Web calculi in representation theory

Or: the diagrammatic presentation machine

Daniel Tubbenhauer

Joint work with David Rose, Antonio Sartori, Pedro Vaz and Paul Wedrich

October 2015

History of diagrammatic presentations in a nutshell

 Rumer, Teller, Weyl (1932), Temperley-Lieb, Jones, Kauffman, Lickorish, Masbaum-Vogel, ... (≥1971):

 $\mathsf{U}_q(\mathfrak{sl}_2)$ -tensor category generated by \mathbb{C}_q^2 .

- Kuperberg (1995): $U_q(\mathfrak{sl}_3)$ -tensor category generated by $\wedge_q^1 \mathbb{C}_q^3 \cong \mathbb{C}_q^3$ and $\wedge_q^2 \mathbb{C}_q^3$.
- Cautis-Kamnitzer-Morrison (2012): U_q(\$ℓ_N)-tensor category generated by ∧^k_qC^N_q.
- Sartori (2013), Grant (2014):

 $\mathbf{U}_q(\mathfrak{gl}_{1|1})$ -tensor category generated by $\wedge_q^k \mathbb{C}_q^{1|1}$.

- Rose-T. (2015): $U_q(\mathfrak{sl}_2)$ -tensor category generated by $\operatorname{Sym}_a^k \mathbb{C}_a^2$. Thus, $U_q(\mathfrak{sl}_2)$ -Mod.
- Link polynomials: Queffelec-Sartori (2015); "algebraic": Grant (2015): $U_q(\mathfrak{gl}_{N|M})$ -tensor category generated by $\bigwedge_q^k \mathbb{C}_q^{N|M}$.
- T.-Vaz-Wedrich (2015):

 $\mathbf{U}_q(\mathfrak{gl}_{N|M})$ -tensor category generated by $\bigwedge_q^k \mathbb{C}_q^{N|M}$ and $\operatorname{Sym}_q^k \mathbb{C}_q^{N|M}$.

• Sartori-T. (maybe! 2015):

 $\mathbf{U}_q(\mathfrak{so}_{2N+1},\mathfrak{sp}_{2N},\mathfrak{so}_{2N})$ -tensor categories generated by $\bigwedge_q^k \mathbb{C}_q^{2N(+1)}$.

Some of the first diagrammatic algebras

- Classical Schur-Weyl duality
- Graphical calculus via Temperley-Lieb diagrams
- The diagrammatic presentation machine

2 The whole story for \mathfrak{sl}_2

- Symmetric \$12-webs
- Proof? Symmetric Howe duality!
- Some cousins

3 Applications

- Link invariants à la Reshetikhin-Turaev
- Colored Jones and HOMFLY-PT polynomials

Promise: no more q's till the very end. But you can insert them everywhere.

The symmetric group S_m in *m* letters is:

 S_m is the group of automorphisms of the set $\{1, \ldots, m\}$,

$$S_m = \langle \sigma_1, \dots, \sigma_{m-1} \mid R \rangle, R = \begin{cases} \sigma_i^2 = 1, & i = 1, \dots, m-1 \\ \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j, & |i-j| = 1. \\ \sigma_i \sigma_j = \sigma_j \sigma_i, & |i-j| > 1. \end{cases}$$

The first description is given "by nature" and explains why S_m is interesting. The second is a theorem and a "working horse".

Given a Lie algebra \mathfrak{g} , we can ask the same:

 \mathfrak{g} -Mod \rightsquigarrow category of finite-dimensional $U(\mathfrak{g})$ -modules,

 \mathfrak{g} -Mod = $\langle ? | ?? \rangle$.

The first description is given "by nature" and explains why \mathfrak{g} -**Mod** is interesting. So, we want the second as well!

The symmetric group S_m can be described as:

$$S_m = \left\langle \left| \cdots \right| \times \left| \cdots \right| \right\rangle = 1, \quad \left\langle X = 1 \right\rangle, \quad \left\langle V = 1 \right\rangle, \quad \left\langle V = 1 \right\rangle$$

Similarly for $\mathbb{C}[S_m]$.

Let \mathbb{C}^n with basis v_1, \ldots, v_n . Then $\mathbb{C}[S_m]$ acts on $(\mathbb{C}^n)^{\otimes m}$ by permuting entries:

$$\bigvee_{j_{1}} \bigvee_{j_{j_{i-1}}} \bigvee_{j_{j_{i-1}}} \bigvee_{j_{j}} \bigvee_{j_{j+1}} \bigvee_{j_{j}} \bigvee_{j_{j+2}} \bigvee_{j_{m}} \\ \cdots \\ \bigvee_{j_{j}} \bigvee_{j_{j_{i-1}}} \bigvee_{j_{j}} \bigvee_{j_{j+1}} \bigvee_{j_{j+2}} \bigvee_{j_{m}} : (\mathbb{C}^{n})^{\otimes m} \to (\mathbb{C}^{n})^{\otimes m}$$

This is a well-defined action (check relations!).

The algebra $\mathbf{U}(\mathfrak{gl}_n)$

Let $\mathbf{U}(\mathfrak{gl}_n)$ be the universal enveloping algebra of the Lie algebra \mathfrak{gl}_n . $\mathbf{U}(\mathfrak{gl}_n)$ is given via generators and relations:

 $\mathbf{U}(\mathfrak{gl}_n) = \langle E_i, F_i, H_j \mid i = 1, \dots, n-1; j = 1, \dots, n \rangle$ /some relations,

(the relations are lifts of the relations among the matrices of \mathfrak{gl}_n).

Example

Recall that \mathfrak{gl}_2 is generated by

$$E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \qquad H_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad H_2 = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

The \mathbb{C} -algebra $U(\mathfrak{gl}_2)$ consists of words in the symbols E, F, H_1, H_2 modulo

$$EF - FE = H_1 - H_2$$

(plus a few other relations).

$\mathbb{C}[S_m]$ is "dual" to $\mathbf{U}(\mathfrak{gl}_n)$

Since $U(\mathfrak{gl}_n)$ acts "as matrices" on \mathbb{C}^n , we can extend it to $(\mathbb{C}^n)^{\otimes m}$ via

 $\Delta(E_i) = 1 \otimes E_i + E_i \otimes 1, \quad \Delta(F_i) = 1 \otimes F_i + F_i \otimes 1, \quad \Delta(H_i) = H_i \otimes H_i.$

Theorem (Schur 1901)

The actions of $\mathbb{C}[S_m]$ and $\mathbf{U}(\mathfrak{gl}_n)$ on $(\mathbb{C}^n)^{\otimes m}$ commute and they generate each other commutant. In particular, they induce an algebra homomorphism

$$\Phi^m_{\mathrm{SW}} \colon \mathbb{C}[S_m] \twoheadrightarrow \mathrm{End}_{\mathbf{U}(\mathfrak{gl}_n)}((\mathbb{C}^n)^{\otimes m}),$$

$$\Phi^m_{\mathrm{SW}} \colon \mathbb{C}[S_m] \xrightarrow{\cong} \mathrm{End}_{\mathbf{U}(\mathfrak{gl}_n)}((\mathbb{C}^n)^{\otimes m}), \text{ if } n \geq m,$$

(and of course a "dual version" which we do not need).

In words: Schur almost gave a diagrammatic generators and relations description of the full subcategory \mathfrak{gl}_2 -**Mod**_e of \mathfrak{gl}_n -**Mod** tensor generated by the vector representation \mathbb{C}^n of $\mathbf{U}(\mathfrak{gl}_n)$.

Definition(Rumer-Teller-Weyl 1932)

The 2-web space $\text{Hom}_{2\text{Web}}(b, t)$ is the free \mathbb{C} -vector space generated by non-intersecting arc diagrams with b, t bottom/top boundary points modulo:

The 2-web category

Definition(Kuperberg 1995)

The 2-web category 2-Web is the (braided) monoidal, C-linear category with:

- Objects are vectors $\vec{k} = (1, ..., 1)$ and morphisms are $\text{Hom}_{2\text{-Web}}(\vec{k}, \vec{l})$.
- Composition o:

• Tensoring
$$\otimes$$
:

$$\left| \bigcup_{i=1}^{1} \circ \bigcup_{i=1}^{1} = 1 \bigcup_{i=1}^{1} \circ \bigcup_{i=1}^{1} \circ \bigcap_{i=1}^{1} = \bigcup_{i=1}^{1} \bigcup_{i=1}^{1} \circ \bigcup_{i=1}^{1} = \bigcup_{i=1}^{1} \circ \bigcup_{i=1$$

Diagrams for intertwiners

Observe that there are (up to scalars) unique $U(\mathfrak{sl}_2)$ -intertwiners

$$\mathrm{cap}\colon \mathbb{C}^2\otimes\mathbb{C}^2\twoheadrightarrow\mathbb{C},\quad \mathrm{cup}\colon\mathbb{C}\hookrightarrow\mathbb{C}^2\otimes\mathbb{C}^2,$$

projecting $\mathbb{C}^2\otimes\mathbb{C}^2$ onto \mathbb{C} respectively embedding \mathbb{C} into $\mathbb{C}^2\otimes\mathbb{C}^2$.

Let \mathfrak{sl}_2 -**Mod**_e be the (braided) monoidal, \mathbb{C} -linear category whose objects are tensor generated by \mathbb{C}^2 . Define a functor $\Gamma: 2$ -**Web** $\rightarrow \mathfrak{sl}_2$ -**Mod**_e:

$$ec{k} = (1, \dots, 1) \mapsto \mathbb{C}^2 \otimes \dots \otimes \mathbb{C}^2,$$

 $\bigcap_{1 \to 1} \mapsto \operatorname{cap} \quad , \quad \bigcup^1 \mapsto \operatorname{cup}$

Theorem(Folklore, Rumer-Teller-Weyl 1932)

 $\Gamma: 2\text{-Web}^{\oplus} \to \mathfrak{sl}_2\text{-Mod}_e$ is an equivalence of (braided) monoidal categories.

Daniel Tubbenhauer

The diagrammatic presentation machine

Consider $\mathbb{C}[S_m]$ as a \mathbb{C} -linear category. By Schur-Weyl duality there is a full functor Φ^m_{SW} : $\mathbb{C}[S_m] \to \mathfrak{gl}_2$ -**Mod**_e.

Theorem

Define 2-Web such there is a commutative diagram

with

$$\Upsilon^{S_m}\left(\mathbf{X}\right)\mapsto \left| \right| + \bigcup_{i=1}^{M}$$

 $\Upsilon^{S_m} \rightsquigarrow$ circle relation, isotopy relations,

 $ker(\Phi_{SW}^m) \rightsquigarrow isotopy relations$

From \mathfrak{gl}_2 to \mathfrak{sl}_2

Restricting from \mathfrak{gl}_2 to \mathfrak{sl}_2 could increase the number of intertwiners:

$$\mathbf{U}(\mathfrak{sl}_2) \subset \mathbf{U}(\mathfrak{gl}_2) \quad \Rightarrow \quad \mathrm{Hom}_{\mathbf{U}(\mathfrak{sl}_2)}(M,M') \supset \mathrm{Hom}_{\mathbf{U}(\mathfrak{gl}_2)}(M,M').$$

Note that \mathbb{C}^2 is self-dual as a $U(\mathfrak{sl}_2)$ -module, but not as a $U(\mathfrak{gl}_2)$ -module. We obtain extra diagrams:

$$\bigcap_{1 \ 1} : \mathbb{C}^2 \otimes \mathbb{C}^2 \to \mathbb{C}, \qquad \bigcup^1 : \mathbb{C} \to \mathbb{C}^2 \otimes \mathbb{C}^2,$$

These satisfy the isotopy relations and "fill up the missing" hom-spaces:

$$\operatorname{Hom}_{\mathbf{U}(\mathfrak{gl}_2)}(\mathbb{C}^2\otimes\mathbb{C}^2,\mathbb{C})=\mathbf{0}, \ \text{ but } \operatorname{Hom}_{\mathbf{U}(\mathfrak{sl}_2)}(\mathbb{C}^2\otimes\mathbb{C}^2,\mathbb{C})=\left\langle \bigcap_{1,\ldots,1}\right\rangle, \ etc.$$

The symmetric story

A red \mathfrak{sl}_2 -web is a labeled trivalent graph locally generated by

$$\operatorname{cap}_{k} = \bigcap_{k = k} , \quad \operatorname{cup}^{k} = \bigvee_{k = l}^{k} , \quad \operatorname{m}_{k,l}^{k+1} = \bigwedge_{k = l}^{k+1} , \quad \operatorname{s}_{k+l}^{k,l} = \bigvee_{k+l}^{k}$$

Here $k, l, k + l \in \{0, 1, ... \}$.

Example

Let us form a category again

Define the (braided) monoidal, $\mathbb C\text{-linear}$ category 2-Web_r by using:

Definition

The red 2-web space $\operatorname{Hom}_{2\operatorname{Web}_{r}}(\vec{k}, \vec{l})$ is the free \mathbb{C} -vector space generated by red 2-webs modulo the circle removal, isotopies and:

Diagrams for intertwiners

Observe that there are (up to scalars) unique $U(\mathfrak{sl}_2)$ -intertwiners

$$\begin{split} & \operatorname{cap}_k \colon \operatorname{Sym}^k \mathbb{C}^2 \otimes \operatorname{Sym}^k \mathbb{C}^2 \twoheadrightarrow \mathbb{C}, \quad \operatorname{cup}^k \colon \mathbb{C} \hookrightarrow \operatorname{Sym}^k \mathbb{C}^2 \otimes \operatorname{Sym}^k \mathbb{C}^2, \\ & \operatorname{m}_{k,l}^{k+l} \colon \operatorname{Sym}^k \mathbb{C}^2 \otimes \operatorname{Sym}^l \mathbb{C}^2 \twoheadrightarrow \operatorname{Sym}^{k+l} \mathbb{C}^2, \quad \operatorname{s}_{k+l}^{k,l} \colon \operatorname{Sym}^{k+l} \mathbb{C}^2 \hookrightarrow \operatorname{Sym}^k \mathbb{C}^2 \otimes \operatorname{Sym}^l \mathbb{C}^2 \\ & \text{given by projection and inclusion.} \end{split}$$

Let \mathfrak{sl}_2 -**Mod**_s be the (braided) monoidal, \mathbb{C} -linear category whose objects are tensor generated by $\operatorname{Sym}^k \mathbb{C}^2$. Define a functor $\Gamma: 2$ -**Web**_r $\to \mathfrak{sl}_2$ -**Mod**_s:

$$\vec{k} = (k_1, \dots, k_m) \mapsto \operatorname{Sym}^{k_1} \mathbb{C}^2 \otimes \dots \otimes \operatorname{Sym}^{k_m} \mathbb{C}^2,$$
$$\bigwedge_k \mapsto \operatorname{cap}_k \quad , \quad \bigvee_{k=1}^{k-k} \mapsto \operatorname{cup}^k \quad , \quad \bigwedge_{k=1}^{k+l} \mapsto \operatorname{m}_{k,l}^{k+l} \quad , \quad \bigvee_{k+l}^{k} \mapsto \operatorname{s}_{k+l}^{k,l}$$

Theorem

 $\mathsf{\Gamma}\colon 2\text{-}\boldsymbol{Web}^\oplus_r \to \mathfrak{sl}_2\text{-}\boldsymbol{Mod}_{\boldsymbol{s}} \text{ is an equivalence of (braided) monoidal categories.}$

Daniel Tubbenhauer

"Howe" to prove this?

Howe: the commuting actions of $U(\mathfrak{gl}_m)$ and $U(\mathfrak{gl}_N)$ on

$$\operatorname{Sym}^{K}(\mathbb{C}^{m}\otimes\mathbb{C}^{N})\cong\bigoplus_{k_{1}+\cdots+k_{m}=K}(\operatorname{Sym}^{k_{1}}\mathbb{C}^{N}\otimes\cdots\otimes\operatorname{Sym}^{k_{m}}\mathbb{C}^{N})$$

introduce an $\mathbf{U}(\mathfrak{gl}_m)$ -action f on the right term with \vec{k} -weight space $\operatorname{Sym}^{\vec{k}}\mathbb{C}^N$.

In particular, there is a functorial action

$$\Phi^{m}_{\mathrm{sym}} \colon \dot{\mathsf{U}}(\mathfrak{gl}_{m}) \to \mathfrak{gl}_{N}\text{-}\mathsf{Mod}_{s},$$
$$\vec{k} \mapsto \mathrm{Sym}^{\vec{k}}\mathbb{C}^{N}, \quad X \in \mathbb{1}_{\vec{l}}\mathsf{U}(\mathfrak{gl}_{m})\mathbb{1}_{\vec{k}} \mapsto f(X) \in \mathrm{Hom}_{\mathfrak{gl}_{N}\text{-}\mathsf{Mod}_{s}}(\mathrm{Sym}^{\vec{k}}\mathbb{C}^{N}, \mathrm{Sym}^{\vec{l}}\mathbb{C}^{N}).$$

Howe: Φ_{svm}^{m} is full. Or in words:

relations in $\dot{U}(\mathfrak{gl}_m)$ + kernel of $\Phi_{\mathrm{sym}}^m \rightsquigarrow$ relations in \mathfrak{gl}_N -Mod_s.

Theorem

Define 2-Web $_{\rm r}$ such there is a commutative diagram

with

Exempli gratia

The \mathfrak{gl}_m "ladder" relations come up as follows:

The dumbbell relation comes up as follows:

(

$$\mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \wedge^{2} \mathbb{C}^{2} \oplus \operatorname{Sym}^{2} \mathbb{C}^{2} \cong \mathbb{C} \oplus \operatorname{Sym}^{2} \mathbb{C}^{2} \rightsquigarrow$$

$$2 \left| \begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right| = - \left| \begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right| + \left| \begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right|$$

No fancy stuff like Karoubi completions needed

Fact: all irreducible $U(\mathfrak{sl}_2)$ -modules are of the form $\operatorname{Sym}^k \mathbb{C}^2$ for some k. Thus, \mathfrak{sl}_2 -**Mod**_s contains all finite-dimensional representations.

In particular, the Jones-Wenzl projectors of the TL algebra (RTW algebra)

are encoded (and also all their relations!).

As far as we can go in type ${f A}$

We could also consider \mathfrak{sl}_N instead of \mathfrak{sl}_2 (diagram category *N*-**Web**_r). And $\wedge^k \mathbb{C}^N$ instead of $\operatorname{Sym}^k \mathbb{C}^N$ (diagram category *N*-**Web**_g). Or both together (diagram category *N*-**Web**_{gr}). The graphical calculi for these are very similar.

Example

green $k \leftrightarrow \wedge^{k} \mathbb{C}^{N}$, red $k \leftrightarrow \operatorname{Sym}^{k} \mathbb{C}^{N}$, black $1 \leftrightarrow \wedge^{1} \mathbb{C}^{N} \cong \operatorname{Sym}^{1} \mathbb{C}^{N} \cong \mathbb{C}^{N}$.

The machine in action again

They are look the same because they are spit out by our machine, e.g.:

Theorem

Define N-Web_{gr} such there is a commutative diagram

with

Link invariants via representation theory

Color link components with $U_q(\mathfrak{g})$ -modules. Put the links into a Morse position.

Theorem (Reshetikhin-Turaev 1990)

The composite $\mathcal{P}^{q}_{\vec{v}}(1) \in \mathbb{Q}(q)$ is an invariant of (framed, oriented) links.

Wait: we have a diagrammatic calculus

Recall that there was an action of $\mathbb{C}[S_m]$ on 2-Web. This quantizes:

$$\Upsilon^{S_m}\left(\bigvee\right)\mapsto \left|\begin{array}{c} \left|\right.\right.\right.\right.+\bigvee_{\bigcap} \ \rightsquigarrow \ \Upsilon^{H_m}\left(\stackrel{\mathbb{R}}{\swarrow}\right)\mapsto \underbrace{q^{\frac{1}{2}}}_{\text{normalization}}\left(\left.\right|\right.\right.\right.+q^{-1}\bigcup_{\bigcap}\right)$$

Similarly, our diagrammatic calculus quantizes. The difference is

$$1 \bigcirc = -2 \quad \rightsquigarrow \quad 1 \bigcirc = -[2] = -q - q^{-1}.$$

Theorem (Kauffman 1987)

Using these in the Reshetikhin-Turaev set-up with $\mathfrak{g} = \mathfrak{sl}_2$ and only \mathbb{C}_q^2 as colors gives a combinatorial way to compute the Jones polynomial.

There is a framing shift which I hide, but never mind.

This is (up to normalization) the Jones polynomial of the Hopf link.

Wait: we have even more diagrammatic calculi

We can quantize the category 2-**Web**_r and obtain a braided monoidal category which enables us to cook up link invariants diagrammatically. The braiding is:

$$\sum_{k} = \underbrace{(-1)^{k} q^{-k-\frac{k!}{2}}}_{\text{normalization}_{j_{1}-j_{2}=k-l}} \underbrace{(-q)^{j_{1}}}_{k-j_{1}} \underbrace{(-q)^{j_{1}}}_{k-j_$$

Theorem

Using these in the Reshetikhin-Turaev set-up with $\mathfrak{g} = \mathfrak{sl}_2$ and $\operatorname{Sym}_q^k \mathbb{C}_q^2$ as colors gives a new, combinatorial way to compute the colored Jones polynomial.

This works completely similar for the categories N-Web_g, N-Web_r and N-Web_{gr} giving rise to a new way to compute colored \mathfrak{sl}_N polynomials for all colors (and thus, colored HOMFLY-PT polynomials).

There is also a polynomial called colored HOMFLY-PT polynomial $\mathcal{P}_{\lambda}^{a,q}(\mathcal{K}) \in \mathbb{C}(a,q)$ (\mathcal{K} "="knot). The colors λ are Young diagrams. The whole framework should be seen as the " $N \to \infty$ "-version of the \mathfrak{sl}_N Reshetikhin-Turaev approach ($a \rightsquigarrow q^N$) with λ corresponding to irreducible highest weight module.

From the diagrammatic calculi we obtain:

Corollary (the HOMFLY-PT symmetry)

The colored HOMFLY-PT polynomial satisfies

$$\mathcal{P}_{\lambda}^{\boldsymbol{a},\boldsymbol{q}}(\mathcal{K}) = (-1)^{\boldsymbol{c}\boldsymbol{o}} \mathcal{P}_{\lambda^{\mathrm{T}}}^{\boldsymbol{a},\boldsymbol{q}^{-1}}(\mathcal{K}),$$

where co is some constant. Similar for links.

This is a representation theoretical explanation of the the HOMFLY-PT symmetry.

Some additional remarks.

- Homework: feed the machine with your favorite duality.
- We are working on the type **B**, **C** and **D**-versions and the diagrams work fine (yet, the quantization is complicated).
- Some parts even work in the non-semisimple case (e.g. at roots of unities).
- The whole approach seems to be amenable to categorification.
- Relations to categorifications of the Hecke algebra using Soergel bimodules or category ${\cal O}$ need to be worked out.
- This could lead to a categorification of U_q(gl_{m|n}) (since the "complicated" super relations are build in the calculus).
- A "green-red-foamy" approach could shed additional light on colored Khovanov-Rozansky homologies.

There is still much to do...

Thanks for your attention!