
Some first steps towards 2-representation theory of
Coxeter groups

Or: The “next generation” of representation theory of Coxeter groups!?

Daniel Tubbenhauer

Kar(Dn)

[·]⊕

��

full-grown 2-action
// End(V)

[·]⊕

��
Wn

classical action

//

categorical action

66

End(V)

Joint work with Marco Mackaay

October 2016

Daniel Tubbenhauer October 2016 1 / 25



1 Categorical representation theory
Classical representation theory
Categorical representation theory

2 “Dihedral representation theory”
Dihedral groups as Coxeter groups
Dihedral groups and their representations

3 “Dihedral 2-representation theory”
Categorical representations of dihedral groups
Classification of dihedral 2-representations

Daniel Tubbenhauer October 2016 2 / 25



Frobenius and Burnside: pioneers of representation theory

Let C[G ] be the group ring of a (finite) group G .

Frobenius (∼1895 onwards), Burnside (∼1900 onwards): Representation
theory is the (useful) study of linear group actions:

R : C[G ] −→ End(V), R(g) = a “matrix” in End(V),

with V being some C-vector space. We call V a G -module or a G -representation.

The “atoms” of such an action are called simple.

Maschke (∼1899): All G -modules are built out of such atoms (“Jordan-Hölder”).
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The strategy

“Groups, as men, will be known by their actions.” – Guillermo Moreno

The study of group actions is of fundamental importance in mathematics and
related field. Sadly, it is also very hard.

Representation theory approach: the analogous linear problem of classifying
G -modules has a satisfactory answer for many groups.

Problem involving
a group action

G X

Problem involving
a linear group action

C[G ] C[X ]

“Decomposition of
the problem”
C[G ]

⊕
Vi
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The basic theorems for finite groups

(a) All G -modules are built out of simple representations of G .

(b) The character of a simple G -module determines it.

(c) There is a one-to-one correspondence

|{simple G -modules}/iso|
1:1←→

|{conjugacy classes in G}|.

(d) All simple G -modules can be constructed intrinsically using the regular
G -module. For some groups these can be constructed explicitly.

We want to have a categorical version of this list! In this talk I discuss this for
dihedral groups. (For most groups this is out of reach at the moment!)

But before let me explain what categorical representation theory is all about.
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Categorified symmetries

Let A be some (group) algebra, V be an A-module and V be a (suitable) category.

“Classical” // “Higher”

a 7→ R(a) ∈ End(V) // a 7→R(a) ∈ End(V)

(R(a1) · R(a2))(v) = R(a1a2)(v) // (R(a1) ◦R(a2))
(
X
α

) ∼= R(a1a2)
(
X
α

)
A (weak) categorification of the A-module V should be thought of a categorical
action of A on V with an isomorphism ψ such that

[V]⊕

	

[Ra]
//

ψ

��

[V]⊕

ψ

��

V
R(a)

// V.
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Categorification in a nutshell

The picture to keep in mind regarding categorification is:

categories

“categorifies”

��

functorsoo

“categorifies”

��

nat. trafosoo

vector spaces

“categorifies”

��

linear mapsoo

numbers

Mazorchuk-Miemietz (∼ 2014): Notion of “2-atoms” (called simple transitive).
All (suitable) 2-representations are built out of 2-atoms (“2-Jordan-Hölder”). These
are “determined” on the level of the Grothendieck group.

These are the categorical analogs of (a)+(b) from our list.
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The state of the arts

• Chuang-Rouquier (∼ 2004), Khovanov-Lauda (∼ 2008): Systematic
study of 2-representations of Lie algebras.

• Chuang-Rouquier (∼ 2004), Khovanov-Lauda (∼ 2008): All (simple)
representations have categorifications.

• Rouquier (∼ 2008), Losev-Webster (∼ 2013): These are “unique”.

• Mazorchuk-Miemietz (∼ 2014): These are all 2-atoms (morally).

• Plenty of applications are known, e.g. in low-dimensional topology:
Lauda-Queffelec-Rose (∼ 2012) realized Khovanov-Rozansky homology via
such 2-representations.
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The state of the arts

• Mazorchuk-Miemietz (∼ 2010): Systematic study of 2-representations of
finite Coxeter groups.

• Mazorchuk-Miemietz & co-authors (∼ 2010 onwards): Not all
representations have categorifications.

• “Uniqueness” fails in general.

• Classification results are rare at the moment.

• Applications: Work in progress!
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Coxeter groups and reflections

Given a finite set S = {s, t, . . . }, then the group

W = 〈S , s2 = t2 = · · · = 1, . . . sts︸ ︷︷ ︸
mst

= . . . tst︸ ︷︷ ︸
mts

, etc.〉

is called a Coxeter group. They correspond to Coxeter graphs or matrices e.g.:

s t u

v

• • •

•

∞ 4

!
mst =∞ (aka no relation),

mtu = 4,mtv = 3,
rest commute.

!


2 ∞ 2 2
∞ 2 4 3
2 4 2 2
2 3 2 2



Coxeter (∼ 1935), Tits (∼ 1961): Coxeter groups are abstract groups giving a
generator-relation presentation of reflection groups.
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The main example today: dihedral groups

The dihedral groups are of Coxeter type I2(n):

Wn = 〈s, t|s2 = t2 = 1, sn = . . . sts︸ ︷︷ ︸
n

= w0 = . . . tst︸ ︷︷ ︸
n

= tn〉,

e.g.: W4 = 〈s, t|s2 = t2 = 1, tsts = w0 = stst〉

These are the symmetry groups of regular n-gons. For example take n = 4, the
Coxeter complex is:

• •

•

•

•

••

••

1

But there are also more fancy examples.
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Kazhdan-Lusztig combinatorics of dihedral groups

Let W = C[Wn] for n ∈ Z>2 ∪ {∞}.

For any word w ∈Wn define (hereby ≤ denotes the Bruhat order)

θw =
∑
w ′≤w

w ′, w ,w ′ ∈Wn.

The set {θw | w ∈Wn} forms the Kazhdan-Lusztig basis. For example:

θs = s + 1, θt = t + 1, θsts = sts + ts + st + s + t + 1, etc.

These basis elements have positive structure constants, e.g.:

θsθs = 2 · θs , θtθt = 2 · θt , θsθtθs = θsts + θs ,

n = 4: θsθtθsθt + 2 · θtθs = θw0 = θtθsθtθs + 2 · θsθt .

Thus, we have a good chance for categorification.
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Most representations are “not nice”

Let n be even. (The odd case is similar.) Then the simple Wn-modules are either
one-dimensional or two-dimensional (for k = 1, . . . , n−2

2 ):

V±± = C;

{
s  +1,−1; t  +1,−1,

θs  2, 0; θt  2, 0,

Vk = C2;


s  

(
cos( 2πk

n ) sin( 2πk
n )

sin( 2πk
n ) − cos( 2πk

n )

)
; t  

(
1 0

0 −1

)
,

θs  

(
2 · cos2(πkn ) sin( 2πk

n )

sin( 2πk
n ) 2 · sin2(πkn )

)
; θt  

(
2 0

0 0

)
,

∼= Vk .

Most of these do not look suitable for categorification...
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“Zig-zag algebras” provide categories

Fix a bipartite graph G . The double quiver QG associated to G is

G = 1 2 3  QG = 1 2 3 .

Let QG denote the quotient algebra obtained from PG by some (today
not-super-important) “zig-zag-relations”. Consider G = QG-pMod.

Example à la Khovanov-Seidel (∼ 2000) (for n − 1 vertices):

1 2 3 4 5 6 7

two steps in one direction are zero, e.g.: 5|4|3 = 0,

returning to a vertex is “unique”, e.g.: 3|2|3 = 3|3 = 3|4|3.

Looks promising: [G]⊕ ∼= Cvertices. We need an action!
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A functorial action

There is a QG-bimodule iPi for each i ∈ G given by “path that start in i tensor
path that end in i”. (Formally it is QG i⊗ i QG.) Define endofunctors of G via

Θs =
⊕
i∈G

iPi ⊗QG −, Θt =
⊕
j∈G

jPj ⊗QG −.

Example: We sum over the graph of type A7 as

• • • • • • •Θs Θt Θs Θt Θs Θt Θs

Lemma: One checks that (for simplicity in the case of the example)

Θs(Pi) ∼=

{
Pi ⊕ Pi, if i ∈ S,

Pj−1 ⊕ Pj+1, if i ∈ T,
Θt(Pi) ∼=

{
Pi ⊕ Pi, if i ∈ T,

Pj−1 ⊕ Pj+1, if i ∈ S.

Note: ΘsΘs
∼= Θs ⊕Θs and ΘtΘt

∼= Θt ⊕Θt . Looks very promising.
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A completely explicit example

[Θt ] act on [A(3)]⊕ and [Ã(3)]⊕ via

[Θs ] =

2 0 1
0 2 1
0 0 0

 , [Θt ] =

0 0 0
0 0 0
1 1 2

 (in type A3)

[Θs ] =


2 0 1 1
0 2 1 1
0 0 0 0
0 0 0 0

 , [Θt ] =


0 0 0 0
0 0 0 0
1 1 2 0
1 1 0 2

 (in type Ã3)

(These are written on the bases {[P1], [P3], [P2]} and {[P0], [P2], [P1], [P3]}.)

[Θs ][Θt ][Θs ][Θt ] + 2 · [Θt ][Θs ] = [Θt ][Θs ][Θt ][Θs ] + 2 · [Θs ][Θt ], (in type A3)

[Θs ][Θt ][Θs ][Θt ] + 2 · [Θt ][Θs ] 6= [Θt ][Θs ][Θt ][Θs ] + 2 · [Θs ][Θt ], (in type Ã3)

Thus, [A(3)]⊕ has the structure of an W4-module, but [Ã(3)]⊕ does not.
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The “categorical list”

For fixed n, we say G is of ADE type if either G is of type An−1, of type Dn/2+1 (if
n is even) or of type E6, E7, E8 (if n = 12, 18, 30). (Example)

(a) All Wn-modules are built out of simple representations of Wn.

(b) The character of a simple Wn-module determines it.

(c) There is a one-to-one correspondence

|{simple Wn-modules}/iso|
1:1←→

|{conjugacy classes in Wn}|.

(d) All simple Wn-modules can be constructed explicitly (remember: I gave the
matrices a few slides back).
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For fixed n, we say G is of ADE type if either G is of type An−1, of type Dn/2+1 (if
n is even) or of type E6, E7, E8 (if n = 12, 18, 30). (Example)

(a) All (suitable) 2-representations of Wn are built out of simple transitive ones.

(b) Simple transitive 2-representations of Wn are determined by [Θs ], [Θt ].

(c) There is a one-to-one correspondence

|{non-trivial simple transitive 2-representations of Wn}/iso|
1:1←→

|{bipartite graphs G of ADE type}/iso|.

(d) For each G of ADE type the corresponding simple transitive 2-representations
of Wn can be constructed explicitly via “zig-zag-quivers”.

This is the categorical version of our list! And we have a new one:

(e) All (suitable) categorifications of Wn-modules arise in this way (in particular,
most Wn-modules are not “categorifiable”).
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Sorry, I have to bore you a bit more

F Works graded as well, giving the same for the associated Hecke algebras Hn.

F We also have the higher structure, i.e. we have a strong 2-action:

Kar(Dn)

[·]⊕
��

full-grown 2-action
// End(G)

[·]⊕
��

Hn
classical action

//

categorical action

55

[End(G)]⊕

Here Dn is the Hecke 2-category (“Soergel bimodules”) categorifying Hn.

F Everything (should) work for more general Coxeter groups (using
“rank-colored” graphs instead of 2-colored graphs), e.g. for W∞. But the
classification story is way more complicated and open at the moment.

F “Application”: There is a reason for the classification in the dihedral case, i.e.
the categories acted on are essentially the fusion subcategories of Uq(sl2)
(which are thus, naturally graded).

But most questions still remain mysterious!
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There is still much to do...
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Thanks for your attention!
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Figure: Quotes from “Theory of Groups of Finite Order” by Burnside – top: first edition
(1897); bottom: second edition (1911).

Back

Daniel Tubbenhauer October 2016 19 / 25



Figure: The Coxeter graphs of finite type.

Example: The type A family is given by the symmetric groups using the simple
transpositions as generators.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Back
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Figure: The Coxeter complex of type B3.

(Pictures from https://en.wikipedia.org/wiki/Coxeter_notation.)

More or Back

Daniel Tubbenhauer October 2016 21 / 25

https://en.wikipedia.org/wiki/Coxeter_notation


Figure: The action and the Coxeter complex of type I2(∞).

(Pictures from https://en.wikipedia.org/wiki/Coxeter-Dynkin_diagram.)

Back
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For n = 8 there are four ADE -G ’s which are non-isomorphic as bipartite graphs:

|S| = 4, |T| = 3: • • • • • • • ,
|S| = 3, |T| = 4: • • • • • • • ,

|S| = 2, |T| = 3: • • •

•

•

|S| = 3, |T| = 2: • • •

•

•
More or Back
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G = • • •

•

•

, [G]⊕ ∼= V1 ⊕V3 ⊕V−+

V1 = C2; θs  
1

2
·
(

2 +
√

2
√

2√
2 2−

√
2

)
; θt  

(
2 0
0 0

)
,

V3 = C2; θs  
1

2
·
(

2−
√

2
√

2√
2 2 +

√
2

)
; θt  

(
2 0
0 0

)
,

V−+ = C; θs  0; θt  2.

Hence, there is a bases change such that all matrices with positive integer entries.

Back
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Elias-Khovanov (∼ 2009), Elias-Williamson (∼ 2013): For any Coxeter group
W the Hecke 2-category DW is given by diagrammtic generators and relations, e.g.:

s

s

,

t

t

,

s

• ,

s

• ,

t

• ,

t

•

s

s s

,

s

s s

,

t

t t

,

t

t t

Soergel (∼ 1992): If W is a Weyl group, DW is equivalent to the 2-category of
projective endofunctors on O0 attached to the Lie algebra g for W.

Morally: DW is a combinatorial way to analyze infinite-dimensional modules of g.

Back
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