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Let A(T) be the adjacency matrix of a finite, connected, loopless graph T. Let
Uet1(X) be the

Classification problem (CP). Classify all T such that U..1(A(l)) = 0.
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Let A(T) be the adjacency matrix of a finite, connected, loopless graph T. Let
Uet1(X) be the

Classification problem (CP). Classify all T such that U..1(A(l)) = 0.

Us(X) = (X — 2 cos(F))X(X — 2cos(3r))

13 2 0 01
Az = o——e——0 — > A(A3) =10 0 1 — N Spy = {2cos(%),0,2cos(37)}
1 1 0
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Let A(T) be the adjacency matrix of a finite, connected, loopless graph T. Let
Uet1(X) be the

Classification problem (CP). Classify all T such that U..1(A(l)) = 0.

Us(X) = (X — 2 cos(F))X(X — 2cos(3r))

1 3 5 0o 0 1
A3 = o——e——0 — > A(Az) =10 0 1 — N Spy = {2cos(%),0,2cos(37)}
1 1 0
Us(X) = (X — 2cos(Z))(X — 2cos(2E))X(X — 2 cos(4Z))(X — 2 cos(3X))
2
0 0 0 1
Y 4 s A= [0 0 0 I s, = {2c0s(E), 0%, 2cos(52
4 = ( 4)_ 0 0 0 1 Dy —{ COS(K)v ) COS(?)}
1 1 1 0
3
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Let A(T) be the adjacency matrix of a finite, connected, loopless graph T. Let
Uet1(X) be the

Classification problem (CP). Classify all T such that Ue,1(A(F)) =0

Us(X) = (X — 2 cos(F))X(X — 2cos(3r))

13 2 0 01
A3 = o——e——0 — > A(Az) =10 0 1 — > Spy = {2co0s(%),0, 2cos(37)}
1

10
Us(X) = (X — 2cos(Z))(X — 2 cos(2Z))X(X — 2 cos(4Z))(X — 2 cos(3Z)) v fore=2
2

0
Dy = b4~ ADY) = (g
1

= O OO

0 1

1
8 1) —~5p, = {2cos( %), 0? ,2cos(3F)}
1 0

3 v fore=4
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L. e la o R £ Lioie oo | 1 L. I
bet A(T) Smith ~1969. The graphs solutions to (CP) are precisely - Let
e+1(X) ADE graphs for e + 2 being the Coxeter number.
Cl = 0.
aTypeAm: v fore=m-—1

Type Dpm: o - - / W~ fore=2m—4

-h‘;"

lcos(

1
A= Type Es: [ v~ fore=10 )

Type E7: X v~ fore=16

Dy = cos(

off

)}
\/ for e = 28

Type Esg:

TI—‘
—o
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© The dihedral group revisited
@ Dihedral groups as Coxeter groups
@ Dihedral representation theory

Q Dihedral representation theory
@ A brief primer on Ny-representation theory
@ Dihedral Ny-representation theory

© Dihedral 2-representation theory
@ A brief primer on 2-representation theory
@ Dihedral 2-representation theory
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The main example today: dihedral groups

The dihedral groups are of Coxeter type l2(e + 2):

Weio = (s, \52: -1, Seqp =...8ts =Wy =...tst = Tey),
e+2 e+2
e.g.: ‘/‘/4:<S7 ‘S2: 2:1, SS:W0:53>

Example. These are the symmetry groups of regular e 4+ 2-gons, e.g. for e = 2 the
Coxeter complex is:

~ "
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The main example today: dihedral groups

The dihedral groups are of Coxeter type l2(e + 2):
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Coxeter complex is:
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The main example today: dihedral groups

The dihedral groups are of Coxeter type l2(e + 2):

2 2 -
Weio=(s,t|s°=t"=1 Seyo=_..5ts=wp = _..tst = Tet2),
e+2 e+2

eg: Wy=(s,t|s?=t>=1

, tsts = wp = stst)

Example. These are the symmetry groups of regular e 4+ 2-gons, e.g. for e = 2 the

Coxeter complex is: .
15 AN

~
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The main example today: dihedral groups

The dihedral groups are of Coxeter type l2(e + 2):

Weio = (s, |s2: -1, Seqp =...8ts =Wy =...tst = Tey),
e+2 e+2
e.g.: ‘/‘/4:<S7 ‘S2: 2:1, SS:W0:55>

Example. These are the symmetry groups of regular e 4+ 2-gons, e.g. for e = 2 the
Coxeter complex is:
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The main example today: dihedral groups

The dihedral groups are of Coxeter type l2(e + 2):

Weio = (s, |s2: 2:1, Seqp =...8ts =Wy =...tst = Tey),
e+2 e+2
e.g.: ‘/‘/4:<S7 ‘S2: 2:1, SS:W0:55>

Example. These are the symmetry groups of regular e 4+ 2-gons, e.g. for e = 2 the
Coxeter complex is:

- tsists Lowest cell.
Twill explain in a few minutes S wo
what cells are. ‘¥
For the moment: Never mind!
1 : L8
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The main example today: dihedral groups
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The main example today: dihedral groups

The dihedral groups are of Coxeter type l2(e + 2):

Weio = (s, |s2: 2:1, Seqp =...8ts =Wy =...tst = Tey),
e+2 e+2
e.g.: ‘/‘/4:<S7 ‘S2: 2:1, SS:W0:55>

Example. These are the symmetry groups of regular e 4+ 2-gons, e.g. for e = 2 the
Coxeter complex is:

- ts:sts Lowest cell.
| will explain in a few minutes S ..‘. Wo nghest Ce”.
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Kazhdan—-Lusztig combinatorics of dihedral groups

Consider W5 = C[W,y2] for e € Zso U {o0}.

The Bott-Samelson (BS) basis is
0.=s+1, 0.=t+1,
{6 =04, 04 | Ww=w,-- w reduced word}
The Kazhdan—Lusztig (KL) basis is

{0y =w+3x, . w | w,w reduced words}.

Relations for the BS generators:

0505 = 26;, 0.0, =20,

some relation for ...sts = wy = ... tst.
S—— S——
e+2 e+2
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Example (e > 2).
1 s ts sts tsts

sts tsts 4+ sts 4 tst

BS ||1|s+1|ts+s+t+1
+ts+2s+t+2 +3ts + st +3s+3t+3

sts tsts + sts + tst

KLI||1]|s+1]|ts+s+t+1
ts+st+s+t+1 +ts+st+s+t+1

etc.

VW — V7 1 W <wVV [ VU5 VvV TeuUuTTu WOTUS

Relations for the BS generators:
9595 = 295, 9t9t = 29t7

some relation for ...sts = wy = ... tst.
— ——
e+2 e+2
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Example (e > 2).

1 s ts sts tsts

sts tsts 4+ sts 4 tst

BS ||1|s+1|ts+s+t+1
+ts+2s+t+2 +3ts + st +3s+3t+3

sts tsts + sts + tst

KL ||1]|s+1|ts+s+t+1
ts+st+s+t+1 +ts+st+s+t+1
etc.
(W — Ty = V[ VTSt Tu WoTTS
The magic formulas.
Relations

0:0:s... = Ois... +0s... and 60.0s.... = Oisi... + 0.

Example (e = 2).

esatst
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Example (e > 2).
1 s ts sts tsts

sts tsts 4+ sts 4 tst

BS ||1|s+1|ts+s+t+1
+ts+2s+t+2 +3ts + st +3s+3t+3

sts tsts + sts + tst

KLI||1]|s+1]|ts+s+t+1
ts+st+s+t+1 +ts+st+s+t+1

etc.

VW — V7 1 W <wVV [ VU5 VvV TeuUuTTu WOTUS

The magic formulas.
Relations
0:0.c... = Osi... +0.... and 0.0s... = Orcr... + 0.

Example (e = 2).

0. = (s +1)(tst +st+ts+t+s+1)
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Example (e > 2).
1 s ts sts tsts

sts tsts 4+ sts 4 tst

BS ||1|s+1|ts+s+t+1
+ts+2s+t+2 +3ts + st +3s+3t+3

sts tsts + sts + tst

KLI||1]|s+1]|ts+s+t+1
ts+st+s+t+1 +ts+st+s+t+1

etc.

VW — V7 1 W <wVV [ VU5 VvV TeuUuTTu WOTUS

The magic formulas.
Relations
0:0.c... = Osi... +0.... and 0.0s... = Orcr... + 0.

Example (e = 2).

0.0 wo+t+sts+st+1+s
T T tst4stdtst+tds+l
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Example (e > 2).

1 s ts sts tsts
sts tsts 4+ sts 4 tst
BS ||1|s+1|ts+s+t+1
+ts+2s+t+2 +3ts + st +3s+3t+3
sts tsts + sts + tst
KL ||1]|s+1|ts+s+t+1
ts+st+s+t+1 +ts+st+s+t+1
etc.
(W — Ty = V[ VTSt Tu WoTTS
The magic formulas.
Relations

0:0:s... = Ois... +0s... and 60.0s.... = Oisi... + 0.

esetst -

Example (e = 2).

Wwo+tst +sts+st+ts+t+s+1
st+t+s+1
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Example (e > 2).

1 s ts sts tsts

sts tsts 4+ sts 4 tst

BS ||1|s+1|ts+s+t+1
+ts+2s+t+2 +3ts + st +3s+3t+3

sts tsts + sts + tst

KL ||1]|s+1|ts+s+t+1
ts+st+s+t+1 +ts+st+s+t+1
etc.
(W — Ty = V[ VTSt Tu WoTTS
The magic formulas.
Relations

0:0:s... = Ois... +0s... and 60.0s.... = Oisi... + 0.

Example (e = 2).

asetst -

0SLSL
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Example (e > 2).
1 s ts sts tsts
sts tsts 4+ sts 4 tst
BS ||1|s+1|ts+s+t+1
+ts+2s+t+2 +3ts + st +3s+3t+3
sts tsts + sts + tst
KL ||1]|s+1|ts+s+t+1
ts+st+s+t+1 +ts+st+s+t+1
etc.
(W — Ty = V[ VTSt Tu WoTTS
The magic formulas.
Relations

0:0:s... = Osis... + 0.
an
X Ue+1(x) = Ue+2(x) ate Ue(X)

0:0si... = Ose.. + 0.
X Ue+1(x) = Ue+2(X) e Ue(X)

Example (e = 2).
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Kazhdan—-Lusztig combinatorics of dihedral groups
Consider W5 = C[W,y2] for e € Zso U {o0}.

The Bott-Samelson (BS) basis is

Q. —==4+1 A =+ 41
Lusztig < 2003.

The Kazhdg The change of basis matrix between the BS and the KL basis
is given by the coefficients d* of the Chebyshev polynomials.

3w — W F > W T W. W TEQUCET WOIQdS ¢
Example.
Relati Ur(X) =1-X' —6-X°4+10-x° -4 - X
&
Oisisisis = 1-60.0:0.0.0.0.0.0; —6-6.0.0.0.0.05 +10-0.0:0.0s — 4 - 6.0,.

some relation for ...sts = wy = ... tst.
S—— S——

e+2 e+2
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Kazhdan—-Lusztig combinatorics of dihedral groups
Consider W5 = C[W,y2] for e € Zso U {o0}.

The Bott-Samelson (BS) basis is

Q. —s+1 A =+ 41
Lusztig < 2003.

The Kazhdg The change of basis matrix between the BS and the KL basis
is given by the coefficients d* of the Chebyshev polynomials.

IV — W F+ 5 W T W. W T1TEQUCET WOrdsS ¢
Example.
Relati Ur(X) =1-X' —6-X°4+10-x° -4 - X
&
Oisisises = 1+ 0.0:0.0,0.0:0.0, —6-0.0,0.0.0.0 +10-0.0.0.0s — 4 - 0.0s.

> dkb=, =3, d¥6-,. [“Chebyshev-braid-like" |
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Dihedral representation theory on one slide

One-dimensional representations. My_» , A5, Ac € C, 0, — A, 0. — A..

e=0mod?2

Ve = roots(Uet1(X)) ‘ and VZ the Z/2Z-orbits under z s —z.
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Dihedral representation theory on one slide

One-dimens Proposition (Lusztig?). s\

The list of one- and two-dimensional W 2-representations

is a complete, irredundant list of simple representations.
|

|
Mo,0, M2,o, Mg 2, Mo ' Moo, M2

!
|| learned this construction from Mackaay in 2017. |

Two-dimensional representations. M,z € C,0; — (2%),0. — (29).

e=0mod?2

Ve = roots(Uet1(X)) ‘ and VZ the Z/2Z-orbits under z s —z.
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Dihedral representation theory on one slide

One-dimensional representations. My_» , A5, Ac € C, 0, — A, 0. — A..

|
e =0 mod?2 ' e# 0mod?2
,,,,,,,,,,,,,,,,,,,,,,,,,, [N
|
|
Mo,0, M2,o, Mg 2, Mo ' Moo, M2
|
Example.
1
Moo is the sign representation and M is the trivial representation.

In case e is odd, Uey1(X) has a constant term, so Mz o, Mo> are not representations.
T

M,,z€ VE

M.,z € VF—{0}

Ve = roots(Uet1(X)) ‘ and VZ the Z/2Z-orbits under z s —z.

July 2018 6/13
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Dihedral representation theory on one slide

One-dimensional representations. My_» , A5, Ac € C, 0, — A, 0. — A..

e =0 mod?2 i e # 0 mod 2
,,,,,,,,,,,,,,,,,,,,,,,,,, [N
!
Mo,0, M2,o, Mg 2, Mo i Mo,0, M2
Example.
Two-dimensid M: for z being a root of the Chebyshev polynomial is a gg)
representation because then 3", difs, =0=3", d:Gfk.
e=0mod 2 i e # 0 mod 2
,,,,,,,,,,,,,,,,,,,,,,,,,, [N S it
!
| M,,zeVZE
!

Ve = roots(Uet1(X)) ‘ and VZ the Z/2Z-orbits under z s —z.

July 2018
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Dihe Example.

One-d These representations are indexed by Z/2Z-orbits of the Chebyshev roots:

3t The case e =6 The roots are 2cos(k7/8) |

Mocas(sn8)/2 Macas(3n/8)

Two-(

Moacas(on/s 27/8
2 M icesior /sy = Mo o @ Mo o =

B
=

o(27 /8

[V
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Np-algebras and their representations

An algebra P with a basis BY is called a Np-algebra if

xy € NoBY  (x,y € BF).

A P-representation M with a basis BM is called a Ng-representation if

xm € NgBM  (x € BY,m € BM).

These are Ny-equivalent if there is a Np-valued change of basis matrix.

Example. Ny-algebras and Ny-representations arise naturally as the

decategorification of 2-categories and 2-representations, and Ny-equivalence comes

from 2-equivalence upstairs.
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Na-aloehras and their renresentations

Example.

A Group algebras of finite groups with basis given by group elements are Np-algebras.

The regular representation is a No-representation.
J YU T 7

A P-representation M with a basis BM is called a Ng-representation if
xm € NgBM  (x € BY,m € BM).

These are Ny-equivalent if there is a Np-valued change of basis matrix.

Example. Ny-algebras and Ny-representations arise naturally as the
decategorification of 2-categories and 2-representations, and Ny-equivalence comes
from 2-equivalence upstairs.
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Na-aloehras and their renresentations

Example.

A Group algebras of finite groups with basis given by group elements are Np-algebras.

The regular representation is a No-representation.
J YU T 7

Example.

A P

The regular representation of group algebras decomposes over C into simples.

However, this decomposition is almost never an Np-equivalence.

These are Ny-equivalent if there is a Np-valued change of basis matrix.

Example. Ny-algebras and Ny-representations arise naturally as the
decategorification of 2-categories and 2-representations, and Ny-equivalence comes
from 2-equivalence upstairs.
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Na-aloehras and their renresentations

Example.

A Group algebras of finite groups with basis given by group elements are Np-algebras.

The regular representation is a No-representation.
J YU T 7

Example.

A P

The regular representation of group algebras decomposes over C into simples.

However, this decomposition is almost never an Np-equivalence.

These are Ng-equivalent if there is a Ng-valued change of basis matrix.

Example.
Ex3 - . . .
Hecke algebras of (finite) Coxeter groups with their KL basis are Nog-algebras.
dec mes
fron For the symmetric group a happens: all simples are Np-representations.
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Cells of Ny-algebras and Ny-representations

Kazhdan—Lusztig ~1979. x <, y if x appears in zy with non-zero coefficient for

somez € BY. x~ yifx< yandy <, x.
~ partitions P into left cells L. Similarly for right R, two-sided cells J or
Np-representations.

A No-representation M is transitive if all basis elements belong to the same ~|
equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive Ny-representation has a unique apex.

Example. Transitive Ng-representations arise naturally as the decategorification of

simple 2-representations.
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Example.
C

Group algebras with the group element basis have only one cell, G itself.

K
so| Transitive No-representations are C[G/H] for H being a subgroup. The apex is G.

~ partitions P into left cells L. Similarly for right R, two-sided cells J or
Np-representations.

A No-representation M is transitive if all basis elements belong to the same ~|
equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive Ny-representation has a unique apex.

for

Example. Transitive Ng-representations arise naturally as the decategorification of

simple 2-representations.
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C

K

so| Transitive No-representations are C[G/H] for H being a subgroup. The apex is G.
~L partlt D + | PN 1T I < I I £ L D 4 PR A | 1T |
Example (Kazhdan—-Lusztig ~1979).
No-repres
Hecke algebras for the symmetric group with KL basis
A Np-rep| have coming from the Robinson—Schensted correspondence. me ~
equivalen [
The transitive Np-representations are the simples
with apex given by elements for the same shape of Young tableaux.

Example.

Group algebras with the group element basis have only one cell, G itself.

for

Example. Transitive Ng-representations arise naturally as the decategorification of
simple 2-representations.
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Example.

Group algebras with the group element basis have only one cell, G itself.

for
so| Transitive No-representations are C[G/H] for H being a subgroup. The apex is G.
~L partlt D + | PN S IT I < I I £ Ly D 4+ Al IT I

Example (Kazhdan—-Lusztig ~1979).
No-repres
Hecke algebras for the symmetric group with KL basis
A Np-rep| have coming from the Robinson—Schensted correspondence. me ~
equivalen [
The transitive Np-representations are the simples
with apex given by elements for the same shape of Young tableaux.
Example (Lusztig <2003).

ExarHecke algebras for the dihedral group with KL basis have the following cells: jon of
simp

/ s 2 ts T sts :tstsﬁststs\k
17 “wo

Mt &5 st S tst :ststitstst/

We will see the transitive Ny-representations in a second.
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Example (Kazhdan—-Lusztig ~1979).
No-repres
Hecke algebras for the symmetric group with KL basis
A Np-rep| have coming from the Robinson—Schensted correspondence. me ~
equivalen [
The transitive Np-representations are the simples
with apex given by elements for the same shape of Young tableaux.
Example (Lusztig <2003).

ExarHecke algebras for the dihedral group with KL basis have the following cells: jon of
simp

=s , . ts, . _sts, .tsts, _ststs

(£ 7 Vst Ttst” Tstst” Ttstst

We will see the transitive Ny-representations in a second.
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C

K{

Example.

Group algebras with the group element basis have only one cell, G itself.

for
so| Transitive No-representations are C[G/H] for H being a subgroup. The apex is G.
~L partlt D + | PN S IT I < I I Ly D 4+ Al IT I

Example (Kazhdan—Lusztlg ~1979).
No-repres
Hecke algebras for the symmetric group with KL basis
A Np-rep| have coming from the Robinson—Schensted correspondence. me ~
equivalen [
The transitive Np-representations are the simples
with apex given by elements for the same shape of Young tableaux.
Example (Lusztig <2003).

ExarHecke algebras for the dihedral gKL basis have the following cells: jon of
simp

s —tsts—ststs

X

t —stst—tstst

KX, :

We will see the transitive Ny-representations in a second.
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No-representations via graphs

Construct a W,-representation M associated to a bipartite graph I':

M = C(1,2,3,4,5)

‘_
1 3 2 4 5
20100 000O0O
02111 000O0O0
0s ~» Mg = 00000 |, 0. ~ M, = 11200
0000O 01020
00000O 01002
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No-representations via graphs

Construct a W,-representation M associated to a bipartite graph I':

M = C(1,2,3,4,5)

s~

-—

1 3 2 4 5
U
210100 000O0O
02111 000O0O0
0s ~ Mg = 0/0 000 |, 0. ~ M, = 11200
0/000O 01020
00 00O 01002
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No-representations via graphs

Construct a W,-representation M associated to a bipartite graph I':

M = C(1,2,3,4,5)

action

-—

o1

1 3
2/0/1 00 000O0O
0/2j1 11 000O0O0
0s ~ Mg = 0/0/0 00 |, 0. ~ M, = 11200
0/0/0 0O 01020
0/0/0 0O 01002
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No-representations via graphs

Construct a W,-representation M associated to a bipartite graph I':

M = C(1,2,3,4,5)

action

‘_

1 3 2 4 5

AN
2 0/1]0 0 00000
02111 00000

9. ~M.=| oo0l0joo |, 6 ~M=| 11200

00000 01020
00000 01002
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No-representations via graphs

Construct a W,-representation M associated to a bipartite graph I':

M = C(1,2,3,4,5)

action

g

1 3 2 4 5
/
2 01/0/|0 000O0O
02111 000O0O0
0s ~ Mg = 0 00/0/0 [, 0. ~ M, = 11200
0 00/0|O 01020
0 00/0|O 01002
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No-representations via graphs

Construct a W,-representation M associated to a bipartite graph I':

M = C(1,2,3,4,5)

~

1 3 2 4 5

:

20100 000O0O
0211|1 000O0O0
0s ~ Mg = 00000 [, 0. ~ M, = 11200
00O0O0|O 01020
000O0|O 01002
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No-representations via graphs

Construct a W,-representation M associated to a bipartite graph I':

M = C(1,2,3,4,5)

‘_
1 3 2 4 5
20100 000000O0
02111 000000O0
0s ~» Mg = 00000O0 |, 0. ~ M, = 11200
0000O0 001020
0000O0 01002
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No-representations via graphs

Construct a W,-representation M associated to a bipartite graph I':

M = C(1,2,3,4,5)

‘_
1 3 2 4 5
20100 0000O0
02111 0000O0
0s ~» Mg = 00000O0 |, 0. ~ M, = 1111200
0000O0 01020
0000O0 01/002
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No-representations via graphs

Construct a W,-representation M associated to a bipartite graph I':

M = C(1,2,3,4,5)

‘_
1 3 2 4 5
20100 0000O
02111 0000O
0s ~» Mg = 00000O0 |, 0. ~ M, = 112/00
0000O0 01020
0000O0 01002
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No-representations via graphs

Construct a W,-representation M associated to a bipartite graph I':

M = C(1,2,3,4,5)

‘_
1 3 2 4 5
20100 00000
02111 00000
0s ~» Mg = 00000O0 |, 0. ~ M, = 11200
0000O0 01020
0000O0 01002
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No-representations via graphs

Construct a W,-representation M associated to a bipartite graph I':

M = C(1,2,3,4,5)

‘_
1 3 2 4 5
20100 00000
02111 00000
0s ~» Mg = 00000O0 |, 0. ~ M, = 11200
0000O0 01020
0000O0 01002
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No-representations via graphs

Constru The adjacency matrix A() of T is

00[1 00
00[111
AM)=]11 1l0 0 0
01000
01000

These are W o-representations for some e
only if A(T) is killed by the Chebyshev polynomial Ue1(X).

Morally speaking: These are constructed as the simples
but with integral matrices having the Chebyshev-roots as eigenvalues.

|It is not hard to see that the Chebyshev—braid-like relation can not hold otherwise.b O 0 O
02111 000O0O

0s ~» Mg = 00000 |, 0. ~ M, = 11200
0000O 01020

00000O 0 1/002
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No-representations via graphs

Construct a W,-representation M associated to a bipartite graph I':

M = C(1,2,3,4,5)

Hence, by Smith’s (CP) and Lusztig: We get a representation of We 2
if I is a ADE Dynkin diagram for e + 2 being the Coxeter number.

|That these are Ny-representations follows from categorification. |
1 3 2 4 5

| ‘Smaller solutions’ are never No-representations. |

20100 000O0O
02111 000O0O0
0s ~ Mg = 00000 |, 0. ~ M, = 11200
0000O 01020
00000O 01002
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No-representations via graphs

Construct a W,-representation M associated to a bipartite graph I':

M = C(1,2,3,4,5)

Classification.
, irredundant of transitive Np-representations of We,o:
Apex ‘ @ cell ‘ G&-@®) cell ‘ ™ cell
No-reps. ‘ Moo ‘ MADE tbicolering for € +2 = Cox. num. ‘ Moy,
1 3 2 4 5
20100 000O0OC
02111 000O0OC
0. ~~ M, = 000O00O0 , 0. ~ M, = 11200
000O00O0 01020
000O00OC 01002
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“Lifting” Ny-representation theory

An additive, K-linear, idempotent complete, Krull-Schmidt 2-category % is called
finitary if some finiteness conditions hold.

A simple transitive 2-representation (2-simple) of %6 is an additive, K-linear
2-functor
M E — (= 2-cat of finitary cats),
such that there are no non-zero proper 6-stable ideals.
There is also the notion of 2-equivalence.

Example. Np-algebras and Ny-representations arise naturally as the
decategorification of 2-categories and 2-representations, and Ny-equivalence comes
from 2-equivalence upstairs.
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“Lifting” Ny-representation theory

Mazorchuk—Miemietz ~2014.
A

fi 2-Simples e~ simples (e.g. 2-Jordan—Hdlder theorem),

A but their decategorifications are transitive No-representations and usually not simple.

2-functor
M E — (= 2-cat of finitary cats),

such that there are no non-zero proper 6-stable ideals.
There is also the notion of 2-equivalence.

Example. Ny-algebras and Ny-representations arise naturally as the

decategorification of 2-categories and 2-representations, and Ny-equivalence comes

from 2-equivalence upstairs.
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“Lifting” Ny-representation theory
Mazorchuk—Miemietz ~2014.
A d

fi 2-Simples e~ simples (e.g. 2-Jordan—Hdlder theorem),

A but their decategorifications are transitive No-representations and usually not simple.

2-functor

Mazorchuk—Miemietz ~2011.

sug
Th

Define cell theory similarly as for Ny-algebras and -representations.

2-simple = transitive, and transitive 2-representations have a 2-simple quotient.
Example. Ny-algebras and Ny-representations arise naturally as the
decategorification of 2-categories and 2-representations, and Ny-equivalence comes
from 2-equivalence upstairs.
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“Lifting” Ny-representation theory
Mazorchuk—Miemietz ~2014.
A d

fi 2-Simples e~ simples (e.g. 2-Jordan—Hdlder theorem),

A but their decategorifications are transitive No-representations and usually not simple.

2-functor

Mazorchuk—Miemietz ~2011.

sug
Th

Define cell theory similarly as for Ny-algebras and -representations.

2-simple = transitive, and transitive 2-representations have a 2-simple quotient.
Example. Ny-algebras and Ny-representations arise naturally as the

decategorifig Chan—Mazorchuk ~2016. alence comes
from 2-equiy

Every 2-simple has an associated apex not killing it.

Thus, we can again study them separately for different cells.
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“Lifting” Ny-representation theory

An Example. lled
fini ) . ) .

B-Mod is a prototypical object of .&/*.
As A 2-representation for us is very often on the category of quiver representations.

2—| UTTCTor

M E — (= 2-cat of finitary cats),
such that there are no non-zero proper 6-stable ideals.
There is also the notion of 2-equivalence.

Example. Ny-algebras and Ny-representations arise naturally as the
decategorification of 2-categories and 2-representations, and Ny-equivalence comes
from 2-equivalence upstairs.
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“Lifting” Ny-representation theory

An Example. lled
fini ) . ) .

B-Mod is a prototypical object of .&/*.
A rs A 2-representation for us is very often on the category of quiver representations.

2-flrreror

M E — (= 2-cat of finitary cats),
such that there are no non-zero proper 6-stable ideals.
There is also the notion of 2-equivalence.

Examnle N..aloehrac and Na_renrecentatinne arice naturallv ac the

Example (Mazorchuk—Miemietz & Chuang—Rouquier & Khovanov-Lauda & ...).

ES

2-Kac—Moody algebras are finitary 2-categories.

Their 2-simples are categorifications of the simples.

Marco Mackaay & Daniel Tubbenhauer Di- and trihedral (2-)representation theory I July 2018 10/13



“Liftine” Nn-repnresentation theorv

Example (Mazorchuk—Miemietz & Soergel & Khovanov—Mazorchuk—Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.

Symmetric group: the 2-simples are categorifications of the simples.

M E — (= 2-cat of finitary cats),

such that there are no non-zero proper 6-stable ideals.
There is also the notion of 2-equivalence.

Example. Np-algebras and Ny-representations arise naturally as the
decategorification of 2-categories and 2-representations, and Ny-equivalence comes
from 2-equivalence upstairs.
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“Liftine” Nn-repnresentation theorv

Example (Mazorchuk—Miemietz & Soergel & Khovanov—Mazorchuk—Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.

Symmetric group: the 2-simples are categorifications of the simples.

Z-TOTTCTOT

Example (Kildetoft—Mackaay—Mazorchuk—Miemietz—Zhang & ...).

Quotients of Soergel bimodules , e.g. small quotients, are finitary 2-categories.

—

Except for the small quotients+e¢ the classification is widely open.
Example. Np-algebras and Nyp-representations arise naturally as the

decategorification of 2-categories and 2-representations, and Ny-equivalence comes
from 2-equivalence upstairs.
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“Liftine” N,-representation theorv
Example (Mazorchuk—Miemietz & Soergel & Khovanov—Mazorchuk—Stroppel & ...).

Soergel bimodules for finite Coxeter groups are finitary 2-categories.

Symmetric group: the 2-simples are categorifications of the simples.

Z-TOTTCTOT

Example (Kildetoft—Mackaay—Mazorchuk—Miemietz—Zhang & ...).

—

Quotients of Soergel bimodules , e.g. small quotients, are finitary 2-categories.

Except for the small quotients+e¢ the classification is widely open.
Example. Np-algebras and Np-representations arise naturally as the
Example (Mackaay—Mazorchuk—Miemietz & Kirillov—Ostrik & Elias & ...).

Singular Soergel bimodules and various 2-subcategories are finitary 2-categories.

For a quotient of maximal singular type A1 non-trivial 2-simples are ADE classified.

Excuse me?

Marco Mackaay & Daniel Tubbenhauer Di- and trihedral (2-)representation theory I July 2018 10/13




“Lifting” Ny-representation theory

An additive, K-linear, idempotent complete, Krull-Schmidt 2-category % is called
finitary if some finiteness conditions hold.

A simple transitiy
2-functor

Question (“2-representation theory”).

Classify all 2-simples of a fixed finitary 2-category.

M . L Y o) + ~f £inis +e)

such that there

There is also tH ‘Classify all simples a fixed finite-dimensional algebra’,

Example. Np-3

This is the categorification of

but much harder, e.g. it is unknown whether
there are always only finitely many 2-simples.

e, K-linear

decategorificatidll UT & \.CILCBUIICD armmua o ICPICJCIILGLIUIID, arma INpT<
from 2-equivalence upstairs.
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2-representations of dihedral Soergel bimodules

Theorem (Soergel ~1992 & Williamson ~2010 & Elias ~2013 & ...).
Dihedral singular Soergel bimodules s#.» categorify the dihedral algebroid with
indecomposables categorifying the KL basis.

The regular part #., is also known as the monoidal category of dihedral Soergel
bimodules.

There is also the maximally singular part m#.», which actually is semisimple.

Note that s#.,, has a incarnation.

Marco Mackaay & Daniel Tubbenhauer Di- and trihedral (2-)representation theory I July 2018 11/13



2-representations of dihedral Soergel bimodules

Theorem (Soergel ~19 lias ~2013 & ...).
Dihedral singular Soergel et e 1€ dihedral algebroid with
indecomposables categori ' '

\Ve‘g%l\l

Np-action

The regular part #. > is ‘arsowmowmas tremornoraarcategory of dihedral Soergel
bimodules.

There is also the maximally singular part m#.», which actually is semisimple.

Note that s#.,, has a incarnation.
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2-representations of dihedral Soergel bimodules

Theorem (Soergel ~19 lias ~2013 & ...).
Dihedral singular Soergel et e 1€ dihedral algebroid with
indecomposables categori ' '

Weq2 %M

Np-action

The regular part #. > is ‘arsowmowmas tremornoraarcategory of dihedral Soergel

imadulac

Classification (Kildetoft—-Mackaay—Mazorchuk—Miemietz—Zimmermann ~ 2016).

i Complete, irredundant list of simple 2-representations of #eo:

i Apex ‘ @ cell ‘ G&-@®©) cell ‘ ™ cell

2-reps. ‘ Moo ‘ AMADE +bicolering TOr € + 2 = Cox. num. ‘ M

For M aDE-+bicolering the category one acts on is
given by Huerfano—Khovanov's ADE zig-zag algebra.
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A few words about the ‘How to’

» Decategorification. What is the corresponding question about Nyp-matrices?

> ’Chebyshev—Smith—Lusztig ~> ADE-type-answer ‘

» Construction. Does every candidate solution downstairs actually lifts?

> “Brute force” (Khovanov—Seidel-Andersen—)Mackaay ~~ zig-zag algebras.

> “Smart” ’ Mackaay—Mazorchuk—Miemietz ~~ “Cartan approach” |.

» Redundancy. Are the constructed 2-representations equivalent?
boMr S M T T,
» Completeness. Are we missing 2-representations?

> This is where the grading assumption comes in.

Marco Mackaay & Daniel Tubbenhauer Di- and trihedral (2-)representation theory I July 2018 12/13



Marco

Lee Al TR e
s | ADE gt o o2
a o
e . o remm-|
R et [
e o rem1s
Ny-representations via graphs
Construc 3 W.epresetation M asocated o bt gragh I
M=cn2345)
i3 3% %
20100 00000
02111 00000
aern=| 00000 | awm=| 11200
00000 01020
00000 01002

gl 19
Divedral singiar Soerel
indecomposaties careor

The e part . .

hesory of dibedrl Sorgel

Complt, irsdundon it o

poe | @ e
s |

©-Qw

—

ety e

S KRton Vichasy Vi Wiemiets Zommerman 06T

Sinple 2represenatons of ..

T

@«

& Daniel Tubbenh

There is still much

Ul = 1, U(8) =X, 0o f8) = Ueyalh) + Ulx)

Kroneckes ~1857. Any complee e of conugae algsbac integes i
i o

Figre: The ot fthe Chbyshe sl (of te scond i)

a

No-representations via graphs
Consruc 3 Wiepresetaion M asodsted o  ipatie gra I

N-cn2345)

220

Dihg e

Tuo.
7|

Coaion
B L E TR ——

roox | @ | 00w |©w

g | tor [ Voo 12 Go oo | i
T T

20100 00000
02111 00000

Ben-| 00000 bem—| 11200
00000 01020

00000 01002

A few words about the ‘How to’

> Decategorfication. What s the coresponding questin sbout N mtrcs”

- [Chebyhev-Smit-Losg — ADE tpe srove

> Constructon. Do avry candidae soltion donnstars acualy s”

 “Brute force” (Khovanov-Seide-Andersan-Mackasy — g 135 lgebrss.

S [k ez Mt — “Cartan sporosch”
> Rodundancy. Are theconstrcied 2 representaions eqivalent
P Ll

» Completeness, Are we mising 2representaions?
> This i where th grading sssumption comes i

Di- and trihedral (2-)representa

to do...

ion theory I

The e iy

Theorom
T Sohe e ine
pariclr, n the
cauivaence nce coses of
oo 2.1

Thearem 0= ) e
2.category. impe sigeoa
Lmorghem (o5 e v < eqivent
(o oot o ) o g o ot o o i)

one com chec hs e s f kit r i i et e
B vine th e wis ks 1 Rov 1015 D

et et Nesrentrin of e Vot s
T v don by Eingo Kovanow 1905
L]

July 2018

13/13



Marco

Lee Al TR e
s | ADE gt o o2 Corter s
a o
e . o remm-|
R et [
e o rem1s
Ny-representations via graphs
Construc 3 W.epresetation M asocated o bt gragh I
M-cp23as)
i3 3% %
20100 00000
02111 00000
aern=| 00000 | awm=| 11200
00000 01020
00000 01002

gl 19
Divedral singiar Soerel
indecomposaties careor

The e part . . hesory of dibedrl Sorgel

S KRton Vichasy Vi Wiemiets Zommerman 06T
Complt, irdandan s of 1 S Zrpresntations of ..

0-Qu @ w

Moot o 62— Con . | oz

poe | @ e
s |

ety e

& Daniel Tubbenh

Ul = 1, U(8) =X, 0o f8) = Ueyalh) + Ulx)

mecker ~1857. Any compet st of conogate sgsbaic negers in| 2,2 s
i o

Fgur: Th oo of the Cabyshs bt (o h scond ki),

a

No-representations via graphs
Construct » W.epresetation M asocated o it gragh I

N-cn2345)

Dihg e

Tuo.
7|

Coaion
B L E TR ——

roox | @ | 00w |©w

g | tor [ Voo 12 Go oo | i
T T

20100 00000
02111 00000
Ben-| 00000 bem—| 11200
00000 01020
00000 01002

A few words about the ‘How to’

-

> Rodundancy. Are theconstrcied 2 representaions eqivalent
P Ll

» Completeness, Are we mising 2representaions?
> This i where th grading sssumption comes i
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Up(X) =1, Ui(X) =X, XUep1(X) = Uesa(X) + Ue(X)

Kronecker ~1857. Any complete set of conjugate algebraic integers in | — 2,2[ is
a subset of roots(Ue+1(X)) for some e.

The roots of the Chebyshev polynomials
The roots of the Chebyshev polynomials The case of - being even
The case of ¢ being odd

Figure: The roots of the Chebyshev polynomials (of the second kind).



The KL basis elements for S3 = W3 with sts = wy = tst are:
.=t+1, O.=ts+s+t+1,

=1, 0.,=s+1,
Owo =Wo+ts+st+s+t+1.

O =st+s+t+1,

st wo

1 I

Figure: The character table of Sz & W3.




The KL basis elements for S3 = W3 with sts = wy = tst are:

=1, O.,=s+1, O.=t+1, O.,=ts+s+t+1,
O =st+s+t+1, Oy, =w+ts+st+s+t+1.

61 0 0. 0.5 [ O

Figure: The character table of Sz & W3.



The KL basis elements for S3 = W3 with sts = wy = tst are:

=1, O.,=s+1, O.=t+1, O.,=ts+s+t+1,
0. =st+s+t+1, Ou=w+ts+st+s+t+1l

Remark.
wo
This non-negativity of the KL basis

is true for all symmetric groups, L

but not for most other groups (as we will see).

The case e =1 is the last case b
where the Chebyshev polynomial has only integer roots.

1 0 0 0 0 0

oo 4 H

Figure: The character table of Sz & W3.



The KL basis elements for S3 = W3 with sts = wy = tst are:
=1, O.,=s+1, O.=t+1, O.,=ts+s+t+1,

The first ever published character table (~1896) by Frobenius.
Note the root of unity p.

I [1011]

Froz:

Uber Gruppencharaktere. 27

Smey Factor f abgesehen) einen relativen Charakter von §, und um-
Kekelyt sich jeder relative Charakter von £, %, -+ %, auf eine
Oder mehrere Arten durch Hinzufiigung passender Werthe o, =+* %y
A cinem Charakter von $' ergiinzen.

§8.

. Ieh will nun die Theorie der Gruppencharaktere an einigen Bei-
EP‘“I(‘H erliiutern. Die geraden Permutationen von 4 Symbolen bilden
“ie Gruppe § der Ordnung =12, Thre Elemente zerfallen in 4 Classen,
1€ Elemente der Ordnung 2 bilden eine zweiseitige Classe (1), die der
Olﬂuung 3 zwei i Classen (2) und (3) = (2).
hische Wor:

Sei p eine primitive

Tetraeder. £ =12.
| X0 X x® X9 | ke

el al 3 1 1 1
sa Lt o] 1 1 3
X2 | 1 (P o P
X | eSO s Pl P | 1t




(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.

Elements of S, LN (P, Q) standard Young tableaux of the same shape. Left, right
and two-sided cells of S,:

> s~ tif and only if Q(s) = Q(t)
» s ~g tif and only if P(s) = P(t)
» s~ tifand only if P(s) and P(t) have the same shape.

Example (n = 3).
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(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.

Elements of S, LN (P, Q) standard Young tableaux of the same shape. Left, right
and two-sided cells of S,:

> s~ tif and only if Q(s) = Q(t)
» s ~g tif and only if P(s) = P(t)
» s~ tifand only if P(s) and P(t) have the same shape.

Example (n = 3).
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(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.

Elements of S, LN (P, Q) standard Young tableaux of the same shape. Left, right
and two-sided cells of S,:

> s~ tif and only if Q(s) = Q(¢).
» s ~rg tif and only if P(s) = P(t).
» s~ tifand only if P(s) and P(t) have the same shape.

Example (n = 3).
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(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.

Elements of S, LN (P, Q) standard Young tableaux of the same shape. Left, right
and two-sided cells of S,:

> s~ tif and only if Q(s) = Q(¢).
» s ~rg tif and only if P(s) = P(t).
» s~ tifand only if P(s) and P(t) have the same shape.

Example (n = 3).
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(Robinson ~1938 & )Schensted ~1961 & Kazhdan—Lusztig ~1979.
Elements of S, LN (P, Q) standard Young tableaux of the same shape. Left, right

and two Apexes:
» S~
> s ~ 91 05 er, Gts est 0w0
» s~
EEN 1 2 2 4 4 6
Exampl

The Np-representations are the simples.




In case you are wondering why this is supposed to be true, here is the main
observation of Smith ~1969:

Ues1(X,Y) = £det(XId — A(Aet1))

Chebyshev poly. = char. poly. of the type A.11 graph ‘

and

XT o 1(X) = +det(XId — A(D,)) £ (—1)" ™ *

first kind Chebyshev poly. ‘=" char. poly. of the type D, graph (n = <5*).




The type A family
e=3
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The type D family

e=10

.

The type E exceptions

e=16
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The type A family
e=3

e=0 e=1 e = e=4

v —h—y —_——— —
—k —h—¥—k

* Fe——k Fe—F—h—F—k

The type D family

e=28 e=10

]

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the symmetric group case.

M N M N

The type E exceptions

e=16 e =128
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Objects. Parabolic subsets (, s, .

1-morphism generators. Color changes (s or s) or #t or t{.

2-morphism generators. Diagrams and polynomials.
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Relations. Some relations coming from Frobenius extensions.



Theorem (Mackaay—Mazorchuk—Miemietz ~2016). Let € be a fiat
2-category. For i € €6, consider the endomorphism 2-category .&/ of i in € (in
particular, o/ (i,1) = 4(i,1)). Then there is a natural bijection between the
equivalence classes of simple 2-representations of ./ and the equivalence classes of
simple 2-representations of %6 having a non-trivial value at i.

Theorem (Mackaay—Mazorchuk—Miemietz ~2016). Let 6 be a fiat

2-category. For any simple 2-representation .4 of 6, there exists a simple algebra
1-morphism A in 6 (the projective abelianization of 6) such that ./ is equivalent
(as a 2-representation of €) to the subcategory of projective objects of .# od(A).
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particular, .| This means for us that it suffices to find tween the
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Theorem (Mac But how to do that? e a fiat

2-category. For any simple 2-representation .4 of 6, there exists a simple algebra
1-morphism A in 6 (the projective abelianization of 6) such that ./ is equivalent
(as a 2-representation of €) to the subcategory of projective objects of .# od(A).
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Theorem (M et e fla'F -
2-category. F fiin % (in
particular, .¢/ This means for us that it suffices to find tween the
equivalence clalgebra 1-morphisms in the semisimple 2-category m#..,gnce classes of
simple 2-reprg which we can then ‘induce up’ to #ei2.

So it remains to study 2-representations of m#.».
Theorem (Mac But how to do that? e a fiat
2-category. For any §Idea: Chebyshev knows everything! }Xists a simple algebra
1-morphism A in € that ./ is equivalent

(as a 2-representatiorSo where have we seen the magic formulajobjects of ./ od(A).
XUmi1(X) = Umya(X) + Um(X)
before?

Here:

[2lg - [m+1]q = [m+2]q + [m]q
Li ® Lp+1 £ Linio © Lim
L = m™ symmetric power of the vector representation of (quantum) sly.




Theorem (Mackaay—Mazorchuk—Miemietz ~2016). Let € be a fiat
2-category. For i € €6, consider the endomorphism 2-category .&/ of i in € (in
particular, o/ (i,1) = 4(i,1)). Then there is a natural bijection between the
equivalence classes of simple 2-representations of .o/ and the equivalence classes of

sir

Ti
2.
1-
(a

Quantum Satake (Elias ~2013).

Let O, be the semisimplyfied quotient of the category of
(quantum) sl-modules for 7 being a 2(e + 2)*™ primitive, complex root of unity.

There are two degree-zero equivalences, depending on a choice of a starting color,

Se: Qe = mWeio
and
Se: Qe — mWe+2.

bra
ent

A).

The point: it suffices to find algebra objects in Q.. |




Theorem (Mackaay—Mazorchuk—Miemietz ~2016). Let € be a fiat
2-category. For i € €6, consider the endomorphism 2-category .&/ of i in € (in
particular, o/ (i,1) = 4(i,1)). Then there is a natural bijection between the
equivalence classes of simple 2-representations of ./ and the equivalence classes of
simple 2-representa Theorem (Kirillov—Ostrik ~2003).

Theorem (Macka The algebra objects in Q. are ADE classified. } be a fiat

2-category. For any simple 2-representation ./ of 6, there exists a simple algebra
1-morphism A in 6 (the projective abelianization of %) such that ./ is equivalent
(as a 2-representation of €) to the subcategory of projective objects of .# od(A).



Theorem (N
2-category. H
particular, .o
equivalence @
simple 2-repr

Theorem (N
2-category. H
1-morphism 4

So who colored my Dynkin diagram?
Satake did.
And why does the quantum Satake correspondence exists?

Because Chebyshev encodes both change of basis matrices:

{LF} - {Lm}
{BS basis} «~ {KL basis}.

fiat

iin € (in
ween the

nce classes of

fiat
imple algebra
is equivalent

(as a 2-representation of €) to the subcategory of projective objects of .# od(A).

Aside:

One can check that the objects of Kirillov—Ostrik are in fact algebra objects
by using the symmetric web calculus 4 la Rose ~2015.

One can show that these have to be all by looking at

the decategorified statement: No-representations of the Verlinde algebra.

This was done by Etingof-Khovanov ~1995.




The algebra object in type D:

AP~ Ly@L,=C, ®Sym®(Ly) o 0 @ e.
The multiplication m: D€ ® D¢ — D€ is



The algebra object in type D:

AP~ Ly@L,=C, ®Sym®(Ly) o 0 @ e.
The multiplication m: D€ ® D¢ — D€ is

Lo
N o

And th|s holds because

Check associa O=[,=le+1 =1,

using that we are working with a 2(e + 2)™ root of unity.
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