Web calculi in representation theory

Or: the diagrammatic presentation machine

Daniel Tubbenhauer

Joint work with David Rose, Antonio Sartori, Pedro Vaz and Paul Wedrich

August 2015

Daniel Tubbenhauer August 2015

History of diagrammatic presentations in a nutshell

- Rumer, Teller, Weyl (1932), Temperley-Lieb, Jones, Kauffman, Lickorish, Masbaum-Vogel, ... (\geq 1971): $\mathbf{U}_{a}(\mathfrak{sl}_{2})$ -tensor category generated by \mathbb{C}_{a}^{2} .
- Kuperberg (1995): $\mathbf{U}_q(\mathfrak{sl}_3)$ -tensor category generated by $\bigwedge_a^1 \mathbb{C}_a^3 \cong \mathbb{C}_a^3$ and $\bigwedge_a^2 \mathbb{C}_a^3$.
- Cautis-Kamnitzer-Morrison (2012): $\mathbf{U}_q(\mathfrak{sl}_N)$ -tensor category generated by $\bigwedge_q^k \mathbb{C}_q^N$.
- Sartori (2013), Grant (2014): $\mathbf{U}_q(\mathfrak{gl}_{1|1})$ -tensor category generated by $\bigwedge_q^k \mathbb{C}_q^{1|1}$.
- Rose-T. (2015): $U_q(\mathfrak{sl}_2)$ -tensor category generated by $\operatorname{Sym}_q^k \mathbb{C}_q^2$. Thus, $U_q(\mathfrak{sl}_2)$ -Mod.
- Link polynomials: Queffelec-Sartori (2015); "algebraic": Grant (2015): $\mathbf{U}_q(\mathfrak{gl}_{N|M})$ -tensor category generated by $\bigwedge_q^k \mathbb{C}_q^{N|M}$.
- T.-Vaz-Wedrich (2015): $\mathbf{U}_q(\mathfrak{gl}_{N|M})$ -tensor category generated by $\bigwedge_q^k \mathbb{C}_q^{N|M}$ and $\operatorname{Sym}_q^k \mathbb{C}_q^{N|M}$.
- Sartori-T. (maybe! 2015): $U_q(\mathfrak{so}_{2N+1},\mathfrak{sp}_{2N},\mathfrak{so}_{2N})$ -tensor categories generated by $\bigwedge_q^k \mathbb{C}_q^{2N(+1)}$.

Daniel Tubbenhauer August 2015

- 1 The story for \mathfrak{sl}_2
 - Graphical calculus via Temperley-Lieb diagrams
 - The full story for \$\mathbf{s}\mathbf{l}_2
 - Proof? Symmetric Howe duality!
- **2** Exterior \mathfrak{gl}_N -web categories
 - Its cousins: the *N*-webs
 - Proof? Skew Howe duality!
- 3 As far as we can go in type \mathbf{A}_{N-1}
 - Even more cousins: the green-red *N*-webs
 - Proof? Super Howe duality!
- The machine in action yet again
 - What happens in types \mathbf{B}_N , \mathbf{C}_N and \mathbf{D}_N ?
 - This!

Promise: no more q's from now on. But you can insert them everywhere if you like.

Daniel Tubbenhauer August 2015

The 2-web space

Definition(Rumer-Teller-Weyl 1932)

The 2-web space $\operatorname{Hom}_{2\text{-Web}}(b,t)$ is the free \mathbb{C} -vector space generated by non-intersecting arc diagrams with b,t bottom/top boundary points modulo:

The 2-web category

Definition(Kuperberg 1995)

The 2-web category 2-**Web** is the (braided) monoidal, \mathbb{C} -linear category with:

- Objects are vectors $\vec{k} = (1, ..., 1)$ and morphisms are $\text{Hom}_{2\text{-Web}}(\vec{k}, \vec{l})$.
- Composition o:

$$\bigcap_{1 = 1} \circ \bigcup^{1} = \bigcap_{1} \quad , \quad \bigcup^{1} \circ \bigcap_{1 = 1} = \bigcap_{1}$$

■ Tensoring ⊗:

Diagrams for intertwiners

Observe that there are (up to scalars) unique $\mathbf{U}(\mathfrak{sl}_2)$ -intertwiners

$$\mathrm{cap}\colon \mathbb{C}^2\otimes\mathbb{C}^2\twoheadrightarrow\mathbb{C},\quad \mathrm{cup}\colon\mathbb{C}\hookrightarrow\mathbb{C}^2\otimes\mathbb{C}^2,$$

projecting $\mathbb{C}^2\otimes\mathbb{C}^2$ onto \mathbb{C} respectively embedding \mathbb{C} into $\mathbb{C}^2\otimes\mathbb{C}^2$.

Let \mathfrak{sl}_2 -Mod be the (braided) monoidal, \mathbb{C} -linear category whose objects are tensor generated by \mathbb{C}^2 . Define a functor $\Gamma\colon 2\text{-Web}\to \mathfrak{sl}_2\text{-Mod}$:

$$\vec{k} = (1, \dots, 1) \mapsto \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2,$$
 $\mapsto \operatorname{cap} \quad , \quad \stackrel{\scriptscriptstyle 1}{\bigcup} \quad \mapsto \operatorname{cup}$

Theorem(Folklore)

 $\Gamma \colon 2\text{-Web}^{\oplus} \to \mathfrak{sl}_2\text{-Mod}$ is an equivalence of (braided) monoidal categories.

The symmetric story

A red \$l_2-web is a labeled trivalent graph locally made of

$$\operatorname{cap}_{k} = \bigcap_{k = k} , \quad \operatorname{cup}^{k} = \bigvee^{k = l} , \quad \operatorname{m}_{k,l}^{k+l} = \bigvee^{k+l} , \quad \operatorname{s}_{k+l}^{k,l} = \bigvee^{k} \bigcap_{k+l}^{l}$$

Here $k, l, k + l \in \{0, 1, \dots\}$.

Example

Let us form a category again

Define the (braided) monoidal, \mathbb{C} -linear category 2-Web $_{r}$ by using:

Definition

The red 2-web space $\operatorname{Hom}_{2\mathbf{Web}_r}(\vec{k}, \vec{l})$ is the free \mathbb{C} -vector space generated by red 2-webs modulo the circle removal, isotopies and:

gl_m "ladder":
$$k-1$$
 $k-1$ $k-1$

Daniel Tubbenhauer The full story for 5 1 August 2015

Diagrams for intertwiners

Observe that there are (up to scalars) unique $\mathbf{U}(\mathfrak{sl}_2)$ -intertwiners

$$\begin{split} \operatorname{cap}_k\colon \operatorname{Sym}^k\mathbb{C}^2\otimes \operatorname{Sym}^k\mathbb{C}^2 &\twoheadrightarrow \mathbb{C}, \quad \operatorname{cup}^k\colon \mathbb{C}\hookrightarrow \operatorname{Sym}^k\mathbb{C}^2\otimes \operatorname{Sym}^k\mathbb{C}^2,\\ \operatorname{m}_{k,l}^{k+l}\colon \operatorname{Sym}^k\mathbb{C}^2\otimes \operatorname{Sym}^l\mathbb{C}^2 &\twoheadrightarrow \operatorname{Sym}^{k+l}\mathbb{C}^2, \quad \operatorname{s}_{k+l}^{k,l}\colon \operatorname{Sym}^{k+l}\mathbb{C}^2 \hookrightarrow \operatorname{Sym}^k\mathbb{C}^2\otimes \operatorname{Sym}^l\mathbb{C}^2\\ \text{given by projection and inclusion}. \end{split}$$

Let \mathfrak{sl}_2 - \mathbf{Mod}_s be the (braided) monoidal, \mathbb{C} -linear category whose objects are tensor generated by $\operatorname{Sym}^k\mathbb{C}^2$. Define a functor $\Gamma\colon 2\text{-}\mathbf{Web}_r\to \mathfrak{sl}_2\text{-}\mathbf{Mod}_s$:

$$\vec{k} = (k_1, \dots, k_m) \mapsto \operatorname{Sym}^{k_1} \mathbb{C}^2 \otimes \dots \otimes \operatorname{Sym}^{k_m} \mathbb{C}^2,$$

$$\bigcap_{k = k} \mapsto \operatorname{cap}_k \quad , \quad \bigvee_{k \neq l} \mapsto \operatorname{cup}^k \quad , \quad \bigwedge_{k \neq l} \mapsto \operatorname{sk}^{k,l}_{k+l} \quad , \quad \bigvee_{k \neq l} \mapsto \operatorname{sk}^{k,l}_{k+l}$$

Theorem

 $\Gamma \colon 2\text{-Web}_{\mathbf{r}}^{\oplus} \to \mathfrak{sl}_2\text{-Mod}_{\mathbf{s}}$ is an equivalence of (braided) monoidal categories.

"Howe" to prove this?

Howe: the commuting actions of $\mathbf{U}(\mathfrak{gl}_m)$ and $\mathbf{U}(\mathfrak{gl}_N)$ on

$$\operatorname{Sym}^{K}(\mathbb{C}^{m}\otimes\mathbb{C}^{N})\cong\bigoplus_{k_{1}+\cdots+k_{m}=K}(\operatorname{Sym}^{k_{1}}\mathbb{C}^{N}\otimes\cdots\otimes\operatorname{Sym}^{k_{m}}\mathbb{C}^{N})$$

introduce an $\mathbf{U}(\mathfrak{gl}_m)$ -action f on the right term with \vec{k} -weight space $\mathrm{Sym}^{\vec{k}}\mathbb{C}^N$.

In particular, there is a functorial action

$$\Phi_{\operatorname{sym}}^{\operatorname{\textbf{m}}} \colon \dot{\mathbf{U}}(\mathfrak{gl}_{\operatorname{\textbf{m}}}) \to \mathfrak{gl}_{\operatorname{\textbf{N}}}\operatorname{-}\mathbf{Mod}_{\operatorname{\textbf{s}}},$$

$$\vec{k}\mapsto \operatorname{Sym}^{\vec{k}}\mathbb{C}^N,\quad X\in 1_{\vec{l}}\mathbf{U}(\mathfrak{gl}_{\mathbf{m}})1_{\vec{k}}\mapsto f(X)\in \operatorname{Hom}_{\mathfrak{gl}_{N^{-}\mathsf{Mod}_{\mathbf{s}}}}(\operatorname{Sym}^{\vec{k}}\mathbb{C}^N,\operatorname{Sym}^{\vec{l}}\mathbb{C}^N).$$

Howe: Φ_{sym}^{m} is full. Or in words:

relations in $\dot{\mathbf{U}}(\mathfrak{gl}_m)$ + kernel of $\Phi^m_{\mathrm{sym}} \leadsto \text{relations in } \mathfrak{gl}_N\text{-}\mathbf{Mod}_s$.

The diagrammatic presentation machine

Theorem

Define 2-Web_r such there is a commutative diagram

with

 $\Upsilon^m \leadsto \mathfrak{gl}_m$ "ladder" relations,

 $\ker(\Phi_{\operatorname{sym}}^{\mathbf{m}}) \rightsquigarrow \operatorname{dumbbell relation}.$

Exempli gratia

The \mathfrak{gl}_m "ladder" relations come up as follows:

$$EF1_{\vec{k}} - FE1_{\vec{k}} = (k-l)1_{\vec{k}} \rightsquigarrow$$

The dumbbell relation comes up as follows:

$$\mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \bigwedge^{2} \mathbb{C}^{2} \oplus \operatorname{Sym}^{2} \mathbb{C}^{2} \cong \mathbb{C} \oplus \operatorname{Sym}^{2} \mathbb{C}^{2} \leadsto$$

$$2 \int_{0}^{1} \int_{0}^{1}$$

It is even better than expected!

The hardest \mathfrak{gl}_m "ladder" relations, e.g. Serre relations as

do not have to be forced to hold, but are consequences. This pattern repeats in for other web categories.

Morally: web categories have a very economic presentation!

Replace red by green and add orientations

A green N-web is an oriented, labeled, trivalent graph locally made of

$$\mathbf{m}_{k,l}^{k+l} = \bigwedge_{k=l}^{k+l} \quad , \quad \mathbf{s}_{k+l}^{k,l} = \bigvee_{k+l}^{k} \qquad k,l,k+l \in \mathbb{N}$$

(and some caps, cups and signs that I skip today).

Example

Let us form a category again

Define the (braided) monoidal, \mathbb{C} -linear category N-**Web** $_{g}$ by using:

Definition(Cautis-Kamnitzer-Morrison 2012)

The green *N*-web space $\operatorname{Hom}_{N\text{-Web}_g}(\vec{k}, \vec{l})$ is the free \mathbb{C} -vector space generated by green *N*-webs modulo isotopies and:

$$\mathfrak{gl}_m$$
 "ladder" : relations

$$k-1 + 1 - k+1 + 1 = (k-1)$$

Exterior : relation

$$_{k}=0$$
 , if $k>N$.

15 / 30

Diagrams for intertwiners

Observe that there are (up to scalars) unique $\mathbf{U}(\mathfrak{gl}_N)$ -intertwiners

$$\mathbf{m}_{k,l}^{k+l} \colon \bigwedge^k \mathbb{C}^{\textit{N}} \otimes \bigwedge^l \mathbb{C}^{\textit{N}} \twoheadrightarrow \bigwedge^{k+l} \mathbb{C}^{\textit{N}} \quad , \quad \mathbf{s}_{k+l}^{k,l} \colon \bigwedge^{k+l} \mathbb{C}^{\textit{N}} \hookrightarrow \bigwedge^k \mathbb{C}^{\textit{N}} \otimes \bigwedge^l \mathbb{C}^{\textit{N}}$$

given by projection and inclusion.

Let \mathfrak{gl}_N -**Mod**_e be the (braided) monoidal, \mathbb{C} -linear category whose objects are tensor generated by $\wedge^k \mathbb{C}^N$. Define a functor $\Gamma \colon N$ -**Web**_g $\to \mathfrak{gl}_N$ -**Mod**_e:

$$\vec{k} = (k_1, \dots, k_m) \mapsto \bigwedge^{k_1} \mathbb{C}^N \otimes \dots \otimes \bigwedge^{k_m} \mathbb{C}^N,$$

$$\downarrow^{k+l} \mapsto \mathbf{m}_{k,l}^{k+l} , \qquad \downarrow^{k} \mapsto \mathbf{s}_{k+l}^{k,l}$$

Theorem(Cautis-Kamnitzer-Morrison 2012)

 $\Gamma \colon \textit{N-Web}^{\oplus}_{\mathrm{g}} \to \mathfrak{gl}_\textit{N}\text{-}Mod_{\mathrm{e}} \text{ is an equivalence of (braided) monoidal categories}.$

16 / 30

"Howe" to prove this?

Howe: the commuting actions of $\mathbf{U}(\mathfrak{gl}_m)$ and $\mathbf{U}(\mathfrak{gl}_N)$ on

$$\bigwedge^{K}(\mathbb{C}^{m}\otimes\mathbb{C}^{N})\cong\bigoplus_{k_{1}+\cdots+k_{m}=K}(\bigwedge^{k_{1}}\mathbb{C}^{N}\otimes\cdots\otimes\bigwedge^{k_{m}}\mathbb{C}^{N})$$

introduce an $\mathbf{U}(\mathfrak{gl}_m)$ -action f on the right term with \vec{k} -weight space $\bigwedge^{\vec{k}}\mathbb{C}^N$.

In particular, there is a functorial action

$$\Phi^m_{\mathrm{skew}} \colon \dot{\mathsf{U}}(\mathfrak{gl}_m) o \mathfrak{gl}_{\mathcal{N}} ext{-}\mathsf{Mod}_e,$$

$$ec{k}\mapsto \wedge_q^{ec{k}}\mathbb{C}^N,\quad X\in 1_{ec{l}}\mathbf{U}(\mathfrak{gl}_m)1_{ec{k}}\mapsto f(X)\in \mathrm{Hom}_{\mathfrak{gl}_{N^{-}}\mathbf{Mod}_e}(\wedge_q^{ec{k}}\mathbb{C}^N,\wedge_q^{ec{l}}\mathbb{C}^N).$$

Howe: Φ_{skew}^m is full. Or in words:

relations in $\dot{\mathbf{U}}(\mathfrak{gl}_m)$ + kernel of $\Phi^m_{\mathrm{skew}} \leadsto \mathrm{relations}$ in $\mathfrak{gl}_{\mathcal{N}}\text{-}\mathbf{Mod}_e$.

Define the diagrams to make this work

Theorem(Cautis-Kamnitzer-Morrison 2012)

Define N-Webg such there is a commutative diagram

with

$$\Upsilon^m(E_i 1_{\vec{k}}) \mapsto$$

$$\downarrow_{k_i}
\downarrow_{k_{i+1}}
\downarrow_{k_{i+1}}
\downarrow_{k_i}
\downarrow_{k_{i+1}}
\downarrow_{k_i}
\downarrow_{k_i}
\downarrow_{k_i+1}
\downarrow_{k_i}
\downarrow_{k_i}
\downarrow_{k_i+1}
\downarrow_{k_i}
\downarrow_{k_i+1}
\downarrow_{k_i}
\downarrow_{k_i+1}
\downarrow_{k_i}
\downarrow_{k_i+1}
\downarrow_{k_i}
\downarrow_{k_i+1}
\downarrow_{k_i}
\downarrow_{k_i+1}
\downarrow_{k_i+1}
\downarrow_{k_i}
\downarrow_{k_i+1}
\downarrow$$

 $\Upsilon^m \leadsto \mathfrak{gl}_m$ "ladder" relations,

 $\ker(\Phi_{\mathrm{skew}}^m) \rightsquigarrow \text{ exterior relation.}$

Could there be a pattern?

A green-red N-web is a colored, labeled, trivalent graph locally made of

$$\mathbf{m}_{k,l}^{k+l} = \bigwedge_{k=l}^{k+l}$$
 , $\mathbf{m}_{k,l}^{k+l} = \bigwedge_{k=l}^{k+l}$, $\mathbf{m}_{k,1}^{k+l} = \bigwedge_{k=1}^{k+1}$, $\mathbf{m}_{k,1}^{k+l} = \bigwedge_{k=1}^{k+1}$

And of course splits and some mirrors as well!

Example

The green-red N-web category

Define the (braided) monoidal, \mathbb{C} -linear category N-**Web**_{gr} by using:

Definition

Given $\vec{k} \in \mathbb{Z}_{>0}^{m+n}, \vec{l} \in \mathbb{Z}_{>0}^{m'+n'}$. The green-red *N-web space* $\operatorname{Hom}_{N\text{-Web}_{or}}(\vec{k}, \vec{l})$ is the free \mathbb{C} -vector space generated by N-webs modulo isotopies and:

> $\mathfrak{gl}_m + \mathfrak{gl}_n$ same as before, but now in green and red! "ladder" : relations

Exterior:
$$k = 0$$
, if $k > N$.

Diagrams for intertwiners - Part 4

Observe that there are (up to scalars) unique $\mathbf{U}(\mathfrak{gl}_N)$ -intertwiners

$$\mathrm{m}_{k,1}^{k+1}\colon \textstyle \bigwedge^k\mathbb{C}^N\otimes\mathbb{C}^N \twoheadrightarrow \textstyle \bigwedge^{k+1}\mathbb{C}^N, \quad \mathrm{m}_{k,1}^{\textstyle k+1}\colon \mathrm{Sym}^k\mathbb{C}^N\otimes\mathbb{C}^N \twoheadrightarrow \mathrm{Sym}^{\textstyle k+1}\mathbb{C}^N$$

plus others as before.

Let $\mathfrak{gl}_{\mathcal{N}}$ -Mod_{es} be the (braided) monoidal, \mathbb{C} -linear category whose objects are tensor generated by $\bigwedge^k \mathbb{C}^{\mathcal{N}}$, $\operatorname{Sym}^k \mathbb{C}^{\mathcal{N}}$. Define a functor $\Gamma \colon \mathcal{N}$ -Web_{gr} $\to \mathfrak{gl}_{\mathcal{N}}$ -Mod_{es}:

$$\vec{k} = (k_1, \dots, k_m, \underbrace{k_{m+1}}_{m+1}, \dots, \underbrace{k_{m+n}}_{m+n}) \mapsto \bigwedge^{k_1} \mathbb{C}^N \otimes \dots \otimes \operatorname{Sym}^{k_{m+n}} \mathbb{C}^N,$$

$$\downarrow^{k+1} \mapsto \operatorname{m}_{k,1}^{k+1} , \qquad \downarrow^{k+1} \mapsto \operatorname{m}_{k,1}^{k+1} , \qquad \dots$$

Theorem

 $\Gamma \colon \textit{N-Web}^{\oplus}_{\tt gr} \to \mathfrak{gl}_{\textit{N}}\text{-Mod}_{\tt es} \text{ is an equivalence of (braided) monoidal categories}.$

Definition

The general linear superalgebra $\mathbf{U}(\mathfrak{gl}_{m|n})$ is generated by H_i and F_i, E_i subject the some relations, most notably, the super relations:

$$\begin{split} E_m^2 &= 0 = F_m^2, \qquad H_m + H_{m+1} = F_m E_m + E_m F_m, \\ 2E_m E_{m+1} E_{m-1} E_m &= E_m E_{m+1} E_m E_{m-1} + E_{m-1} E_m E_{m+1} E_m \\ &\qquad \qquad + E_{m+1} E_m E_{m-1} E_m + E_m E_{m-1} E_m E_{m+1} \text{ (plus an F version)}. \end{split}$$

There is a Howe pair $(\mathbf{U}(\mathfrak{gl}_{m|n}), \mathbf{U}(\mathfrak{gl}_N))$ with $\vec{k} = (k_1, \dots, k_{m+n})$ -weight space under the $\mathbf{U}(\mathfrak{gl}_{m|n})$ -action on $\bigwedge^K(\mathbb{C}^{m|n}\otimes\mathbb{C}^N)$ given by

$$\bigwedge^{k_1}\mathbb{C}^{N}\otimes\cdots\bigwedge^{k_m}\mathbb{C}^{N}\otimes\operatorname{Sym}^{k_{m+1}}\mathbb{C}^{N}\otimes\cdots\otimes\operatorname{Sym}^{k_{m+n}}\mathbb{C}^{N}.$$

An aside: everything works for green-red $\mathbf{U}(\mathfrak{gl}_{N|M})$ -webs as well, with the Howe pair $(\mathbf{U}(\mathfrak{gl}_{m|n}), \mathbf{U}(\mathfrak{gl}_{N|M}))$.

Define the diagrams to make this work - yet again

$\mathsf{Theorem}$

Define N-Webgr such there is a commutative diagram

with

$$\Upsilon_{\mathrm{su}}^{m|\mathbf{n}}(E_m 1_{\vec{k}}) \mapsto \bigwedge_{k_m}^{k_{m+1}} \bigwedge_{k_{m+1}}^{k_{m+1}-1} , \quad \Upsilon_{\mathrm{su}}^{m|\mathbf{n}}(F_m 1_{\vec{k}}) \mapsto \bigwedge_{k_m}^{k_{m-1}} \bigwedge_{k_{m+1}+1}^{k_{m+1}+1}$$

 $\Upsilon_{\mathrm{su}}^{m|n} \rightsquigarrow \mathrm{"gl}_{m|n}$ ladder" relations, $\ker(\Phi_{\mathrm{su}}^{m|n}) \rightsquigarrow \mathrm{the}$ exterior relation.

Another meal for our machine

Howe: the commuting actions of $\mathbf{U}(\mathfrak{so}_{2m})$ and $\mathbf{U}(\mathfrak{so}_{2N(+1)})$ on

$$\textstyle \bigwedge^{K}(\mathbb{C}^{m}\otimes\mathbb{C}^{2N(+1)})\cong\bigoplus_{k_{1}+\cdots+k_{n}=K}\textstyle \bigwedge^{\vec{k}}\mathbb{C}^{2N(+1)}$$

introduce an $\mathbf{U}(\mathfrak{so}_{2m})$ -action f with \vec{k} -weight space $\bigwedge^{\vec{k}}\mathbb{C}^{2N(+1)}$.

In particular, there is a functorial action

$$\begin{split} \Phi_{\mathrm{so}}^m \colon \dot{\mathbf{U}}(\mathfrak{so}_{2m}) &\to \mathfrak{so}_{2N(+1)}\text{-}\mathbf{Mod}_{\mathrm{e}}, \\ \vec{k} &\mapsto \bigwedge^{\vec{k}} \mathbb{C}^{2N(+1)}, \quad \text{etc.}. \end{split}$$

Howe: Φ_{so}^m is full. Or in words:

relations in $\dot{\mathbf{U}}(\mathfrak{so}_{2m})$ + kernel of $\Phi^m_{\mathrm{so}} \leadsto$ relations in $\mathfrak{so}_{2N(+1)}$ - $\mathbf{Mod}_{\mathrm{e}}$.

And another one

Howe: the commuting actions of $\mathbf{U}(\mathfrak{sp}_{2m})$ and $\mathbf{U}(\mathfrak{sp}_{2N})$ on

$${\textstyle \bigwedge}^{K}(\mathbb{C}^{m}\otimes\mathbb{C}^{2N})\cong\bigoplus_{k_{1}+\cdots+k_{n}=K}{\textstyle \bigwedge}^{\vec{k}}\mathbb{C}^{2N}$$

introduce an $\mathbf{U}(\mathfrak{sp}_{2m})$ -action f with \vec{k} -weight space $\bigwedge^{\vec{k}}\mathbb{C}^{2N}$.

In particular, there is a functorial action

$$\begin{split} \Phi^{\it m}_{\rm sp} \colon \dot{\mathbf{U}}(\mathfrak{sp}_{2m}) &\to \mathfrak{sp}_{2\textit{N}}\text{-}\mathbf{Mod}_{\rm e}, \\ \vec{\textit{k}} &\mapsto \bigwedge^{\vec{\textit{k}}} \mathbb{C}^{2\textit{N}}, \quad \text{etc.} \end{split}$$

Howe: Φ_{sp}^m is full. Or in words:

relations in $\dot{\mathbf{U}}(\mathfrak{sp}_{2m})$ + kernel of $\Phi^m_{\mathrm{sp}} \leadsto \text{relations in } \mathfrak{sp}_{2N}\text{-}\mathbf{Mod}_{\mathrm{e}}.$

The definition of the diagrams is already determined

Theorem

Define $\textit{N-BDWeb}_{\rm g}$ such there is a commutative diagram

Define N-CWebg such there is a commutative diagram

 $\Upsilon^m_{\mathrm{so}} \leadsto \mathfrak{so}_{2m}$ "ladder" relations, $\Upsilon^m_{\mathrm{sp}} \leadsto \mathfrak{sp}_{2m}$ "ladder" relations etc.

Green type **BCD**-webs

Green webs in types B_N and D_N are generated by

Green webs in type C_N are generated by

The lanterns reflect the fact that $\bigwedge^k \mathbb{C}^{2N}$ is not irreducible in type \mathbf{C}_N :

$$\stackrel{\longrightarrow}{\longrightarrow} \operatorname{slantern} \colon \bigwedge^k \mathbb{C}^{2N} \twoheadrightarrow \mathbb{C}, \qquad \stackrel{\stackrel{2k}{\longleftarrow}}{\longrightarrow} \operatorname{plantern} \colon \mathbb{C} \hookrightarrow \bigwedge^k \mathbb{C}^{2N}$$

27 / 30

Red type BCD-webs

There are also Howe pairs $(\mathbf{U}(\mathfrak{sp}_{2m}), \mathbf{U}(\mathfrak{so}_{2n(+1)}))$ and $(\mathbf{U}(\mathfrak{so}_{2m}), \mathbf{U}(\mathfrak{sp}_{2n}))$ acting now on the symmetric tensors. Guess what comes out: red webs! Red webs in type \mathbf{C}_N are generated by

Red webs in types \mathbf{B}_N and \mathbf{D}_N are generated by

The lanterns reflect the fact that $\operatorname{Sym}^k\mathbb{C}^{2N(+1)}$ is not irreducible in types $\mathbf{B}_N, \mathbf{D}_N$:

$$\stackrel{\text{\sim}}{\longrightarrow} \operatorname{slantern} \colon \operatorname{Sym}^{2k}\mathbb{C}^{2N} \twoheadrightarrow \mathbb{C}, \qquad \stackrel{\stackrel{2k}{\longleftarrow}}{\longrightarrow} \operatorname{plantern} \colon \mathbb{C} \hookrightarrow \operatorname{Sym}^{2k}\mathbb{C}^{2N}$$

I do not have tenure. So I have to bore you a bit more.

Some additional remarks.

- Homework: feed the machine with your favorite duality.
- Everything quantizes without too many difficulties. The quantized version sheds new light on HOMFLY-PT, Kauffman and Reshetikhin-Turaev polynomials: their symmetries can be explained representation theoretical.
- Some parts even work in the non-semisimple case (e.g. at roots of unities).
- The whole approach seems to be amenable to categorification.
- \bullet Relations to categorifications of the Hecke algebra using Soergel bimodules or category ${\cal O}$ need to be worked out.
- This could lead to a categorification of $\dot{\mathbf{U}}_q(\mathfrak{gl}_{m|n})$ (since the "complicated" super relations are build in the calculus).
- A "green-red-foamy" approach could shed additional light on colored Khovanov-Rozansky homologies.

There is still much to do...

30 / 30

Thanks for your attention!

30 / 30