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Pioneers of representation theory

Let G be a finite group.

Frobenius ∼1895++, Burnside ∼1900++. Representation theory is the useful?

study of linear group actions:

M : G −→ End(V),

with V being some C-vector space. We call V a module or a representation.

The “atoms” of such an action are called simple.

Maschke ∼1899. All modules are built out of simples (“Jordan–Hölder”).

“M(g) = a matrix in End(V)”

We want to have a
categorical version of this!

“M(a) = a matrix in End(V)”

We want to have a
categorical version of this.

I am going to explain what we can do at present.
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The strategy

“Groups, as men, will be known by their actions.” – Guillermo Moreno

The study of group actions is of fundamental importance in mathematics and
related field. Sadly, it is also very hard.

Representation theory approach. The analogous linear problem of classifying
G-modules has a satisfactory answer for many groups.

Problem involving
a group action

G X

Philosophy. Turn problems into linear algebra.
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Some theorems in classical representation theory

B All G-modules are built out of simples.

B The character of a simple G-module determines it.

B There is a one-to-one correspondence

{simple G-modules}/iso

1:1←→
{conjugacy classes in G}.

B All simples can be constructed intrinsically using the regular G-module.

The character only remembers the
traces of the acting matrices.

“Regular G-module
= G acting on itself.”

Find categorical versions of these facts.
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The dihedral groups on one slide

The dihedral groups are of Coxeter type I2(e + 2):

We+2 = 〈s, t | s2 = t2 = 1, . . . sts︸ ︷︷ ︸
e+2

= w0 = . . . tst︸ ︷︷ ︸
e+2

〉,

e.g.: W4 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2
the Coxeter complex is:

• H

H

H

H

FF

FF

1

Coxeter groups have
Kazhdan–Lusztig theory

which makes them much easier
form the categorical point of view.

One-dimensional representations. Mλs,λt , s 7→ λs ∈ C, t 7→ λt ∈ C.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M−1,−1,M1,−1,M−1,1,M1,1 M−1,−1,M1,1

Two-dimensional representations. Mz , z ∈ R, s 7→
(

1 z
0 −1

)
, t 7→

(−1 0
z 1

)
.

e ≡ 0 mod 2 e 6≡ 0 mod 2

Mz , z pos. root of Ue+1 Mz , z pos. root of Ue+1

Ue+1 is the Chebyshev polynomial.

Proposition (Lusztig?).
All of these are simple, and the list is complete and irredundant.
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Pioneers of 2-representation theory

Let G be a finite group.

Chuang–Rouquier & many others ∼2004++. Higher representation theory is
the useful? study of (certain) categorical actions, e.g.:

M : G −→ End(V),

with V being some C-linear category. We call V a 2-module or a 2-representation.

The “atoms” of such an action are called 2-simple.

Mazorchuk–Miemietz ∼2014. All (suitable) 2-modules are built out of
2-simples (“2-Jordan–Hölder”).

“M (g) = a functor in End(V)”

Plus some coherence conditions which I will not explain.

The three goals of 2-representation theory.
Improve the theory itself.

Discuss examples.
Find applications.
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“Lifting” classical representation theory

B All G-modules are built out of simples.

B The character of a simple G-module determines it.

B There is a one-to-one correspondence

{simple G-modules}/iso.

1:1←→
{conjugacy classes in G}.

B All simples can be constructed intrinsically using the regular G-module.

Note that we have a very particular notion
what a “suitable” 2-module is.

What characters were for Frobenius
are these matrices for us.

There are some technicalities.

Goal 1. Improve the theory itself.

These turned out to be very interesting
since their importance is only visible via categorification.
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2-modules of dihedral groups

Consider : θs = s + 1, θt = t + 1.

(Motivation. The Kazhdan–Lusztig basis has some neat integral properties.)

These elements generate C[We+2] and their relations are fully understood:

θsθs = 2θs, θtθt = 2θt, a relation for . . . sts︸ ︷︷ ︸
e+2

= . . . tst︸ ︷︷ ︸
e+2

.

We want a categorical action. So we need:

B A category V to act on.

B Endofunctors Θs and Θt acting on V.

B The relations of θs and θt have to be satisfied by the functors.

B A coherent choice of natural transformations. (Skipped today.)

Some details.

Mackaay–T. ∼2016.

There is a one-to-one correspondence

{(non-trivial) 2-simple We+2-modules}/2-iso
1:1←→

{bicolored ADE Dynkin diagrams with Coxeter number e + 1}.

Thus, its easy to write down a list .

Goal 2. Discuss examples.
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Concluding remarks – let me dream a bit

B The theory is still not fully developed.

Goal 1 question. Are there finitely many 2-simples in general?

B The dihedral story is just the tip of the iceberg.

Goal 2 question. Finite Coxeter groups in general?

B The connection to low-dimensional topology needs to be worked out.

Goal 3 question. Impact on non-semisimple invariants of 3-manifolds?

I Connections to the study of braid groups, web calculi and geometry of
Grassmanians, following Khovanov–Seidel, Kuperberg,
Cautis–Kamnitzer–Morrison,... Click

I Connections to conformal field theory following ideas of Zuber,... Click

I Connections to the theory of subfactors, fusion categories (q-groups at roots
of unity) etc. à la Etingof–Gelaki–Nikshych–Ostrik, Ocneanu,... Click
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Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).

Back

Nowadays representation theory is pervasive across fields of mathematics, and beyond.

But this wasn’t clear at all when Frobenius started it.

The strategy

“Groups, as men, will be known by their actions.” – Guillermo Moreno

The study of group actions is of fundamental importance in mathematics and
related field. Sadly, it is also very hard.
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“Decomposition of
the problem”
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⊕
Vi

Philosophy. Turn problems into linear algebra.
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One-dimensional representations. Mλs,λt , s 7→ λs ∈ C, t 7→ λt ∈ C.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M−1,−1,M1,−1,M−1,1,M1,1 M−1,−1,M1,1

Two-dimensional representations. Mz , z ∈ R, s 7→
(

1 z
0 −1

)
, t 7→

(−1 0
z 1

)
.

e ≡ 0 mod 2 e 6≡ 0 mod 2

Mz , z pos. root of Ue+1 Mz , z pos. root of Ue+1

Ue+1 is the Chebyshev polynomial.

Proposition (Lusztig?).
All of these are simple, and the list is complete and irredundant.
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Pioneers of 2-representation theory

Let C be a finitary 2-category. Why?

Chuang–Rouquier & many others ∼2004++. Higher representation theory is
the useful? study of actions of 2-categories:

M : C −→ C at,

with C at being the 2-category of C-linear categories. We call V a 2-module or a
2-representation.

The “atoms” of such an action are called simple.

Mazorchuk–Miemietz ∼2014. All (suitable) 2-modules are built out of
2-simples (“2-Jordan–Hölder”).

“M (g) = a functor in End(V)”

Plus some coherence conditions which I will not explain.

The three goals of 2-representation theory.
Improve the theory itself.

Discuss examples.
Find applications.
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“Lifting” classical representation theory

B Mazorchuk–Miemietz ∼2014. All (suitable) 2-modules are built out of
2-simples.

B Mazorchuk–Miemietz ∼2014. In the good cases 2-simples are determined
by the decategorified actions (a.k.a. matrices) of the M(F)’s.

B Mackaay–Mazorchuk–Miemietz–T. ∼2016. There is a one-to-one
correspondence

{2-simples of C }/equi.

1:1←→
{certain (co)algebra 1-morphisms}/“2-Morita equi.”.

B Mazorchuk–Miemietz ∼2014. There exists principal 2-modules lifting the
regular representation.
Several authors including myself ∼2016. But even in well-behaved cases
there are 2-simples which do not arise in this way.

Note that we have a very particular notion
what a “suitable” 2-module is.

What characters were for Frobenius
are these matrices for us.

There are some technicalities.

Goal 1. Improve the theory itself.

These turned out to be very interesting
since their importance is only visible via categorification.
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Construct a W∞-module V associated to a bipartite graph G :

V = 〈1, 2, 3, 4, 5〉C

1 3 2 4 5

θs
action

H F H

F

F

θs  Ms =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, θt  Mt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







Back

Lemma. For certain values of e these are N0-valued C[We+2]-modules.

Lemma. All N0-valued C[We+2]-module arise in this way.

Lemma. All 2-modules decategorify to such N0-valued C[We+2]-module.

Categorification.

Category  V = Z-Mod,
Z quiver algebra with underlying graph G .

Endofunctors  tensoring with Z-bimodules.

Lemma. These satisfy the relations of C[We ].

The type A family
e = 1

H

F

e = 2

H F

e = 3

H F H

F H F

e = 4

H F H F

e = 5

H F H F H

F H F H F

. . .

The type D family
e = 5

H F
H

H

F H
F

F

e = 7

F H F
H

H

H F H
F

F

e = 9

H F H F
H

H

F H F H
F

F

e = 11

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
e = 11

H F H F H

F

F H F H F

H

e = 17

H F H F H F

F

F H F H F H

H

e = 29

H F H F H F H

F

F H F H F H F

H

Back

This is an unexpected ADE classification,
which is – imho – quite neat.

Note that this is also completely different
than the decategorified story:

The number of 2-modules is at most three,
but they grow in dimension when e grows.

Figure: “Classification” of conformal field theories for quantum SU(3). (Picture from

“The classification of subgroups of quantum SU(N)” by Ocneanu ∼2000.)

Same? classification of 2-modules for a generalization of the dihedral story.

Question. Explanation?

Back

There is still much to do...

Thanks for your attention!
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Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).
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Nowadays representation theory is pervasive across fields of mathematics, and beyond.

But this wasn’t clear at all when Frobenius started it.

The strategy

“Groups, as men, will be known by their actions.” – Guillermo Moreno

The study of group actions is of fundamental importance in mathematics and
related field. Sadly, it is also very hard.

Representation theory approach. The analogous linear problem of classifying
G-modules has a satisfactory answer for many groups.

Problem involving
a group action

G X

Problem involving
a linear group action

C[G] CX

“Decomposition of
the problem”
C[G]

⊕
Vi

Philosophy. Turn problems into linear algebra.
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Some theorems in classical representation theory

B All G-modules are built out of simples.

B The character of a simple G-module determines it.

B There is a one-to-one correspondence

{simple G-modules}/iso

1:1←→
{conjugacy classes in G}.

B All simples can be constructed intrinsically using the regular G-module.

The character only remembers the
traces of the acting matrices.

“Regular G-module
= G acting on itself.”

Find categorical versions of these facts.
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The dihedral groups on one slide

The dihedral groups are of Coxeter type I2(e + 2):
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e+2

= w0 = . . . tst︸ ︷︷ ︸
e+2

〉,

e.g.: W4 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2
the Coxeter complex is:
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e ≡ 0 mod 2 e 6≡ 0 mod 2
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)
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(−1 0
z 1

)
.
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2-representation.

The “atoms” of such an action are called simple.

Mazorchuk–Miemietz ∼2014. All (suitable) 2-modules are built out of
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Discuss examples.
Find applications.

Daniel Tubbenhauer 2-representation theory in a nutshell June 2018 7 / 11

“Lifting” classical representation theory

B Mazorchuk–Miemietz ∼2014. All (suitable) 2-modules are built out of
2-simples.

B Mazorchuk–Miemietz ∼2014. In the good cases 2-simples are determined
by the decategorified actions (a.k.a. matrices) of the M(F)’s.

B Mackaay–Mazorchuk–Miemietz–T. ∼2016. There is a one-to-one
correspondence

{2-simples of C }/equi.

1:1←→
{certain (co)algebra 1-morphisms}/“2-Morita equi.”.

B Mazorchuk–Miemietz ∼2014. There exists principal 2-modules lifting the
regular representation.
Several authors including myself ∼2016. But even in well-behaved cases
there are 2-simples which do not arise in this way.

Note that we have a very particular notion
what a “suitable” 2-module is.

What characters were for Frobenius
are these matrices for us.

There are some technicalities.

Goal 1. Improve the theory itself.

These turned out to be very interesting
since their importance is only visible via categorification.

Daniel Tubbenhauer 2-representation theory in a nutshell June 2018 8 / 11

Construct a W∞-module V associated to a bipartite graph G :

V = 〈1, 2, 3, 4, 5〉C

1 3 2 4 5

θs
action

H F H

F

F

θs  Ms =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, θt  Mt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







Back

Lemma. For certain values of e these are N0-valued C[We+2]-modules.

Lemma. All N0-valued C[We+2]-module arise in this way.

Lemma. All 2-modules decategorify to such N0-valued C[We+2]-module.

Categorification.

Category  V = Z-Mod,
Z quiver algebra with underlying graph G .

Endofunctors  tensoring with Z-bimodules.

Lemma. These satisfy the relations of C[We ].

The type A family
e = 1

H

F

e = 2

H F

e = 3

H F H

F H F

e = 4

H F H F

e = 5

H F H F H

F H F H F

. . .

The type D family
e = 5

H F
H

H

F H
F

F

e = 7

F H F
H

H

H F H
F

F

e = 9

H F H F
H

H

F H F H
F

F

e = 11

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
e = 11

H F H F H

F

F H F H F

H

e = 17

H F H F H F

F

F H F H F H

H

e = 29

H F H F H F H

F

F H F H F H F

H

Back

This is an unexpected ADE classification,
which is – imho – quite neat.
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than the decategorified story:
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Figure: “Classification” of conformal field theories for quantum SU(3). (Picture from
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Nowadays representation theory is pervasive across fields of mathematics, and beyond.

But this wasn’t clear at all when Frobenius started it.
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Khovanov & others ∼1999++. Knot homologies are instances of

2-representation theory. Low-dim. topology & Math. Physics

Khovanov–Seidel & others ∼2000++. Faithful 2-representations of braid

groups. Low-dim. topology & Symplectic geometry

Chuang–Rouquier ∼2004. Proof of the Broué conjecture using 2-representation

theory. p-RT of finite groups & Geometry & Combinatorics

Elias–Williamson ∼2012. Proof of the Kazhdan–Lusztig conjecture using ideas

from 2-representation theory. Combinatorics & RT & Geometry

Riche–Williamson ∼2015. Tilting characters using 2-representation theory.

p-RT of reductive groups & Geometry

Many more...

Back

Goal 3. Find application.

In joint work with Ehrig–Wedrich ∼2017 we
proved the functoriality of

Khovanov–Rozansky’s invariants.

L′ ∈ R3

L ∈ R3

link
cobordism

functoriality7−−−−−−→

JL′K

JLK

linear
map

(This was conjectured from about 10 years,
but seemed infeasible to prove,

and has some impact on 4-dim. topology.)
One of our main ingredient?

2-representation theory.
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theory. p-RT of finite groups & Geometry & Combinatorics

Elias–Williamson ∼2012. Proof of the Kazhdan–Lusztig conjecture using ideas

from 2-representation theory. Combinatorics & RT & Geometry

Riche–Williamson ∼2015. Tilting characters using 2-representation theory.

p-RT of reductive groups & Geometry

Many more...

Back

Goal 3. Find application.

In joint work with Ehrig–Wedrich ∼2017 we
proved the functoriality of

Khovanov–Rozansky’s invariants.

L′ ∈ R3

L ∈ R3

link
cobordism

functoriality7−−−−−−→

JL′K

JLK

linear
map

(This was conjectured from about 10 years,
but seemed infeasible to prove,

and has some impact on 4-dim. topology.)
One of our main ingredient?

2-representation theory.



2-category categories functors nat. trafos

1-category vector spaces linear maps

0-category numbers

relate relate

relate

categorify

categorify

categorify

forms

forms

forms

categorifies

categorifies

Back

A group G can be viewed as an one-object category G,
and a representation as a functor from G
into the one-object category End(V), i.e.

M : G −→ End(V).

What one can hope for.

Problem involving
a group action

G X

Problem involving

a categorical
group action

Decomposition of

the problem

into 2-simples

“lift”

new
insights?
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Construct a W∞-module V associated to a bipartite graph G :

V = 〈1, 2, 3, 4, 5〉C

1 3 2 4 5

H F H

F

F

θs  Ms =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, θt  Mt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







Back

Lemma. For certain values of e these are N0-valued C[We+2]-modules.

Lemma. All N0-valued C[We+2]-module arise in this way.

Lemma. All 2-modules decategorify to such N0-valued C[We+2]-module.

Categorification.

Category  V = Z-Mod,
Z quiver algebra with underlying graph G .

Endofunctors  tensoring with Z-bimodules.

Lemma. These satisfy the relations of C[We ].
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This is an unexpected ADE classification,
which is – imho – quite neat.

Note that this is also completely different
than the decategorified story:

The number of 2-modules is at most three,
but they grow in dimension when e grows.
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Figure: From spiders to Cat(0)-diskoid to affine buildings. (Picture from “Buildings,

spiders, and geometric Satake” by Fontaine–Kamnitzer–Kuperberg ∼2012.)

Spiders are special cases of our story, and also use them in some proofs. Spiders
are known to be related to e.g. Cat(0)-geometry.

Question. Anything one can say about this geometry using 2-modules?

Back



Figure: “Classification” of conformal field theories for quantum SU(3). (Picture from

“The classification of subgroups of quantum SU(N)” by Ocneanu ∼2000.)

Same? classification of 2-modules for a generalization of the dihedral story.

Question. Explanation?
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Figure: The quantum Satake; from Temperley–Lieb to Soergel bimodules. (Picture from

“The two-color Soergel calculus” by Elias ∼2013.)

Elias’ quantum Satake correspondence shows that the Soergel bimodules of
dihedral type “are a non-semisimple generalization of semisimplyfied
Uq(sl2)-Mod at roots of unity”. (This works in more generality.)

Question. Is there impact for both sides?
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Figure: “Über Gruppencharaktere (i.e. characters of groups)” by Frobenius (1896).
Bottom: first ever published character table.
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