepp=_..sts =wp =_..tst = Teta),

eg : Wy=(s,t]|s?=1t2=1, tsts = wy = stst)

e+2

e+2

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2:
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The dihedral groups are of Coxeter type lx(e + 2):

2 2 — _
Weip=(s,t]|s*°=t"=1, Sepp=_..sts =wp =_..tst = Teta),
e+2 e+2
eg : Wy=(s,t]|s?=1t2=1, tsts = wy = stst)

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2:

" tsists
sl

1/t
t st
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The dihedral groups are of Coxeter type lx(e + 2):

2 2 — _
Weip=(s,t]|s*°=t"=1, Sepp=_..sts =wp =_..tst = Teta),
e+2 e+2
eg : Wy=(s,t]|s?=1t2=1, tsts = wy = stst)

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2:

"‘~.‘ts ‘sts
S .. Wo 4
1/t

t st
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Dihedral representation theory on one slide.
The Bott—Samelson (BS) generators b, = s +1,b. = t + 1.
There is also a Kazhdan—Lusztig (KL) basis. We will nail it down later.

One-dimensional modules. My_ ,As, Ac € C,bs = Ag, b = A

e=0mod?2

M.,z € VE-{0}

Ve = roots(Uey1(X)) and VZE the Z/2Z-orbits under z s —z.
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Dihedral representation theory on one slide.

. . Proposition (Lusztig?).
One-dimension

The list of one- and two-dimensional We2-modules
is a complete, irredundant list of simple modules.

|
|

Mao,0, M2,o, Mo 2, M2 > ' Moo, M2
|

[1 learned this construction in 2017. |

Two-dimensional modules. M,,z € C, b, — (2%),b. — (29).

e=0mod?2

M.,z € VE-{0}

Ve = roots(Uey1(X)) and VZE the Z/2Z-orbits under z s —z.
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Dihedral representation theory on one slide.

One-dimensional modules. My_ ,As, Ac € C,bs = Ag, b = A

|
e=0mod 2 ' e# 0mod?2
,,,,,,,,,,,,,,,,,,,,,,,,,, [l
|
|
Moo, Mo, Moo, Mo | Moo, Moo
Example.
1 Mo,o is the sign representation and M, is the trivial representation.

In case e is odd, Uet1(X) has a constant term, so M» 0, Mo2 are not representations.

M,,z € VE—{0} | M,,zeVZ

Ve = roots(Uey1(X)) and VZE the Z/2Z-orbits under z s —z.
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Dihe 1 ol 2l 121
Example.
These representations are indexed by Z/2Z-orbits of the Chebyshev roots:
One-¢ ' '
EXS The case e=6 The roots are Zcos(km/8) —
Maeanin 5] 2 Maronos
2 i
Moacas(am/s)|= Macosizn/s)
1 4
Two-(
0
al ]
M 512 Macos(ar 5
2f Mcosgon/s) 2 Mz.0 @ Mo, 2 :
Ve =
sl ]
B B o 1 2
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An algebra A with a fixed basis B is called a (multi) N-algebra if

xy € NBY  (x,y € BY).

A A-module M with a fixed basis BM is called a N-module if
xm € NBM  (x € BA m € BM).

These are N-equivalent if there is a N-valued change of basis matrix.

Example. N-algebras and N-modules arise naturally as the decategorification of
2-categories and 2-modules, and N-equivalence comes from 2-equivalence.
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Af

Group algebras of finite groups with basis given by group elements are N-algebras.

Example (group like).

The regular module is a N-module.

A A-module M with a fixed basis BM is called a N-module if

These are N-equivalent if there is a N-valued change of basis matrix.

Example. N-algebras and N-modules arise naturally as the decategorification of

xm € NBM

(x € BA, m e BM).

2-categories and 2-modules, and N-equivalence comes from 2-equivalence.

Daniel Tubbenhauer
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A Example (group like).

Group algebras of finite groups with basis given by group elements are N-algebras.

The regular module is a N-module.

A A-{] Example (group like).
Fusion rings are with basis given by classes of simples are N-algebras.

Thesd Key example: Ko(Rep(G,C)) (easy N-representation theory).

Key example: Ko(Repg (Uq(g)) = Gq) (intricate N-representation theory).
Exam = : 5 = n of

2-categories and 2-modules, and N-equivalence comes from 2-equivalence.
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A Example (group like).

Group algebras of finite groups with basis given by group elements are N-algebras.

The regular module is a N-module.

A A-{] Example (group like).
Fusion rings are with basis given by classes of simples are N-algebras.

Thesd Key example: Ko(Rep(G,C)) (easy N-representation theory).

Key example: Ko(Repg (Uq(g)) = Gq) (intricate N-representation theory).
Exam, = = n of

A
2-categories and Example (semigroup like). juivalence.

Hecke algebras of (finite) Coxeter groups with
their KL basis are N-algebras.

Their N-representation theory is non-semisimple.
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Clifford, Munn, Ponizovskii, Green ~1942+, Kazhdan—Lusztig ~1979.
x <| y if y appears in zx with non-zero coefficient for z € BA. x ~ y if x <| v
and y < x.

~ partitions A into left cells L. Similarly for right R, two-sided cells LR or
N-modules.

A N-module M is transitive if all basis elements belong to the same ~
equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive N-module has a unique apex.

Hence, one can study them cell-wise.

Example. Transitive N-modules arise naturally as the decategorification of simple
transitive 2-modules.
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Clifford, Munn, Ponizovskii, Green ~1942, Kazhdan—Lusztig ~1979.

X Example (group like). i
an
~ Group algebras with the group element basis have only one cell, G itself.
N
Transitive N-modules are C[G/H] for H C G subgroup/conjugacy. The apex is G.

A N-module M is transitive if all basis elements belong to the same ~
equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive N-module has a unique apex.

Hence, one can study them cell-wise.

Example. Transitive N-modules arise naturally as the decategorification of simple
transitive 2-modules.
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Clifford, Munn, Ponizovskii, Green ~1942+4, Kazhdan—Lusztig ~1979.

X Example (group like). 7
an
~ Group algebras with the group element basis have only one cell, G itself.
N
Transitive N-modules are C[G/H] for H C G subgroup/conjugacy. The apex is G.

A N-module M is t
equivalence class. A

Fac

Hence, one can stu

Example (group like).
Fusion rings in general have only one cell
since each basis element [V;] has a dual [V/*]

such that [Vj][V;*] contains 1 as a summand.

Cell theory is useless for them!

same ~|_
ot killing it.
pex.

Example. Transitive N-modules arise naturally as the decategorification of simple
transitive 2-modules.
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Clifford, Munn, Ponizovskii, Green ~1942+4, Kazhdan—Lusztig ~1979.

X
an

~

NA

Example (group like).

Group algebras with the group element basis have only one cell, G itself.

Transitive N-modules are C[G/H] for H C G subgroup/conjugacy. The apex is G.

A N-module M is t Example (group like).

equivalence class. A

Hence, one can stu

Fusion rings in general have only one cell
Facjsince each basis element [V;] has a dual [V/*]
such that [Vj][V;*] contains 1 as a summand.

Cell theory is useless for them!

same ~|_
ot killing it.
pex.

Exarf
trang

Example (Lusztig <2003; semigroup like).

Hecke algebras for the dihedral group with KL basis have the following cells:

S 2 ts I sts Ztsts’ststs

v wo

e

5 st 55 tst SyststiStsts

We will see the transitive N-modules in a second.
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Clifford, Munn, Ponizovskii, Green ~1942+4, Kazhdan—Lusztig ~1979.

X Example (group like).
an
~ Group algebras with the group element basis have only one cell, G itself.
N

Transitive N-modules are C[G/H] for H C G subgroup/conjugacy. The apex is G.
A N-module M is t Example (group like). same ~|
equivalence class. A ot killing it.

Hence, one can stu

Fusion rings in general have only one cell
Facjsince each basis element [V;] has a dual [V/"] pex.
such that [Vj][V;*] contains 1 as a summand.

Cell theory is useless for them!

Exarf
trang

Example (Lusztig <2003; semigroup like).
Hecke algebras for the dihedral group with KL basis have the following cells:

%S s, _sts sts. _gtsts

1 : “Wo Right cells.

S S STs STs

We will see the transitive N-modules in a second.

mple
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Clifford, Munn, Ponizovskii, Green ~1942+4, Kazhdan—Lusztig ~1979.

X
an

~

NA

Example (group like).

Group algebras with the group element basis have only one cell, G itself.

Transitive N-modules are C[G/H] for H C G subgroup/conjugacy. The apex is G.

A N-module M is t Example (group like).

equivalence class. A

Hence, one can stu

Fusion rings in general have only one cell
Facjsince each basis element [V;] has a dual [V/*]
such that [Vj][V;*] contains 1 as a summand.

Cell theory is useless for them!

same ~|_
ot killing it.
pex.

Exarf
trang

Example (Lusztig <2003; semigroup like).

Hecke algebras for the dihedral group with KL basis have the following cells:

S

\><\
\><\

LK

—STS

. Two—snded cells. .
We will see the transitive N-modules in a second.
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':
M = C(1,2,3,4,5)

‘_
1 3 24 5
20100 00000
02111 00000
bo~M.=| 00000 |, b~M=| 11200
00000 01020
00000 01002
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':
M = C(1,2,3,4,5)

i (.

b —

1 3 2 4 5
U
210100 00000
02111 000O0O
b ~» Mg = 0/0 000 |, b, ~» M, = 11200
0/0 00O 01020
00 00O 01002
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':
M = C(1,2,3,4,5)

action

b ———

1 3 5
2/0/1 00 00000
0/2/1 11 000O0O
b ~» Mg = 0/0/0 00 |, b, ~» M, = 11200
0/0/0 0O 01020
0/0/0 0O 01002
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':

&
H
=
wn
I
coocowmN

Daniel Tubbenhauer

M = C(1,2,3,4,5)

action

bs——

1 3 24 5
AN
o/1/0 0 00000
211111 00000
0000 |, b~M=]| 11200
0000 01020
0000 01002
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':

&
H
=
wn
I
coocowmN

Daniel Tubbenhauer

M = C(1,2,3,4,5)

action

[ —
1 3 24 5
A
01/o0/o 00000
2111 00000
0000 |, b~M=]| 11200
0000 01020
0000 01002
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':

&
H
=
wn
I
coocowmN
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M = C(1,2,3,4,5)

action

bs——

1 3 24 5
A
0100 00000
2111 00000
0000 |, b~M=]| 11200
0000 01020
0000 01002
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':
M = C(1,2,3,4,5)

b —
1 3 24 5
20100 00000
02111 00000
bo~M.=| 00000 |, b~M=| 11200
00000 01020
00000 01002
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':
M = C(1,2,3,4,5)

20100 00000
02111 0000O0
b ~» Mg = 00000O0 |, b, ~» M, = 1111200
0000O 01020
00000O 01/00 2

Daniel Tubbenhauer Dihedral groups, SL(2)y and beyond July 2019 8/13



N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':
M = C(1,2,3,4,5)

b —
1 3 24 5
20100 00/0/oo
02111 00000
bo~M.=| 00000 |, b~M=| 11200
00000 01020
00000 01002
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':
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20100 00000
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':
M = C(1,2,3,4,5)

b —
1 3 24 5
20100 00000
02111 00000
bo~M.=| 00000 |, b~M=| 11200
00000 01020
00000 01002
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N-modules via graphs.

Constructa W___madule M associated ta a hinartite oranh -
The adjacency matrix A(T) of T is

0/1 00

A(r) =

[eNeN HeNe]
=== o
o O O
[eNeNal
[eNeNal

These are We2-modules for some e
only if A(T) is killed by the Chebyshev polynomial Ue1(X).

Morally speaking: These are constructed as the simples
but with integral matrices having the Chebyshev-roots as eigenvalues.

|It is not hard to se/e that the Chebysl:ev—braid-like relation c/an not hold othervcise. |
02111 000O0O
b, ~~ M, = 000O0O b, ~ M, = 11/200
000O0O 01020
00O0O0O 01002
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph I':

M = C(1,2,3,4,5)

{
Hence, by Smith’s (CP) and Lusztig: We get a representation of We 2

if I is a ADE Dynkin diagram for e + 2 being the Coxeter number.

|That these are N-modules follows from categorification. |
I 5 Z 4 5

[‘Smaller solutions’ are never N-modules. |

20100 00O0O0O
2 00O0O0O
bs ~» Mg = 00000 b, ~ M, = 11200
00000 01020
00000 01002
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N-modules via graphs.

Construct a W,-module M associated to a bipartite graph T
M = (C(1,2,3,4,5)

Classification.
Complete, irredundant of transitive N-modules of We»:
apex ‘ @ cell ‘ @—O cell ‘ cell
N-reps. ‘ Mo,o ‘ MADE+bicolering for e +2 = Cox. num. ‘ Mo
I J Z 1 J

|| learned this from Kildetoft—-Mackaay—Mazorchuk—Zimmermann ~2016. |

|Fun fact about associated simples:

o 'UIOOOO
02111 00000
bs ~» Mg = 00000 b, ~ M, = 11200
00000 01020
00000 01002

Daniel Tubbenhauer Dihedral groups, SL(2)y and beyond July 2019 8/13



Example (I(4), e = 2).

Cell structure:

left cells
[1]
2|1
12

“left modules”

Daniel Tubbenhauer

number of elements | 2
1

right cells two-sided cells

1]

21

1]2

1]
2|1
12

“right modules”  “bimodules”

Dihedral groups, SL(2)g and beyond

H-cells
[1]

2] 1

1]2

“subalgebras”

July 2019
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Example (I2(4), e = 2).

Cell structure:

Example.

1-1=+v"1.

left cells
[1]

21

—
N

L]

“left modules”

Daniel Tubbenhauer

right cells

1]

2

1

1

2

[1]

“right modules”

(v is the Hecke parameter deforming e.g. s> =1to T2 = (v ! —v)T. + 1))

two-sided cells

1]

N
NH‘

—_

[1]

“bimodules”

Dihedral groups, SL(2)g and beyond

“su ba@bras”

July 2019
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Example (I2(4), e = 2).

Cell structure:

1 | —
Example.
1-1=v"1.
(v is the Hecke parameter deforming e.g. s> =1to T2 = (v ! —v)T. + 1))

Example.

bs - b = (v'+4bigger powers)b;.

Jei bsis - bs = (v +bigger powers)bs:s. ells
bsis - bets = (v -+bigger powers)b,higher cell eIements.,‘
[l bee biee = (bigger powers)bs: + higher cell elements. 1]
12 12 12 112
1] 1] 1] 1]
“left modules” “right modules”  “bimodules” “subalgebras”

Daniel Tubbenhauer Dihedral groups, SL(2)g and beyond July 2019 9/13



Example (I2(4), e = 2).

Cell structure:

1 | —
Example.
1-1=v"1.
(v is the Hecke parameter deforming e.g. s> =1to T2 = (v ! —v)T. + 1))

Example.
b, - b, = (v''+4-bigger powers)bs.
lef bsis - bs = (v’1+bigger powers) bs:s. ells
| bsts - bsts = (v +bigger powers)b,+higher cell elements. L
bs:s - b.s. = (bigger powers)bs: + higher cell elements. |1
[Tz BE [i]7] O
m Example. m

“left modules” “subalgebras”

buy - bwy = (v*-+bigger powers) by,

Daniel Tubbenhauer Dihedral groups, SL(2)g and beyond July 2019
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Example (15(4). e = 2).

Cell st

Fact (Lusztig ~1980++).

For any Coxeter group W
there is a well-defined function

a: W—N
which is constant on two-sided cells.

Asymptotic limit v — 0 “=" kill non leading terms of ¢, = v®by,
eg. C.=vV bs and ¢ = (1+v°)c.

‘Thlnk Positively graded, and asymptotic limit is taking degree 0 part. ‘

[T ] \ [

2|1 2|1 2 2

1|2 1|2 1 1]2

[1] [1] [1] [1]
“left modules” “right modules” “bimodules” “subalgebras”

Daniel Tubbenhauer Dihedral groups, SL(2)g and beyond July 2019
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Compare multiplication tables. Example (e = 2).

a=asymptotic element and [2] = 1 + v2. (Note the “subalgebras”.)

H as Asts as ‘ El ‘ s ‘ s
a & | @us a
a, I 3sts a. as
ais ais a ay + ace
a a. | aws a.s
ais ais a ais
a. ‘ as as a; +a
H I Cots I8 c Cis Cis
< [2]e. [2)eses [2)e. c Coe + Cug G Cots
Cats [2]c..e [2]es + [2]%cue [2]ce: + [2]cw, Co+ Cais G + [2]%cup Co + Care + [2cu,
Cis [2)c.s [2)cs + [2]cm [2c. + [2]ces C 4 Ciee | G+ st + [2]cw, 2¢is + Cuy
c Cis Cis + Cup C.+ Cis [2]c [2]c:s [2e.s
Coet || €+ Cis . + [2]%cuw ¢+ cooe + 2w, | [2es [2lc. + [2]2cu, [2lcee + [2cw,
c. Co+ Covs | Cs + Covs + [2)Cw 2¢5. + Cuy [2]ecs [2]cse + [2]cw, [2]cs + [2]cses
The limit v — 0 is much simpler! Have you seen this ?
July 2019

Daniel Tubbenhauer Dihedral groups, SL(2)y and beyond
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Back to graphs. Example (e = 2).

M = C(1,2,3)
—
2
1 0 0 0
Cs ~ c.~ [0 O 0
v v 14v?
0 1+v2 v 0 0 0
Cors ~ | 14v2 0 v Cse~ 10 O 0
0 0 0 v v 14v?
0 0 0 v v 1+4v
Cis ™ 0 0 0 Cao~ | v v 1+v
14v2 14v2 v 0 0 0

Daniel Tubbenhauer Dihedral groups, SL(2)y and beyond
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Back to graphs. Example (e = 2).

M = C(1,2,3)
— ¥
2
1 0 0 0
Cs ~ c.~ [0 O 0
v v 14+v?
0 1+v2 v 0 0 0
Cors ~ | 1492 0 s Cse~ 10 O 0
0 0 0 v v 14v?
0 0 0 v v 1+v
Cis ~ 0 0 0 Cor~ | v v 1+4v
1+v2 14v2 v 0 0 0

Daniel Tubbenhauer Dihedral groups, SL(2)y and beyond
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Back to graphs. Example (e = 2).

M = C(1,2,3)

e ——

1 3 2
1 00 0 0 O
as~ |0 1 0 a.~ |10 0 O
0 0 O 0 01
010 0 0O
ass~ |1 0 0 asc~ (0 0 O
0 0O 0 01
0 0 O 0 0 1
as~ |0 0 0 as.~ |0 0 1
1 1 0 0 0 O

Daniel Tubbenhauer Dihedral groups, SL(2)y and beyond July 2019 11/13



Example.

= as + as:s

At Aes

[La][L1] = [Lo] + [Le]

o o -

O O

— — O

o O ©o

O O o

Back

\)
I N i
o~ °©°
coo ©0©°
coo 2°2°
(

o O o

o - O

— O O

o O O

— O O

O — O

— — O

o O O

2 @ @

© @ &

=2 @ =

O O -

11/13

July 2019
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Back

Example.

Astdis = s + Ases

ey

[L1][L1] = [Lo] + [Le]

0 0 1 0 0 O 1 1 0 1 0 O 0 1 O

0 0 1 0 0 0J]=(1 1 0)]=|010]+|1 0 O

0 0 O 1 1 0 0 0 O 0 0 O 0 0 O
/1 _0 0\ /00 0\

This works in general and recovers the transitive N-modules

Etingof—-Khovanov ~1995, Kirillov—Ostrik ~2001 and Ostrik ~2003,

of Ko(SL(2)q) found by

which are also ADE classified.

A

0 0 O 0 0 1
as~ |0 0 O ase~ |0 0 1
1 10 0 0 O

Daniel Tubbenhauer Dihedral groups, SL(2)y and beyond
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Back

Example.

Astdis = s + Ases

ey

[L1][L1] = [Lo] + [Le]

o
o

0 0 1 0 1 1 0 1 0 O 0 1 O

0 0 1 0 0 0J]=(1 1 0)]=|010]+|1 0 O

0 0 O 1 1 0 0 0 O 0 0 O 0 0 O
/1 _0 0\ /00 0\

of Ko(SL(2)q) found by

which are also ADE classified.

This works in general and recovers the transitive N-modules

Etingof—-Khovanov ~1995, Kirillov—Ostrik ~2001 and Ostrik ~2003,

However, at this point this was just an observation
and it took a while until we understood its meaning.

(Cliffhanger: Wait for Marco's talk.)

oo 0O

Daniel Tubbenhauer
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Back to graphs. Example (e = 2).

Classification.

Complete, irredundant list of
simple transitive 2-modules of dihedral Soergel bimodules:

apex ‘ @ cell ‘ ®-Q@ cel ‘ cell

2-reps. ‘ Moo ‘ MADEtbicolering for € +2 = Cox. num. ‘ M, »

UJ.UI [=} IUUUI

| Iearned this from Kildetoft-Mackaay—Mazorchuk—Zimmermann ~2016. |
0 0
0
1

0

_ =

0
0
0
0
0

O O O o o o

OO ‘o~ o
o

= o o O O

0
0
0
0
0
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Back to graphs. Example (e = 2).

Classification.

Complete, irredundant list of

@—O cell

simple transitive 2-modules of dihedral Soergel bimodules:

apex ‘ @ cell ‘ ‘ cell

2-reps. ‘ Moo ‘ MADEtbicolering for € +2 = Cox. num. ‘ M, »
| Iearned this from Kildetoft-Mackaay—Mazorchuk—Zimmermann ~2016. |
Proof? 0 0
. 0 0
dste The first proof was “brute force”. 01
Now we have a much better way of doing this.
(Again: cliffhanger.) 0 1
ais ~ 0 1
Ty w 0 0

Daniel Tubbenhauer

Dihedral groups, SL(2)y and beyond
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Where to find SL(m),?

First try: What are the asymptotic limits of finite types?

» No luck in finite Weyl type: v — 0 is Rep((Z/2Z)%).
» No luck in dihedral type: v — 0 is SL(2)4 (¢?("~2) = 1).
» No luck for the pentagon types H3 and

> Maybe the dihedral case?

Daniel Tubbenhauer Dihedral groups, SL(2)y and beyond July 2019 12/13



Where to find SL(m),?

First try: What are the_asumntotic limite of finite tvnec?
Idea 1: Chebyshev knows everything!

> —o—@ ] . 7 J
So where have we seen the magic formula .
ool lng XUpmi1(X) = Umy2(X) + Um(X) Lt

before? .

No luck in finite Weyl type: v — 0 is Rep((Z/2Z)¥).
No luck in dihedral type: v — 0 is SL(2), (g% "2 = 1).
No luck for the pentagon types H3 and

Maybe the dihedral case?

vV vyvyy
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Where to find SL(m),?

First try: What are the_asumntotic limite of finite tvnec?
Idea 1: Chebyshev knows everything!
L !

So where have we seen the magic formula 5

._."”7(“‘ X Um+1(x) = Um+2(x) + Um(x) ? Hy

before? 5

" = v @ .80

Here:

2] -[e+ 1] =[e+ 2]+ [€]

L1 ® Let1 = Leto @ Le
» N|Le = €' symmetric power of the vector representation of (quantum) sly.
» No luck in dihedral type: v — 0 is SL(2)4 (¢2("~2) = 1).
» No luck for the pentagon types Hz and
>

Maybe the dihedral case?
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Where to find SL(m),

First try: What are the

?

acumntatic limite of finite tuynec?

Idea 1: Chebyshev knows everything!

-9 ) Fy
So where have we seen the magic formula 5
o Ol EUna(®) = Una(®) + Un(®)  [* "7
before? 5
e — L I )
Here:

[2] - [e + 1] = [e + 2] + [€]
Li ®Ley1 2 Ley2 @ Le

N|Le = ™™ symmetric power of the vector representation of (quantum) sly.

| 2
T R s 2(n—2
> No [y=" . Idea 2: 'Ir'\he éiL(lea:'al {typ(e is) -
> Nol a quotient of affine type A;.
> Mayt Very vague philosophy | want to sell:
Fusion categories appear as of Soergel bimodules.

Daniel Tubbenhauer

Dihedral groups, SL(2)y and beyond
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2 O /[

Wh

First

vV vyvyy

— rough version.

SL(m)4 is the semisimple version of
a subquotient of Soergel bimodules for affine type Am—1.
The KL basis correspond to the images of L.

as everything gets combinatorially more complicated.

Quantl.Jm Satake (Ellas ~2013, Mackaay—Mazorchuk—Miemietz ~2018)

Beware: Only the cases m = 2 (dihedral) and m = 3 (trihedral) are proven,

® o o 6 e e e o o o o o
H,

No luck in finite Weyl type: v — 0 is Rep((Z/27)¥).

No luck in dihedral type: v — 0 is SL(2), (g% "2 = 1).
No luck for the pentagon types H3 and

Maybe the dihedral case?

Daniel Tubbenhauer Dihedral groups, SL(2)y and beyond
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2 O /[

Wh

First

Quantum Satake (Elias ~2013, Mackaay—Mazorchuk—Miemietz ~2018)
— rough version.

SL(m)4 is the semisimple version of
a subquotient of Soergel bimodules for affine type Apm—1.
The KL basis correspond to the images of L.

Beware: Only the cases m = 2 (dihedral) and m = 3 (trihedral) are proven,
as everything gets combinatorially more complicated.

® o o 6 e e e o o o o o
H

Summary of Nhedral.

Most questions are still open, but nice appear.

Leaves the realm of groups. (No associated Coxeter group; only a subquotient.)

Generalized zigzag algebras, Chebyshev polynomials and ADE diagrams appear.

ADE-type classification(?) of 2-representations.

Fusion: SL(m), appears.

Daniel Tubbenhauer Dihedral groups, SL(2)y and beyond July 2019
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The e Ay

Th e D fariy

.y

e At

Th e € cctons R

1 o
TR

L)

Compare maltplcation tabes. Example (e = 2).

Example (¢=2) 1

Example (1(4).¢ = 2)

[Ep—

el righeas

& o
I I -

wosided calls el

o (o] o L]
et modues” "t o “bimoduls”  “sublgebas

Back to graphs. Example (¢ ~2).

a-asympttic dement and [2] = 1.+ v (Noto the “subslgbras” )

“The fusion ring Ku(SO(3)) for G = 1 hs simple abjcts L (] The Fecel

it -+ 0 h smple abet 2.5

Computon o mekihcation e
TR ¢ T
e

The Hcel it - 0% Ks(SO(3)).

u
i3

2l ans o 3] )
5
0
E - 0
T it s+ 0is moch simplert Have you e s CEDY 4
- Example (ype Ho) Example (Fusion grphs o e ).
i ke 50 ADE g
s of U 0 st e o 0.
Fisan e e ADE g —
ooy 1
RO U AT o oy o 0.
> Toe o
+ Gerend] T tr ot o oo s ADE g
o i
% S ] e o ) o ity v
> Check: Threre TrooT
[— Prainige) =145
00+ 405) ; "
Diflrence o SL2): Thre i 3 st auver 3 this s na sl " s
(et e st )
@ - s
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There is still much to do...
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T
one

Tuo!

v.

Compare maltplcation tabes. Example (e = 2).

a-asympttic dement and [2] = 1.+ v (Noto the “subslgbras” )

The it v - 05 much smplert Have you seen s GEE87

The e Ay

Example (1(4).¢ = 2)

e — [ pem— o
2 B E &
et

Example (¢=2)

Back to graphs. Example (¢ ~2).

“The fusion ring Ky(SO(3),) or
0'hs simple objcts 3.,

L hassimple bjects (L], L) The e

Comparison of mulipication table:

The Hecelllmit v 50

s KolSO(3),)
3 e (o). dues = (L),

u
i3

- Examle (1y0e Ho). Exompe (Fusion graphs fo leve 3.
53 e e ADE g
e of LAY o e g when 0. N X

s an ffn e ADE g "
RO U AT o oy o 0.
I s ) g oty
+ Getend] i nethe e or ffn ype ADE g
e e
5 e e o A g orety when
e

e it ressons o 241 Frnigen =145
[ 1200+ 445) " .
Difrence t SL(2)y: Ther s an hanst uiver 3 this & non-semisimple. G
- (“Tobeal g sgbeat )
- @

Daniel Tubbenhauer

Thanks for your attention!
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Uo(X) =1, Up(X) =X, XUep1(X) = Ueora(X) + Uu(X)

Kronecker ~1857. Any complete set of conjugate algebraic integers in | —2,2[ is
a subset of roots(Ue+1(X)) for some e.

The roots of the Chebyshev polynomials
The roots of the Chebyshev polynomials The case of - being even
The case of ¢ being odd

Figure: The roots of the Chebyshev polynomials



The type A family
e=3

—A—F—k

~
~

The type D family

e=10

.

The type E exceptions

e=16

f
i

e =28



The type A family
e=3

e=0 e=1 e = e=4

v —h—y —_——— —
—k —h—¥—k

* —— Fe—F—h—F—k

The type D family

e=38 e=10

]

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the classical representations.

M M M M

The type E exceptions

e=10 e=16 e =128




Example (e = 2). Simples associated to cells.

Classical representation theory. The simples from before.

Moo Ma,o M 5 Mo,» M,
atom sign | trivial-sign rotation sign-trivial | trivial
rank 1 1 2 1 1

wexkl) | @ | ©-@ | ©®-@ | ©®-@ | ®

KL basis. ADE diagrams and ranks of transitive N-modules.

bottom cell e — — top cell
atom sign My 0®M, 5 Mo &M, /5 trivial
rank 1 3 3 1

apex(KL) @ ®-0 -0 (@)

The simples are arranged according to cells. However, one cell might have more
than one associated simple.



Example (e = 2).

The fusion ring Ko(SL(2),) for g°¢ = 1 has simple objects [Lo], [L1], [L2]. The
limit v — 0 has simple objects ag, as:s, ast, a:, dcst, dis-

Comparison of multiplication tables:

| .

| [Lo] | [La] | [Ld]
[Lo] | [Lo] | [L2] [L1]
[La] | [L2] | [Lo] [L1]
(L] ] (L] | (L] | Tko] + (2]

The limit v — 0 is a bicolored version of Ky(SL(2)4):

as&a. «~ [Lo],

Daniel Tubbenhauer

Asis a. ‘ a ‘ s ais

as as Asts as

Asts asis as as

Ais ais Ais a. + ais

a a a.. ais

a.s acs a a.s

as as as as + asis
3ses&aisr o [L],  asc&acs e~ [L1].
Dihedral groups, SL(2)y and beyond July 2019
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Example (e = 2). |This is the slightly nicer statement. |

The fusion ring Ko(SO(3),) for g?¢ = 1 has simple objects [Lo], [L2]. The H-cell
limit v — 0 has simple objects ag, as:s.

Comparison of multiplication tables:

[Lo] | [L2] as | ases
L] [l [l & & [[a [a.
[L2] || [L2] | [Lo] asts || @sis | @s

The H-cell limit v — 0 is Kp(SO(3)4):

dg e [Lo], dgtg YV [L2]

Daniel Tubbenhauer Dihedral groups, SL(2)y and beyond July 2019



Example (e = 2). |This is the slightly nicer statement. |

The fusion ring Ko(SO(3),) for g?¢ = 1 has simple objects [Lo], [L2]. The H-cell
limit v — 0 has simple objects ag, as:s.

Comparison of multiplication tables:

[Lo] | [L2] as | ases

L] [l [l & & [[a [a.

[La] || [Lo] | [Lo] agis || Ases | s
Fact.

The H-cell limit ¥

Both connections are always true (i.e. for any e).
dg e I_LOIa dsts |_L2]

Daniel Tubbenhauer Dihedral groups, SL(2)y and beyond July 2019



Example (e = 2).

The fusion ring Ky(SO(3),) for g?¢ = 1 has simple objects [Lg], [Ls]. The H-cell

|| The bicoloring is basically coming from slightly different fusion graphs e.g. for e = 6:

»

Daniel Tubbenhauer Dihedral groups, SL(2)y and beyond July 2019
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The zigzag algebra Z(I')
u u
v ﬁ ﬁ v
d d

uu=0=dd,ud = du

Apply the usual philosophy:

» Take projectives P, = @, P, and P. =, P;.
Get endofunctors B; = P ®z(ry — and B. = P, ®z(r) —.
Check: These decategorify to b and b..

Check: These give a genuine 2-representation.

Check: There are no deformations.

>
>
>
|

Difference to SL(2)4: There is an honest quiver as this is non-semisimple.



rzle=\

Neat consequence. A characterization of ADE diagrams.

I is a finite type ADE graph
if and only if
entries of U¢(A(I)) do not grow when e — 0.

I is an affine type ADE graph
if and only if

Apply the usu
PPY entries of U(A(T)) grow linearly when e — 0.

» Take pro
Get endd I is neither finite nor affine type ADE graph

>
. if and only if
> Check: 1 entries of Uc(A(l)) grow exponentially when e — 0.
| 4
>

Check: Tmese gIve a genuIme Z-Tepresentation.

Check: There are n Proof?

Use projective resolutions of Z(I).

Difference to SL(2)4: There is an honest quiver as this is non-semisimple.



Example (type H,).

[ cel JoJ1[2[3[4a] 55 Je=6] 5 [# 3 [2][1V][0]
| size [[1]32]162]512[625] 1206 | 9144 [ 1296 | 625 [ 512 [ 162 [ 32 [ 1 |
[ a [JoJ1[2[3[4a] 55 | 6 [15[16]18]2][31]60]
[voo[[o]o]20[o[O0] o [bg | O[O0 J20[20]20][0]

1435 | 13108 | ldegs
The blg cell: 13g10 | 181010 | 186,10
l4g6 | 18106 | 2466

o O O S PFdim(gen) = 1 + /5,
N PFdim = 120(9 + 4V/5).

Daniel Tubbenhauer Dihedral groups, SL(2)y and beyond July 2019 2/3



Example (Fusion graphs for level 3).

(s "
Ce e
]
1
(=] e
Ce
a—p0
-,
¥ .

PARV RS

In the non-semisimple case one gets quiver algebras supported on these graphs.
(“Trihedral zigzag algebras”.)

< Stop - you are annoying!
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