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Chebyshev-like polynomials

Definition (77?7, Koornwinder 1974)

The polynomials U, »(x,y), m,n € N° are recursively defined by

UO,O(X7y) = 17 ULO(va) =X, Um,"(Xay) = Un7m(y,X),
XUmm(va) = Um+1,n(xa }/) + Um—l,n+1(X7y) + Um,n—l(Xv}/)a
yUm,n(X7 )/) = Um,n+1(X7Y) + Um+1,n71(X7 )/) + Umfl,n(X7 )/)‘

Eg.

Ul,l(Xay) = Xy*la U2,1(Xay) = X2y7y27X, UO,Q(X,}/) = y27X, Ul,O(X,)/) = X,
N>

XUl,l(Xay) = U2,1(X7y) + U0,2(X7y) + Ul,O(X7y)
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The zeros of the U, ,

The zeros of the Up, , are all of the form (z,Z) with z € d§ (..., Koornwinder 1974,
Evans-Pugh 2010, ...).

3exp(2ﬂ"\%) - C
d3={zeC

3

20 {z = 2exp(it) + exp(—2it)
| —2°2°+42°+

| t €[0,2nx]}
2 _18:7427>0}

3exp(27i3) T3

The disciod d3 = d3(s[3) bounded by Steiner's hypocycloid d

Note the Z/3Z-symmetry of d3: (z,Z) — (e*?™/3z, e¥27/37),
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Relation with quantum sl3: generic case

Let g € C be generic.

Theorem
There exists an isomorphism of algebras:

[Uq(5[3) — mod](C >~ Clx,y]

Vial = Y dih VS @ Ved] = Unmalx,y) = Y dihx*y/
k,I=0 k,I=0

for m,n € NO.

The integers d,’;,’,, can be computed recursively. Note that they can be positive or
negative.
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Relation quantum sl3: root of unity case

Suppose 7(¢T3) = 1. Then there exists an isomorphism of algebras

[U,(sls) —modgs]e = Clx,y]/ (Umn(x,y) | m+n=e+1)
Vinl = Uma(x,y) (0<m+n<e).
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The trihedral Hecke algebra of level oo

e We are now going to define the trihedral analogue of H(l(o0)) = H(A;),
which is an infinite-dimensional algebra T, C H(A).
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The trihedral Hecke algebra of level oo

e We are now going to define the trihedral analogue of H(l(o0)) = H(A;),
which is an infinite-dimensional algebra T, C H(A).

e There is no underlying group (that we know of), so we define T, directly in
terms of the trihedral Kazhdan-Lusztig generators.

Definition (MMMT 2018)

Let v be a formal parameter. Then T is the associative, unital (C(v)-)algebra
generated by three elements 6,, 6., 0,, subject to the following relations:

92 = [3]+!6, 93) = [3]+! 6., 9;27 = [3]+!6p,

0,0,0, =06,0,0,, 0,0,0, =0.,0,0,, 0,0,0, = 0,0,0,.

July 2018
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Embedding into H(/Zz)

o Let W(sz) be the affine Weyl group with simple reflections b, r, v. Then
b/b=yvby, rvr=yvry, brb=rbr

are the longest elements in the (finite) type Ay parabolic subgroups of W(Zg).
o Let
Ob.b50r 1y Obrb

be the corresponding Kazhdan-Lusztig basis elements in H(A,).
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Embedding into H(/Zz)

o Let W(A\Z) be the affine Weyl group with simple reflections b, r, v. Then
b/b=yvby, rvr=yvry, brb=rbr

are the longest elements in the (finite) type Ay parabolic subgroups of W(Zg).
o Let
Ob.b50r 1y Obrs

be the corresponding Kazhdan-Lusztig basis elements in H(A,).

There is an embedding of algebras T, — H(/Z\\z) such that

(9g — 9[, by 0, — 0, rs 9,, d 9b,b.
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The trihedral Bott-Samelson basis

Fixing a cyclic ordering on GOP := {g,0,p}, e.g.

p<---o
- 7
g
we can define the trihedral Bott-Samelson basis of T o

{3U{HY |ue GOP, m,neN°}.

Main idea: T is “almost” a tricolored version of [Ug(sl3) — mod]c = Clx, y].

H20 = 0,0,0, HY=0,0,0,=0,0.0, H=0.,0,0,

) _ ) )
o X2 o Xy = yx «Myz

where we think of x and y as counter-clockwise and clockwise color rotation, resp.

Marco Mackaay & Daniel Tubbenhauer
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The trihedral Kazhdan-Lusztig basis

For any u € GOP and m,n € N°, define

m,n

m,n .__ E —k—1 gk, k.l

Cu T [2]v dm,n I—Iu :
k,I=0

Poposition
The set

{1}U{CI" |ue GOP, m,ne N°}

forms a positive integral basis of T.

Main ingredient of the proof. the embedding T, — H(Zg) sends trihedral KL
basis elements to affine KL basis elements.
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The trihedral Hecke algebra of level e

For fixed level e, let I, be the two-sided ideal in T, generated by

{C" I m+n=e+1, ue GOP}.

We define the trihedral Hecke algebra of level e as

Te = Too/I.

e T, is “almost” a tricolored version of
[Uy(sl3) — modss] = Clx, y]/ (Umn(x,y) | m+n=e+1)

Marco Mackaay & Daniel Tubbenhauer
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The trihedral Hecke algebra of level e

For fixed level e, let I, be the two-sided ideal in T, generated by

{C" I m+n=e+1, ue GOP}.

We define the trihedral Hecke algebra of level e as

Te = Too/I.

e T, is “almost” a tricolored version of

[Uy(sl3) — modss] = Clx, y]/ (Umn(x,y) | m+n=e+1)

e T, is actually the analogue of the small quotient of the dihedral Hecke
algebra, obtained by killing 60, .
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Semisimplicity

Theorem (MMMT 2018)

The algebra T is semisimple and

(e+1)(e+2)
2

There is a 3: 1 correspondence between the non-trivial left cells of T, and the
generalized type A Dynkin diagram A, which is a cut-off of the fundamental Weyl
chamber of sl3 (integral dominant weights), e.g.

dimT, =3 + 1.

b2 2!
1.1 g g
0,2 N4 2,0 iR ——
0,1 1,0 (oxld | { - smoa0oncn #C Y
(e)& oo C;’ g & g N
s ¢ -- G, N L " G
) Gy ¢---MC; ) 0 \1\ 10
0.0 G ¥---HG
20
e 0,0
C}l
L€ fore=1 LE fore =2 LE fore =3
o
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Complex simples of T,

1-dimensional simples: for A, € {0, [3],!} s.t. relations hold.
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Complex simples of T,

1-dimensional simples: for A, € {0, [3],!} s.t. relations hold.

3-dimensional simples: for 0 # z € d§ s.t. Up, »(2,Z) = 0 for all
m+ n = e+ 1, the simple V, is given by

By z z
6, — [2+|{ 0 0 0],
0 0 O
0 0 O
6, — 2z By z],
0 0 O
00 O
0, — 2, [0 0 O
z z [3v
We have '
Vz1 = sz =< 1 :eﬂ”’/322.
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NO-representations

For NO-representations of Q. = C[x, y]/(Um.n(x,y) | m+n=e+1):

Are there any X € Mat(r,N°), with r € N, such that
o XXT = XTX:
¢ Unn(X,XT)=0if m+n=e+1;
@ Upn(X,XT) e Mat(r,N®) if0<m+n<e.
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NO-representations

For NO-representations of Q. = C[x, y]/(Um.n(x,y) | m+n=e+1):

Are there any X € Mat(r,N°), with r € N, such that
o XXT = XTX:
¢ Unn(X,XT)=0if m+n=e+1;
@ Upn(X,XT) e Mat(r,N®) if0<m+n<e.

For NO-representations of T.:

How to build these from the matrices which answer Question 17 I
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Tricolored graphs

Let I be a tricolored (multi)graph without loops, and group its vertices according
to color. Then the adjacency matrix A(I') becomes of the form:

G O P

G [0 AT C
AN= 0| A 0 BT
P \CT 0

Consider also the oriented adjacency matrices A(F™) and A(F'Y):

)

A =ArMHT= o

Ry,

G O P
0o 0 C
A 0 0
0 B 0

Marco Mackaay & Daniel Tubbenhauer Di- and trihedral (2-)representation theory 11 July 2018 15 /48



Generalized Dynkin diagrams

Example (Type A, Di Francesco-Zuber 1990, Ocneanu 2002)

oo
)
= O o
o= o
v

@

Il
N

O = =
= O R
== o
\—/

(@)

Il
N\
O O
O FEO
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Generalized Dynkin diagrams

Example (Type D, Di Francesco-Zuber 1990, Ocneanu 2002)
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Generalized Dynkin diagrams

Example (Conjugate type A, Di Francesco-Zuber 1990, Ocneanu 2002)

| @ 4
e — \ K ’/
o S \ .,
.\ e /.’ .: .‘/’ N o ,/
‘_ oo | S e / \ / S / chAsz . ,//
\
ﬂ.. s S "-‘—-.:.,- , \‘i _________ o ’:./
cA; =2 A, o g
cA, =2 A, cA;
"’.
CA4
>

The graph of type cA. comes from an iterative procedure on the graph of type A..
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+ three more
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NO-representations of Q. = [U,(sl3) — mody]c

Let I be a tricolored generalized ADE Dynkin diagram with generalized Coxeter
number h = e + 3.

Theorem (MMMT 2018)

The assignment
x = AT,y ACTY)

defines an integral representation of Q. = C[x,y]/ (Umn(x,y) | m+n=e+1).
In type A and D it is positive integral.
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NO-representations of Q. = [U,(sl3) — mody]c

Let I be a tricolored generalized ADE Dynkin diagram with generalized Coxeter
number h = e + 3.

Theorem (MMMT 2018)

The assignment
x = AT,y ACTY)

defines an integral representation of Q. = C[x,y]/ (Umn(x,y) | m+n=e+1).
In type A and D it is positive integral.

e In particular, we have A(F*)A(IY) = A(TV)A(M™).
e The first claim follows from the fact that all eigenvalues of rx (Evans-Pugh
2010) are roots of the Uy, , with m+n= e+ 1.

e Positivity in type A and D follows from categorification. We conjecture
positivity to hold in type cA and E as well.
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NO-representations of T,

Let T be a tricolored generalized ADE Dynkin diagram with generalized Coxeter
number h = e + 3.

Theorem (MMMT 2018)

There exists a unique integral T¢-representation My s.t.

[3,1d AT C 0 0 0
HgH[2]V( 0 0 o), OOH[2]V(A [3],1d BT)

0 0 O 0 0 0

0 O 0
0,— 2| 0 O 0o |.
cT B [3],1d

It is positive integral in type A and D.

We conjecture positivity to hold in conjugate type A and type E as well.
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2-Representations of Q. = U, (sl3) — modss using quivers

e Let I be the generalized type ADE Dynkin diagram with h = e + 3.
e Take TV, =2 CY(D to be the trivial quiver algebra associated to T.

o Let P;j (resp. ;jP) be the left (resp. right) projective TV.-module
associated to the vertex v;; in T

Conjecture
There exists a finitary 2-representation of Q. on TV, — fpmod such that

Vio = B PuiP
(i) — (K, 1)erx
V0’1 — @ Pk,l (29 i,j'Da

(i) (k,1)ery

which decategorifies to the positive integral representation of
Clx, ]/ (Um,n(x,y) | m+ n = e + 1) associated to T.

Marco Mackaay & Daniel Tubbenhauer Di- and trihedral (2-)representation theory IT July 2018



Functorial representations of T, in generalized type A

Consider the following quiver:

@L\. = = .09
\\% \%

. 5%
i A
6.5
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The trihedral zigzag algebra of generalized type A

Definition (l\/ll\/ll\/IT 2018)
Let Ve be the complex path algebra of ' modulo the relations:
e Any path with more than one triangle to its left (right) is equal to zero.
o o, +ay +a, =0, axa, + oo, + a0, =0, a0, =0.
e Loops commute with edges.
e a,y|x =0 etc.
e Zig-zag relation: x|y|x = aya, etc.

e Zig-zig equals zag times loop: x|y|z = axx|z etc.

The grading on V. is given by twice the path length.
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The trihedral zigzag algebra of generalized type A

Definition (l\/ll\/ll\/IT 2018)
Let Ve be the complex path algebra of ' modulo the relations:
e Any path with more than one triangle to its left (right) is equal to zero.
o o, +ay +a, =0, axa, + oo, + a0, =0, a0, =0.
e Loops commute with edges.
e a,y|x =0 etc.
e Zig-zag relation: x|y|x = aya, etc.

e Zig-zig equals zag times loop: x|y|z = axx|z etc.

The grading on V. is given by twice the path length.

o Let ¢ ; be the idempotent at vertex v; ;. Paths of length > 3 are zero and
H*(}—/3,(C), If V,'J = Vk,/,
e,',jveek,/ = (C{2} D (C{4}, if Vij — VI
{0}, else.
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Functorial representations of T, in generalized type A

Let P;j (resp. ;;P) be the left (resp. right) graded projective V.-module
corresponding to vertex v;; in I

Theorem
The assignment

0, @ Pij®i;P

i—j=0 mod 3

b = D PP
i—j=1 mod 3

0p P rjeiy,P
i—j=2 mod 3

defines a functorial representation of T on V.—fpmod,,.

July 2018
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e By using the Z/3Z-symmetry on Ve, for e = 0 mod 3, one can easily define
the corresponding type D trihedral zigzag algebra. For other generalized types
it is not clear what the right definition is.
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e By using the Z/3Z-symmetry on Ve, for e = 0 mod 3, one can easily define
the corresponding type D trihedral zigzag algebra. For other generalized types
it is not clear what the right definition is.

e Unfortunately, we do not know how to lift these functorial representations of
T, to full-blown 2-representations of trihedral Soergel bimodules in a
straightforward way.

e Therefore, we use an alternative construction of simple transitive
2-representations, involving algebra objects. The two approaches are related by
the quantum SU(3) McKay correspondence.

But we first recall the Quantum Satake Correspondence and define trihedral
Soergel bimodules.
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A three-colored version of Q4 = Ugy(sl3) — mod

Definition

Foru € {g,0,p}, let Qy denote the full subcategory of Qg generated by the Vi, ,
such that
Omod 3, ifu=g,

m—n=<¢1mod3, ifu=o,
2mod 3, ifu=np.

Tensoring with Vo, resp. Vg 1, defines a functor X, resp. Y, between the Qg, e.g.

X Y Y X
ng = ‘I‘ : Qg — Q;, gYo - ‘I' : Q; — an gYo o ng = ‘I’ ‘I‘
X Y Y X
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Definition (Elias 2014 motivated by Kuperberg 1996)

We define 2777 to be the additive, Cq-linear closure of the 2-category whose
objects are the categories QY, whose 1-morphisms are composites of X and Y, and
whose 2-morphisms are natural transformations.

A natural transformation between composites of X and Y is the same as a
Uq(sl3)-equivariant map, so we can use Kuperberg's diagrammatic web calculus to
describe Q(fop. The generating 2-morphisms (up to color variations) are

C C
G/ T . N T .
2 NS .

'( l\ xx’ Y ’ k Yy
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These are subject to the relations

A BN ERE

together with the vertical mirrors and the relations obtained by varying the
orientation and the colors.
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Three-colored sl3-clasps

Given m, n € N°, for each choice of source u € {g, 0, p}, the simple Vi.n
corresponds to a direct summand of the functor X™Y" in QqGOP, given by a
diagrammatic idempotent c,,”" (Kuperberg 1996, Kim 2007).

Example (Three-colored sl3-clasps)

2,0 _ 1 11 _ _ 1
0,2 1
02 _ 1
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The root of unity case

Let n2(e+3) = 1.

Definition

Define 25 °F as the quotient of the diagrammatic 2-category above, for g = 7, by
the 2-ideal generated by all c;”", such that m+n=e+ 1 and u € GOP.

e 209" is nothing but a three-colored version of Kuperberg's diagrammatic
calculus for Q. = U, (sl3) — mods.
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Diagrammatic Soergel calculus in type /2\\2

Using a g-deformation of the usual A, Cartan matrix, Elias (2014) constructed a
linear representation of W = W(A,) on the root space Spancq{as, o, }.
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Diagrammatic Soergel calculus in type /2\\2

Using a g-deformation of the usual A, Cartan matrix, Elias (2014) constructed a
linear representation of W = W(A,) on the root space Spancq{as, o, }.

We can specialize q to a complex number to get a complex representation:
e for generic q, it is reflection faithful.

e for q a root of unity, the representation is not faithful and descends to a
finite complex reflection group.

Let Ry = C(q)[ap, o, v |, where ap, a,, v are given degree 2. The above
representation extends to a degree-preserving action of W on Rq by automorphisms.
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Soergel calculus in type A\g

Definition (The 2-cat 5%5”:, Elias 2014, Elias-Williamson 2013)

e Objects: proper subsets of {b, /, r}:

0, b, v, r, g:=4b, '}, o:={r, '}, p:={b,r}.

e 1-morphisms: finite strings of compatible colors, e.g.:

T T T

e 2-morphisms: generated by

degree 1 degree —1 degree 2 degree —2 degree 0

and decorations of the regions by partially invariant polynomials in Rq, and
subject to a whole list of relations (which depend on q).
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Remarks

Let sS4 be the 2-category obtained from s 8.5 by allowing formal grading
shifts on 1-morphisms and considering only degree-zero 2-morphisms, i.e. for any
t € Z we define

25BS o(x{t},y) =25 B (X, ¥)t.

Theorem (Elias 2014, Elias-Williamson 2013)
Let q € C be generic.

o Har(sBSq) is equivalent to the 2-category of all Soergel bimodules of

type A, and decategorifies to the Hecke algebroid of that type, such that the
indecomposable 1-morphisms correspond to the KL-basis elements.

olet BS q:=5RBSq(D,0). Then Har(BS) is equivalent to the monoidal
category of regular Soergel bimodules of type A, and decategorifies to H,(Az)

v
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The Quantum Satake Correspondence (QSC)

e The 2-category of maximally singular Soergel bimodules Har(m#B.%,) is
defined as the Karoubi envelope of the 2-full 2-subcategory of s %874
generated by diagrams whose left- and rightmost colors are secondary.

Definition (Elias 2014)
The Satake 2-functor S;: 2777 — mBS g is defined as indicated below:

~ ~
Kk K-

Theorem (Elias 2014)

The Satake 2-functor is a well-defined degree-zero 2-equivalence.

I

5

A\
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Trihedral Soergel bimodules of level oo

Assume that q € C is generic.

Definition (MMMT 2018)

Let 7 be the additive closure of the 2-full 2-subcategory of 8.7, whose
1-morphisms are generated by all grading shifts of

0, Obgbd, 0. 00, Obpbh,

and the 1-morphisms obtained from these by changing the intermediate primary
colors.

| A

Example

By the relations on 2-morphisms in B4, we have

Obgbd = Obg D=0 gbb =0 g 0.

Similar isomorphisms hold for the strings with o and p.

A\
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The categorification theorem at level oo

The decategorification of T is isomorphic to T, such that the indecomposable
objects correspond to the tricolored KL basis elements.

e We can always remove intermediate ), e.g.
Dbgblbpb) = Dbg bpb) & Dbg bpbB{2}

This shows that all 1-morphisms in J., can be obtained from s 8.7, by
biinduction.
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The categorification theorem at level oo

The decategorification of T is isomorphic to T, such that the indecomposable
objects correspond to the tricolored KL basis elements.

e We can always remove intermediate ), e.g.
Dbgblbpb) = Dbg bpb) & Dbg bpbB{2}

This shows that all 1-morphisms in J., can be obtained from s 8.7, by
biinduction.

e For every pair of 1-morphisms x and y in s 8.5, biinduction gives a functor
BI(x,y): s B 4(x,y) = To(BI(x), Bl(y)).

However, it is not a 2-functor, because it does not behave well under
horizontal composition.
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Biinduction

For any u € GOP:

e the Satake 2-functor Sq maps the tricolored clasps cy"” in chop to the
primitive idempotent 2-endomorphisms Sq(ci”") in sBS g;

e biinduction maps the Sq(cy™")

(2-)endomorphisms C"" in J..

in §B 4 to the primitive idempotent

Example
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Maximally singular Soergel bimodules at level e

Let n2(e+3) = 1.

Definition (MMMT 2018)

Define m%8.~ . as the quotient of m%#.% 4, at 9 = 7, by the two-sided 2-ideal
generated by

{Sq(c?"™) Im+n=e+1, ue GOP} = {Sq(™i) |m+n=e+1, ue GOP}.

The Karoubi envelope Har(m%B.S.) is by definition the 2-category of maximally
singular type A, Soergel bimodules at level e.

4

The Satake 2-functor Sq, at q = 1), descends to a degree-zero 2-equivalence

Se: 259F & Har(mBS ).

Marco Mackaay & Daniel Tubbenhauer Di- and trihedral (2-)representation theory IT July 2018 39/48



Trihedral Soergel bimodules at level e

Let n2(e+3) = 1.

Definition (MMMT 2018)

Define Z. as the quotient of J., at g = 7, by the two-sided 2-ideal generated by

{C" | m+n=e+1,ue GOP}={"C|m+n=e+1, uec GOP}.

Theorem

The decategorification of T, is isomorphic to T, such that the indecomposable
objects correspond to the tricolored KL basis elements.

| A
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Algebra and module objects

Let € be a finitary monoidal category.
e An algebra object (X, u,¢) in € is an object X together with a
multiplication morphism z: X ® X — X and a unit morphism ¢: [ — X
satisfying the usual axioms.
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Algebra and module objects

Let € be a finitary monoidal category.

e An algebra object (X, u,¢) in € is an object X together with a
multiplication morphism z: X ® X — X and a unit morphism ¢: [ — X
satisfying the usual axioms.

e A (right) X-module object (M, up) in € is an object M together with a
morphism pp: M ® X — M satisfying the usual axioms. Similarly, one can
define intertwiners between (right) X-modules in %
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e An algebra object (X, u,¢) in € is an object X together with a
multiplication morphism z: X ® X — X and a unit morphism ¢: [ — X
satisfying the usual axioms.
e A (right) X-module object (M, up) in € is an object M together with a
morphism pp: M ® X — M satisfying the usual axioms. Similarly, one can
define intertwiners between (right) X-modules in %
e In this way, we get the finitary category of right X-module objects in ¢,
denoted mody — X.
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Algebra and module objects

Let € be a finitary monoidal category.
e An algebra object (X, u,¢) in € is an object X together with a
multiplication morphism z: X ® X — X and a unit morphism ¢: [ — X
satisfying the usual axioms.
e A (right) X-module object (M, up) in € is an object M together with a
morphism pp: M ® X — M satisfying the usual axioms. Similarly, one can
define intertwiners between (right) X-modules in %
e In this way, we get the finitary category of right X-module objects in ¢,
denoted mody — X.
e Let (X, u,t) be an algebra object in €. For any object Y in &, the
monoidal product Y ® X is naturally a right X-module object in &, with
pyex =idy @ p.
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Let € be a finitary monoidal category.
e An algebra object (X, u,¢) in € is an object X together with a
multiplication morphism z: X ® X — X and a unit morphism ¢: [ — X
satisfying the usual axioms.
e A (right) X-module object (M, up) in € is an object M together with a
morphism pp: M ® X — M satisfying the usual axioms. Similarly, one can
define intertwiners between (right) X-modules in %
e In this way, we get the finitary category of right X-module objects in ¢,
denoted mody — X.
e Let (X, u,t) be an algebra object in €. For any object Y in &, the
monoidal product Y ® X is naturally a right X-module object in &, with
pyex =idy @ p.
e In this way, the category mods — X becomes naturally a (left) finitary
2-representation of €.
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Algebra and module objects

Let € be a finitary monoidal category.
e An algebra object (X, u,¢) in € is an object X together with a
multiplication morphism z: X ® X — X and a unit morphism ¢: [ — X
satisfying the usual axioms.
e A (right) X-module object (M, up) in € is an object M together with a
morphism pp: M ® X — M satisfying the usual axioms. Similarly, one can
define intertwiners between (right) X-modules in %
e In this way, we get the finitary category of right X-module objects in ¢,
denoted mody — X.
e Let (X, u,t) be an algebra object in €. For any object Y in &, the
monoidal product Y ® X is naturally a right X-module object in €, with
pyex =idy @ p.
e In this way, the category mods — X becomes naturally a (left) finitary
2-representation of €.
e Under certain conditions, there is a bijection between the equivalence classes
of simple transitive 2-representations of ¢ and the Morita equivalence classes
of simple algebra objects in &, its projective abelianization. [MMMT 2016]
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Algebra objects in Q. = U, (sl3) — mods

Example (Generalized type A)

e The identity object I = Vg ¢ is an algebra object, because I® I = 1.
e Since Y ®I X Y for all objects Y in Q., we see that

modg, — I~ Q,,

which is the regular 2-representation of Q..

e It is also the unique cell 2-representation of Q.. In particular, it is simple
transitive.

e Conjecture: it is equivalent to the generalized type A quiver 2-representation
of Q. from a couple of slides ago.

W
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Algebras in Q. = U, (sl3) — modss

Let e =0 mod 3.
Example (Generalized type D, Schopieray 2017, MMMT 2018)

As an object in Q. the algebra object X decomposes as

X = V()’o D Ve’o (&) Vo,e.

The unit morphism ¢: I = Vp o — X is given by (idvo,o,0,0).
Furthermore, there are morphisms

Ve,O X Ve,O — VO,ea
VO,e ® VO,e — Ve,Oa
Veo® Voe — Vop,

Vo,e @ Veo — Voo,

which, together with the canonical isomorphisms Voo ® V;; = Vi =2 V; ® Vo,
assemble into a unital and associative multiplication morphism p: X ® X — X.

vy
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Conjectures

The 2-representation of Q. on modg, — X is equivalent to the generalized type D
quiver 2-representation of Q..

e If simple transitive quiver 2-representations of Q. exist for all simply laced
generalized Dynkin diagrams (as we conjectured a couple of slides back), then
so do simple algebra objects, but we do not know of any explicit construction
of X in conjugate type A and type E.
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Algebra objects in 7.

e Every simple algebra object X in Q. = U, (sl3) — mody gives rise to three
algebra 1-morphism X, € 25°F(u,u), foru e GOP.

Proposition

For every simple algebra object (X, u,¢) in Qe and every u € GOP, there exist
degree zero multiplication and unit morphisms such that

BI o So(X,){~3}

becomes a graded algebra object in ..
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Multiplication and unit morphisms of in 7.

e Because biinduction is not a 2-functor, one has to be slightly careful with the
definition of the multiplication morphism of Bl o S¢(X,){—3}.

Example (Generalized type A)
For (X, p,¢) = (I,idy,id;) in Q. and u = g, the algebra object in T is

multiplication unit
\i/
degree —3 degree 3

Conjecture: the quiver algebra underlying the simple transitive 2-representation of
J. is the trihedral zigzag algebra of generalized type A.
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Final remarks

e Open problem (for e > 3): classify all admissible graphs I' such that

Umn(A(F),A(TY)) =0, forallm+n=e+1.
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e Open problem: classify all simple algebra objects in U, — mods;.
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Final remarks

e Open problem (for e > 3): classify all admissible graphs I' such that

Umn(A(F),A(TY)) =0, forallm+n=e+1.

e Open problem: classify all simple algebra objects in U, — mods;.

e Question: The ordinary zigzag algebras have nice properties and interesting
relations to other mathematics. Do some of those generalize to the trihedral
zigzag algebras?
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Final remarks

e Open problem (for e > 3): classify all admissible graphs I' such that

Umn(A(F),A(TY)) =0, forallm+n=e+1.

e Open problem: classify all simple algebra objects in U, — mods;.

e Question: The ordinary zigzag algebras have nice properties and interesting
relations to other mathematics. Do some of those generalize to the trihedral

zigzag algebras?

¢ Possible generalizations: Does our story generalize to type A, for n > 37
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THANKS!!!

Marco Mackaay & Daniel Tubbenhauer



