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Let A(Γ) be the adjacency matrix of a finite, connected, loopless graph Γ. Let
Ue+1(X) be the Chebyshev polynomial .

Classification problem (CP). Classify all Γ such that Ue+1(A(Γ)) = 0.

for e = 2

for e = 4

Smith ∼1969. The graphs solutions to (CP) are precisely
ADE graphs for e + 2 being (at most) the Coxeter number.

Type Am: • • • · · · • • • for e = m − 1

Type Dm: • • · · · • •

•

•

for e = 2m − 4

Type E6:
• • • • •

•
for e = 10

Type E7:
• • • • • •

•
for e = 16

Type E8:
• • • • • • •

•
for e = 28
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1 The dihedral group revisited
Dihedral groups as Coxeter groups
Dihedral representation theory

2 Dihedral representation theory
A brief primer on N0-representation theory
Dihedral N0-representation theory

3 Dihedral 2-representation theory
A brief primer on 2-representation theory
Dihedral 2-representation theory
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The main example today: dihedral groups

The dihedral groups are of Coxeter type I2(e + 2):

We+2 = 〈s, t | s2 = t2 = 1, se+2 = . . . sts︸ ︷︷ ︸
e+2

= w0 = . . . tst︸ ︷︷ ︸
e+2

= te+2〉,

e.g.: W4 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2 the
Coxeter complex is:

• H

H

H

H

FF

FF

1

I will explain in a few minutes
what cells are.

For the moment: Never mind!

Lowest cell.

Highest cell.

s-cell.

t-cell.
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Kazhdan–Lusztig combinatorics of dihedral groups

Consider We+2 = C[We+2] for e ∈ Z>0 ∪ {∞}.

The Bott–Samelson (BS) basis is

θs = s + 1, θt = t + 1,

{θw = θwr · · · θw1 | w = wr · · ·w1 reduced word}
The Kazhdan–Lusztig (KL) basis is

{θw = w +
∑

w′<ww
′ | w ,w ′ reduced words}.

Relations for the BS generators:

θsθs = 2θs, θtθt = 2θt,

some relation for . . . sts︸ ︷︷ ︸
e+2

= w0 = . . . tst︸ ︷︷ ︸
e+2

.

Example (e > 2).

1 s ts sts tsts

BS 1 s + 1 ts + s + t + 1
sts

+ts + 2s + t + 2

tsts + sts + tst

+3ts + st + 3s + 3t + 3

KL 1 s + 1 ts + s + t + 1
sts

ts + st + s + t + 1

tsts + sts + tst

+ts + st + s + t + 1

etc.

The magic formulas.

Example (e = 2).

Lusztig ≤ 2003.

The change of basis matrix between the BS and the KL basis
is given by the coefficients dk

e of the Chebyshev polynomials.

Example.

U7(X) = 1 · X7 − 6 · X5 + 10 · X3 − 4 · X
&

θtstststs = 1 · θtθsθtθsθtθsθtθs − 6 · θtθsθtθsθtθs + 10 · θtθsθtθs − 4 · θtθs.

“Chebyshev–braid-like”
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Dihedral representation theory on one slide

One-dimensional representations. Mλs,λt
, λs, λt ∈ C, θs 7→ λs, θt 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M0,0, M2,0, M0,2, M2,2 M0,0, M2,2

Two-dimensional representations. Mz , z ∈ C, θs 7→ ( 2 z
0 0 ), θt 7→ ( 0 0

z 2 ).

e ≡ 0 mod 2 e 6≡ 0 mod 2

Mz , z ∈ V±e −{0} Mz , z ∈ V±e

Ve = roots(Ue+1(X)) and V±e the Z/2Z-orbits under z 7→ −z .

Proposition (Lusztig?).

The list of one- and two-dimensional We+2-representations
is a complete, irredundant list of simple representations.

I learned this construction from Mackaay in 2017.
Example.

M0,0 is the sign representation and M2,2 is the trivial representation.

In case e is odd, Ue+1(X) has a constant term, so M2,0, M0,2 are not representations.

Example.

Mz for z being a root of the Chebyshev polynomial is a
representation because then

∑
k d

k
e θsk = 0 =

∑
k d

k
e θtk .

Example.

These representations are indexed by Z/2Z-orbits of the Chebyshev roots:
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N0-algebras and their representations

An algebra P with a basis BP with 1 ∈ BP is called a N0-algebra if

xy ∈ N0B
P (x, y ∈ BP).

A P-representation M with a basis BM is called a N0-representation if

xm ∈ N0B
M (x ∈ BP,m ∈ BM).

These are N0-equivalent if there is a N0-valued change of basis matrix.

Example. N0-algebras and N0-representations arise naturally as the
decategorification of 2-categories and 2-representations, and N0-equivalence comes
from 2-equivalence upstairs.

Example.

Group algebras of finite groups with basis given by group elements are N0-algebras.

The regular representation is a N0-representation.

Example.

The regular representation of group algebras decomposes over C into simples.

However, this decomposition is almost never an N0-equivalence.

Example.

Hecke algebras of (finite) Coxeter groups with their KL basis are N0-algebras.

For the symmetric group a miracle happens: all simples are N0-representations.
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Cells of N0-algebras and N0-representations

Kazhdan–Lusztig ∼1979. x ≤L y if x appears in zy with non-zero coefficient for
some z ∈ BP. x ∼L y if x ≤L y and y ≤L x.
∼L partitions P into left cells L. Similarly for right R, two-sided cells J or
N0-representations.

A N0-representation M is transitive if all basis elements belong to the same ∼L

equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive N0-representation has a unique apex.

Example. Transitive N0-representations arise naturally as the decategorification of
simple 2-representations.

Example.

Group algebras with the group element basis have only one cell, G itself.

Transitive N0-representations are C[G/H] for H being a subgroup. The apex is G .

Example (Kazhdan–Lusztig ∼1979).

Hecke algebras for the symmetric group with KL basis
have cells coming from the Robinson–Schensted correspondence.

The transitive N0-representations are the simples
with apex given by elements for the same shape of Young tableaux.

Example (Lusztig ≤2003).

Hecke algebras for the dihedral group with KL basis have the following cells:

1

s ts sts tsts ststs

t st tst stst tstst

w0

We will see the transitive N0-representations in a second.

Left cellsRight cells
Two-sided cells
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N0-representations via graphs

Construct a W∞-representation M associated to a bipartite graph Γ:

M = C〈1, 2, 3, 4, 5〉

1 3 2 4 5

H F H

F

F

θs  Ms =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, θt  Mt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







The adjacency matrix A(Γ) of Γ is

A(Γ) =

0 0 1 0 0
0 0 1 1 1
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0







These are We+2-representations for some e
only if A(Γ) is killed by the Chebyshev polynomial Ue+1(X).

Morally speaking: These are constructed as the simples
but with integral matrices having the Chebyshev-roots as eigenvalues.

It is not hard to see that the Chebyshev–braid-like relation can not hold otherwise.

Hence, by Smith’s (CP) and Lusztig: We get a representation of We+2

if Γ is a ADE Dynkin diagram for e + 2 being the Coxeter number.

That these are N0-representations follows from categorification.

‘Smaller solutions’ are never N0-representations.

Classification.

Complete , irredundant list of transitive N0-representations of We+2:

Apex 1 cell s – t cell w0 cell

N0-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2
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“Lifting” N0-representation theory

An additive, K-linear, idempotent complete, Krull–Schmidt 2-category C is called
finitary if some finiteness conditions hold.

A simple transitive 2-representation (2-simple) of C is an additive, K-linear
2-functor

M : C →A f(= 2-cat of finitary cats),

such that there are no non-zero proper C -stable ideals.

There is also the notion of 2-equivalence.

Example. N0-algebras and N0-representations arise naturally as the
decategorification of 2-categories and 2-representations, and N0-equivalence comes
from 2-equivalence upstairs.

Mazorchuk–Miemietz ∼2014.

2-Simples ! simples (e.g. 2-Jordan–Hölder theorem),

but their decategorifications are transitive N0-representations and usually not simple.

Mazorchuk–Miemietz ∼2011.

Define cell theory similarly as for N0-algebras and -representations.

2-simple ⇒ transitive, and transitive 2-representations have a 2-simple quotient.

Chan–Mazorchuk ∼2016.

Every 2-simple has an associated apex not killing it.

Thus, we can again study them separately for different cells.

Example.

B-Mod (+fc=some finiteness condition) is a prototypical object of A f .

A 2-representation for us is very often on the category of quiver representations.

Example (Mazorchuk–Miemietz & Chuang–Rouquier & Khovanov–Lauda & ...).

2-Kac–Moody algebras (+fc) are finitary 2-categories.

Their 2-simples are categorifications of the simples.

Example (Mazorchuk–Miemietz & Soergel & Khovanov–Mazorchuk–Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.
(Coxeter=Weyl: ‘Indecomposable projective functors on O0.’)

Symmetric group: the 2-simples are categorifications of the simples.

Example (Kildetoft–Mackaay–Mazorchuk–Miemietz–Zhang & ...).

Quotients of Soergel bimodules (+fc), e.g. small quotients, are finitary 2-categories.

Except for the small quotients+ε the classification is widely open.

Example (Mackaay–Mazorchuk–Miemietz & Kirillov–Ostrik & Elias & ...).

Singular Soergel bimodules and various 2-subcategories (+fc) are finitary 2-categories.
(Coxeter=Weyl: ‘Indecomposable projective functors between singular blocks of O.’)

For a quotient of maximal singular type Ã1 non-trivial 2-simples are ADE classified.

Excuse me?

Question (“2-representation theory”).

Classify all 2-simples of a fixed finitary 2-category.

This is the categorification of

‘Classify all simples a fixed finite-dimensional algebra’,

but much harder, e.g. it is unknown whether
there are always only finitely many 2-simples.
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but their decategorifications are transitive N0-representations and usually not simple.

Mazorchuk–Miemietz ∼2011.

Define cell theory similarly as for N0-algebras and -representations.

2-simple ⇒ transitive, and transitive 2-representations have a 2-simple quotient.

Chan–Mazorchuk ∼2016.

Every 2-simple has an associated apex not killing it.

Thus, we can again study them separately for different cells.

Example.

B-Mod (+fc=some finiteness condition) is a prototypical object of A f .

A 2-representation for us is very often on the category of quiver representations.

Example (Mazorchuk–Miemietz & Chuang–Rouquier & Khovanov–Lauda & ...).

2-Kac–Moody algebras (+fc) are finitary 2-categories.

Their 2-simples are categorifications of the simples.

Example (Mazorchuk–Miemietz & Soergel & Khovanov–Mazorchuk–Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.
(Coxeter=Weyl: ‘Indecomposable projective functors on O0.’)

Symmetric group: the 2-simples are categorifications of the simples.

Example (Kildetoft–Mackaay–Mazorchuk–Miemietz–Zhang & ...).

Quotients of Soergel bimodules (+fc), e.g. small quotients, are finitary 2-categories.

Except for the small quotients+ε the classification is widely open.

Example (Mackaay–Mazorchuk–Miemietz & Kirillov–Ostrik & Elias & ...).

Singular Soergel bimodules and various 2-subcategories (+fc) are finitary 2-categories.
(Coxeter=Weyl: ‘Indecomposable projective functors between singular blocks of O.’)
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There is also the notion of 2-equivalence.

Example. N0-algebras and N0-representations arise naturally as the
decategorification of 2-categories and 2-representations, and N0-equivalence comes
from 2-equivalence upstairs.

Mazorchuk–Miemietz ∼2014.

2-Simples ! simples (e.g. 2-Jordan–Hölder theorem),

but their decategorifications are transitive N0-representations and usually not simple.

Mazorchuk–Miemietz ∼2011.

Define cell theory similarly as for N0-algebras and -representations.

2-simple ⇒ transitive, and transitive 2-representations have a 2-simple quotient.

Chan–Mazorchuk ∼2016.

Every 2-simple has an associated apex not killing it.

Thus, we can again study them separately for different cells.

Example.

B-Mod (+fc=some finiteness condition) is a prototypical object of A f .

A 2-representation for us is very often on the category of quiver representations.

Example (Mazorchuk–Miemietz & Chuang–Rouquier & Khovanov–Lauda & ...).

2-Kac–Moody algebras (+fc) are finitary 2-categories.

Their 2-simples are categorifications of the simples.

Example (Mazorchuk–Miemietz & Soergel & Khovanov–Mazorchuk–Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.
(Coxeter=Weyl: ‘Indecomposable projective functors on O0.’)

Symmetric group: the 2-simples are categorifications of the simples.

Example (Kildetoft–Mackaay–Mazorchuk–Miemietz–Zhang & ...).

Quotients of Soergel bimodules (+fc), e.g. small quotients, are finitary 2-categories.

Except for the small quotients+ε the classification is widely open.

Example (Mackaay–Mazorchuk–Miemietz & Kirillov–Ostrik & Elias & ...).

Singular Soergel bimodules and various 2-subcategories (+fc) are finitary 2-categories.
(Coxeter=Weyl: ‘Indecomposable projective functors between singular blocks of O.’)

For a quotient of maximal singular type Ã1 non-trivial 2-simples are ADE classified.

Excuse me?

Question (“2-representation theory”).

Classify all 2-simples of a fixed finitary 2-category.

This is the categorification of

‘Classify all simples a fixed finite-dimensional algebra’,

but much harder, e.g. it is unknown whether
there are always only finitely many 2-simples.
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2-representations of dihedral Soergel bimodules

Theorem (Soergel ∼1992 & Williamson ∼2010 & Elias ∼2013 & ...).
Dihedral singular Soergel bimodules sWe+2 categorify the dihedral algebroid with
indecomposables categorifying the KL basis.

The regular part We+2 is also known as the monoidal category of dihedral Soergel
bimodules.

There is also the maximally singular part mWe+2, which actually is semisimple.

Note that sWe+2 has a diagrammatic incarnation.

We+2

decat.

��

full-grown 2-action
//M

decat.

��

We+2 N0-action
// M

Classification (Kildetoft–Mackaay–Mazorchuk–Miemietz–Zimmermann ∼ 2016).

Complete, irredundant list of graded simple 2-representations of We+2:

Apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

ForMADE+bicolering the category one acts on is
given by Huerfano–Khovanov’s ADE zig-zag algebra.
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A few words about the ‘How to’

I Decategorification. What is the corresponding question about N0-matrices?

. Chebyshev–Smith–Lusztig  ADE-type-answer .

I Construction. Does every candidate solution downstairs actually lifts?

. “Brute force” (Khovanov–Seidel–Andersen–)Mackaay  zig-zag algebras.

. “Smart” Mackaay–Mazorchuk–Miemietz  “Cartan approach” . Details

I Redundancy. Are the constructed 2-representations equivalent?

. MΓ
∼=MΓ′ ⇔ Γ ∼= Γ′.

I Completeness. Are we missing 2-representations?

. This is where the grading assumption comes in.
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Let A(Γ) be the adjacency matrix of a finite, connected, loopless graph Γ. Let
Ue+1(X) be the Chebyshev polynomial .

Classification problem (CP). Classify all Γ such that Ue+1(A(Γ)) = 0.

A3 =
1 3 2• • • A(A3) =




0 0 1
0 0 1
1 1 0


 SA3

= {2 cos(π4 ), 0, 2 cos( 3π
4 )}

D4 =
1

4

2

3

• •

•

•

A(D4) =




0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0


 SD4

= {2 cos(π6 ), 02, 2 cos( 5π
6 )}

U3(X) = (X− 2 cos(π4 ))X(X− 2 cos( 3π
4 ))

U5(X) = (X− 2 cos(π6 ))(X− 2 cos( 2π
6 ))X(X− 2 cos( 4π

6 ))(X− 2 cos( 5π
6 ))

for e = 2

for e = 4

Smith ∼1969. The graphs solutions to (CP) are precisely
ADE graphs for e + 2 being (at most) the Coxeter number.

Type Am: • • • · · · • • • for e = m − 1

Type Dm: • • · · · • •

•

•

for e = 2m − 4

Type E6:
• • • • •

•
for e = 10

Type E7:
• • • • • •

•
for e = 16

Type E8:
• • • • • • •

•
for e = 28
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U0(X) = 1, U1(X) = X, XUe+1(X) = Ue+2(X) + Ue(X)
U0(X) = 1, U1(X) = 2X, 2XUe+1(X) = Ue+2(X) + Ue(X)

Kronecker ∼1857. Any complete set of conjugate algebraic integers in ]− 2, 2[ is
a subset of roots(Ue+1(X)) for some e.

Figure: The roots of the Chebyshev polynomials (of the second kind).

Back

Dihedral representation theory on one slide

One-dimensional representations. Mλs,λt
, λs, λt ∈ C, θs 7→ λs, θt 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M0,0, M2,0, M0,2, M2,2 M0,0, M2,2

Two-dimensional representations. Mz , z ∈ C, θs 7→ ( 2 z
0 0 ), θt 7→ ( 0 0

z 2 ).

e ≡ 0 mod 2 e 6≡ 0 mod 2

Mz , z ∈ V±e −{0} Mz , z ∈ V±e

Ve = roots(Ue+1(X)) and V±e the Z/2Z-orbits under z 7→ −z .

Proposition (Lusztig?).

The list of one- and two-dimensional We+2-representations
is a complete, irredundant list of simple representations.

I learned this construction from Mackaay in 2017.
Example.

M0,0 is the sign representation and M2,2 is the trivial representation.

In case e is odd, Ue+1(X) has a constant term, so M2,0, M0,2 are not representations.

Example.

Mz for z being a root of the Chebyshev polynomial is a
representation because then

∑
k d

k
e θsk = 0 =

∑
k d

k
e θtk .

Example.

These representations are indexed by Z/2Z-orbits of the Chebyshev roots:
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N0-representations via graphs

Construct a W∞-representation M associated to a bipartite graph Γ:

M = C〈1, 2, 3, 4, 5〉

1 3 2 4 5

H F H

F

F

θs  Ms =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, θt  Mt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







The adjacency matrix A(Γ) of Γ is

A(Γ) =

0 0 1 0 0
0 0 1 1 1
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0







These are We+2-representations for some e
only if A(Γ) is killed by the Chebyshev polynomial Ue+1(X).

Morally speaking: These are constructed as the simples
but with integral matrices having the Chebyshev-roots as eigenvalues.

It is not hard to see that the Chebyshev–braid-like relation can not hold otherwise.

Hence, by Smith’s (CP) and Lusztig: We get a representation of We+2

if Γ is a ADE Dynkin diagram for e + 2 being the Coxeter number.

That these are N0-representations follows from categorification.

‘Smaller solutions’ are never N0-representations.

Classification.

Complete , irredundant list of transitive N0-representations of We+2:

Apex 1 cell s – t cell w0 cell

N0-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2
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The type A family
e = 0

H

F

e = 1

H F

e = 2

H F H

F H F

e = 3

H F H F

e = 4

H F H F H

F H F H F

. . .

The type D family
e = 4

H F
H

H

F H
F

F

e = 6

F H F
H

H

H F H
F

F

e = 8

H F H F
H

H

F H F H
F

F

e = 10

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
e = 10

H F H F H

F

F H F H F

H

e = 16

H F H F H F

F

F H F H F H

H

e = 28

H F H F H F H

F

F H F H F H F

H

Back

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the symmetric group case.

2-representations of dihedral Soergel bimodules

Theorem (Soergel ∼1992 & Williamson ∼2010 & Elias ∼2013 & ...).
Dihedral singular Soergel bimodules sWe+2 categorify the dihedral algebroid with
indecomposables categorifying the KL basis.

The regular part We+2 is also known as the monoidal category of dihedral Soergel
bimodules.

There is also the maximally singular part mWe+2, which actually is semisimple.

Note that sWe+2 has a diagrammatic incarnation.

We+2

decat.

��

full-grown 2-action
//M

decat.

��

We+2 N0-action
// M

Classification (Kildetoft–Mackaay–Mazorchuk–Miemietz–Zimmermann ∼ 2016).

Complete, irredundant list of graded simple 2-representations of We+2:

Apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

ForMADE+bicolering the category one acts on is
given by Huerfano–Khovanov’s ADE zig-zag algebra.
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A few words about the ‘How to’

I Decategorification. What is the corresponding question about N0-matrices?

. Chebyshev–Smith–Lusztig  ADE-type-answer .

I Construction. Does every candidate solution downstairs actually lifts?

. “Brute force” (Khovanov–Seidel–Andersen–)Mackaay  zig-zag algebras.

. “Smart” Mackaay–Mazorchuk–Miemietz  “Cartan approach” . Details

I Redundancy. Are the constructed 2-representations equivalent?

. MΓ
∼=MΓ′ ⇔ Γ ∼= Γ′.

I Completeness. Are we missing 2-representations?

. This is where the grading assumption comes in.
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Theorem (Mackaay–Mazorchuk–Miemietz ∼2016). Let C be a fiat
2-category. For i ∈ C , consider the endomorphism 2-category A of i in C (in
particular, A (i, i) = C (i, i)). Then there is a natural bijection between the
equivalence classes of simple 2-representations of A and the equivalence classes of
simple 2-representations of C having a non-trivial value at i.

Theorem (Mackaay–Mazorchuk–Miemietz ∼2016). Let C be a fiat
2-category. For any simple 2-representationM of C , there exists a simple algebra
1-morphism A in C (the projective abelianization of C ) such thatM is equivalent
(as a 2-representation of C ) to the subcategory of projective objects ofModC (A).

“Cartan approach”.

This means for us that it suffices to find
algebra 1-morphisms in the semisimple 2-category mWe+2

which we can then ‘induce up’ to We+2.

So it remains to study 2-representations of mWe+2.
But how to do that?

Idea: Chebyshev knows everything!

So where have we seen the magic formula
XUm+1(X) = Um+2(X) + Um(X)

before?

Here:
[2]q · [m + 1]q = [m + 2]q + [m]q

L1 ⊗ Lm+1
∼= Lm+2 ⊕ Lm

Lm = mth symmetric power of the vector representation of (quantum) sl2.

Quantum Satake (Elias ∼2013).

Let Qe be the semisimplyfied quotient of the category of
(quantum) sl2-modules for η being a 2(e + 2)th primitive, complex root of unity.

There are two degree-zero equivalences, depending on a choice of a starting color,

Ss
e : Qe → mWe+2

and
St
e : Qe → mWe+2.

The point: it suffices to find algebra objects in Qe .

Theorem (Kirillov–Ostrik ∼2003).

The algebra objects in Qe are ADE classified.

So who colored my Dynkin diagram?

Satake did.

And why does the quantum Satake correspondence exists?

Because Chebyshev encodes both change of basis matrices:

{L⊗k
1 }! {Lm}

and
{BS basis}! {KL basis}.

Aside:
One can check that the objects of Kirillov–Ostrik are in fact algebra objects

by using the symmetric web calculus á la Rose ∼2015. Details

One can show that these have to be all by looking at
the decategorified statement: N0-representations of the Verlinde algebra.

This was done by Etingof–Khovanov ∼1995.

Done!

There is still much to do...

Thanks for your attention!
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N0-representations via graphs

Construct a W∞-representation M associated to a bipartite graph Γ:

M = C〈1, 2, 3, 4, 5〉

1 3 2 4 5

H F H

F

F

θs  Ms =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, θt  Mt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0
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





The adjacency matrix A(Γ) of Γ is
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





These are We+2-representations for some e
only if A(Γ) is killed by the Chebyshev polynomial Ue+1(X).

Morally speaking: These are constructed as the simples
but with integral matrices having the Chebyshev-roots as eigenvalues.

It is not hard to see that the Chebyshev–braid-like relation can not hold otherwise.

Hence, by Smith’s (CP) and Lusztig: We get a representation of We+2

if Γ is a ADE Dynkin diagram for e + 2 being the Coxeter number.

That these are N0-representations follows from categorification.

‘Smaller solutions’ are never N0-representations.

Classification.

Complete , irredundant list of transitive N0-representations of We+2:

Apex 1 cell s – t cell w0 cell

N0-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2
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N0-representations via graphs
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The type A family
e = 0

H

F

e = 1

H F

e = 2

H F H

F H F

e = 3

H F H F

e = 4

H F H F H

F H F H F

. . .

The type D family
e = 4

H F
H

H

F H
F

F

e = 6

F H F
H

H

H F H
F

F

e = 8

H F H F
H

H

F H F H
F

F

e = 10

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
e = 10

H F H F H

F

F H F H F

H

e = 16

H F H F H F

F

F H F H F H

H

e = 28

H F H F H F H

F

F H F H F H F

H

Back

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the symmetric group case.

2-representations of dihedral Soergel bimodules

Theorem (Soergel ∼1992 & Williamson ∼2010 & Elias ∼2013 & ...).
Dihedral singular Soergel bimodules sWe+2 categorify the dihedral algebroid with
indecomposables categorifying the KL basis.

The regular part We+2 is also known as the monoidal category of dihedral Soergel
bimodules.

There is also the maximally singular part mWe+2, which actually is semisimple.

Note that sWe+2 has a diagrammatic incarnation.

We+2

decat.

��

full-grown 2-action
//M

decat.

��

We+2 N0-action
// M

Classification (Kildetoft–Mackaay–Mazorchuk–Miemietz–Zimmermann ∼ 2016).

Complete, irredundant list of graded simple 2-representations of We+2:

Apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

ForMADE+bicolering the category one acts on is
given by Huerfano–Khovanov’s ADE zig-zag algebra.

Marco Mackaay & Daniel Tubbenhauer Di- and trihedral (2-)representation theory I July 2018 11 / 13

A few words about the ‘How to’

I Decategorification. What is the corresponding question about N0-matrices?

. Chebyshev–Smith–Lusztig  ADE-type-answer .

I Construction. Does every candidate solution downstairs actually lifts?

. “Brute force” (Khovanov–Seidel–Andersen–)Mackaay  zig-zag algebras.

. “Smart” Mackaay–Mazorchuk–Miemietz  “Cartan approach” . Details

I Redundancy. Are the constructed 2-representations equivalent?

. MΓ
∼=MΓ′ ⇔ Γ ∼= Γ′.

I Completeness. Are we missing 2-representations?

. This is where the grading assumption comes in.
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Theorem (Mackaay–Mazorchuk–Miemietz ∼2016). Let C be a fiat
2-category. For i ∈ C , consider the endomorphism 2-category A of i in C (in
particular, A (i, i) = C (i, i)). Then there is a natural bijection between the
equivalence classes of simple 2-representations of A and the equivalence classes of
simple 2-representations of C having a non-trivial value at i.

Theorem (Mackaay–Mazorchuk–Miemietz ∼2016). Let C be a fiat
2-category. For any simple 2-representationM of C , there exists a simple algebra
1-morphism A in C (the projective abelianization of C ) such thatM is equivalent
(as a 2-representation of C ) to the subcategory of projective objects ofModC (A).

“Cartan approach”.

This means for us that it suffices to find
algebra 1-morphisms in the semisimple 2-category mWe+2

which we can then ‘induce up’ to We+2.

So it remains to study 2-representations of mWe+2.
But how to do that?

Idea: Chebyshev knows everything!

So where have we seen the magic formula
XUm+1(X) = Um+2(X) + Um(X)

before?

Here:
[2]q · [m + 1]q = [m + 2]q + [m]q

L1 ⊗ Lm+1
∼= Lm+2 ⊕ Lm

Lm = mth symmetric power of the vector representation of (quantum) sl2.

Quantum Satake (Elias ∼2013).

Let Qe be the semisimplyfied quotient of the category of
(quantum) sl2-modules for η being a 2(e + 2)th primitive, complex root of unity.

There are two degree-zero equivalences, depending on a choice of a starting color,

Ss
e : Qe → mWe+2

and
St
e : Qe → mWe+2.

The point: it suffices to find algebra objects in Qe .

Theorem (Kirillov–Ostrik ∼2003).

The algebra objects in Qe are ADE classified.

So who colored my Dynkin diagram?

Satake did.

And why does the quantum Satake correspondence exists?

Because Chebyshev encodes both change of basis matrices:

{L⊗k
1 }! {Lm}

and
{BS basis}! {KL basis}.

Aside:
One can check that the objects of Kirillov–Ostrik are in fact algebra objects

by using the symmetric web calculus á la Rose ∼2015. Details

One can show that these have to be all by looking at
the decategorified statement: N0-representations of the Verlinde algebra.

This was done by Etingof–Khovanov ∼1995.

Done!

There is still much to do...

Thanks for your attention!
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U0(X) = 1, U1(X) = X, XUe+1(X) = Ue+2(X) + Ue(X)
U0(X) = 1, U1(X) = 2X, 2XUe+1(X) = Ue+2(X) + Ue(X)

Kronecker ∼1857. Any complete set of conjugate algebraic integers in ]− 2, 2[ is
a subset of roots(Ue+1(X)) for some e.

Figure: The roots of the Chebyshev polynomials (of the second kind).

Back



The KL basis elements for S3 ∼= W3 with sts = w0 = tst are:

θ1 = 1, θs = s + 1, θt = t + 1, θts = ts + s + t + 1,

θst = st + s + t + 1, θw0 = w0 + ts + st + s + t + 1.

1 s t ts st w0

1 1 1 1 1 1

2 0 0 −1 −1 0

1 −1 −1 1 1 −1

Figure: The character table of S3
∼= W3.

Remark.

This non-negativity of the KL basis
is true for all symmetric groups,

but not for most other groups (as we will see).

The case e = 1 is the last case
where the Chebyshev polynomial has only integer roots.

The first ever published character table (∼1896) by Frobenius.
Note the root of unity ρ.
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(Robinson ∼1938 & )Schensted ∼1961 & Kazhdan–Lusztig ∼1979.

Elements of Sn
1:1←→ (P,Q) standard Young tableaux of the same shape. Left, right

and two-sided cells of Sn:

I s ∼L t if and only if Q(s) = Q(t).

I s ∼R t if and only if P(s) = P(t).

I s ∼J t if and only if P(s) and P(t) have the same shape.

Example (n = 3).

1! 1 2 3 , 1 2 3

s! 1 3
2 , 1 3

2 ts! 1 2
3 , 1 3

2

t! 1 2
3 , 1 2

3 st! 1 3
2 , 1 2

3

w0!
1
2
3
,

1
2
3

Left cellsRight cells
Two-sided cells

Apexes:

θ1 θs θt θts θst θw0

1 2 2 4 4 6

2 2 2 1 1 0

1 0 0 0 0 0

The N0-representations are the simples.
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Example (n = 3).
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θ1 θs θt θts θst θw0
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2 2 2 1 1 0
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The N0-representations are the simples.
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In case you are wondering why this is supposed to be true, here is the main
observation of Smith ∼1969:

Ue+1(X, Y) = ±det(XId− A(Ae+1))

Chebyshev poly. = char. poly. of the type Ae+1 graph

and

XTn−1(X) = ±det(XId− A(Dn))± (−1)n mod 4

first kind Chebyshev poly. ‘=’ char. poly. of the type Dn graph (n = e+4
2 ).

Back



The type A family
e = 0

H

F

e = 1

H F

e = 2

H F H

F H F

e = 3

H F H F

e = 4

H F H F H

F H F H F

. . .

The type D family
e = 4

H F
H

H

F H
F

F

e = 6

F H F
H

H

H F H
F

F

e = 8

H F H F
H

H

F H F H
F

F

e = 10

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
e = 10

H F H F H

F

F H F H F

H

e = 16

H F H F H F

F

F H F H F H

H

e = 28

H F H F H F H

F

F H F H F H F

H

Back

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the symmetric group case.
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Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the symmetric group case.



Objects. Parabolic subsets ∅, s, t.

1-morphism generators. Color changes ∅s or s∅ or ∅t or t∅.
2-morphism generators. Diagrams and polynomials.

∅

∅

s ∅

:
∅
⇑
∅s∅

,

s

s

∅ s

,

∅

∅

s ∅

,

s

s

∅ s

∅

∅

t ∅

:
∅
⇑
∅t∅

,

t

t

∅ t

,

∅

∅

t ∅

,

t

t

∅ t

p

p∈R∅
[q]

,
p

p ∈ Rs
[q]

,
p

p ∈ Rt
[q]

Relations. Some relations coming from Frobenius extensions.
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Theorem (Mackaay–Mazorchuk–Miemietz ∼2016). Let C be a fiat
2-category. For i ∈ C , consider the endomorphism 2-category A of i in C (in
particular, A (i, i) = C (i, i)). Then there is a natural bijection between the
equivalence classes of simple 2-representations of A and the equivalence classes of
simple 2-representations of C having a non-trivial value at i.

Theorem (Mackaay–Mazorchuk–Miemietz ∼2016). Let C be a fiat
2-category. For any simple 2-representationM of C , there exists a simple algebra
1-morphism A in C (the projective abelianization of C ) such thatM is equivalent
(as a 2-representation of C ) to the subcategory of projective objects ofModC (A).

“Cartan approach”.

This means for us that it suffices to find
algebra 1-morphisms in the semisimple 2-category mWe+2

which we can then ‘induce up’ to We+2.

So it remains to study 2-representations of mWe+2.
But how to do that?

Idea: Chebyshev knows everything!

So where have we seen the magic formula
XUm+1(X) = Um+2(X) + Um(X)

before?

Here:
[2]q · [m + 1]q = [m + 2]q + [m]q

L1 ⊗ Lm+1
∼= Lm+2 ⊕ Lm

Lm = mth symmetric power of the vector representation of (quantum) sl2.

Quantum Satake (Elias ∼2013).

Let Qe be the semisimplyfied quotient of the category of
(quantum) sl2-modules for η being a 2(e + 2)th primitive, complex root of unity.

There are two degree-zero equivalences, depending on a choice of a starting color,

Ss
e : Qe → mWe+2

and
St
e : Qe → mWe+2.

The point: it suffices to find algebra objects in Qe .

Theorem (Kirillov–Ostrik ∼2003).

The algebra objects in Qe are ADE classified.

So who colored my Dynkin diagram?

Satake did.

And why does the quantum Satake correspondence exists?

Because Chebyshev encodes both change of basis matrices:

{L⊗k
1 }! {Lm}

and
{BS basis}! {KL basis}.

Aside:
One can check that the objects of Kirillov–Ostrik are in fact algebra objects

by using the symmetric web calculus á la Rose ∼2015. Details

One can show that these have to be all by looking at
the decategorified statement: N0-representations of the Verlinde algebra.

This was done by Etingof–Khovanov ∼1995.

Done!
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the decategorified statement: N0-representations of the Verlinde algebra.
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The algebra object in type D:

AD ∼= L0 ⊕ Le
∼= Cv ⊕ Syme(L1)! ∅ ⊕ e.

The multiplication m : De ⊗ De → De is

∅∅ ∅e e∅ ee

∅ ∅ 0 0
e e

e 0
e

e

e

e

0

Check associativity, e.g.:

eee //

��

∅e

��
e∅ // e

! !
=

Done!

And this holds because

=
[
e+1
e

]
v

= [e + 1]v = 1,

using that we are working with a 2(e + 2)th root of unity.
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