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Slogan. Representation theory is group theory in vector spaces.

Let A be a finite-dimensional algebra, e.g. a group ring K[G].

Frobenius ∼1895++ Representation theory is the useful? study of actions of
algebras:

M : A −→ End(V),

with V being some vector space. (Called modules or representations.)

The “elements” of such an action are called simple.

Maschke ∼1899. All modules are built out of simples
(“Jordan–Hölder” filtration).

Main goal of representation theory. Find the periodic table of simples.

Examples of 2-categories.

Monoidal categories, G -graded vector spaces V ec(G), module categories Rep(G),

Rep(Hopf algebra), tensor or fusion or modular categories,

Soergel bimodules S = S (W ) (“the Hecke category”),

categorified quantum groups, categorified Heisenberg algebras, ...

Examples of 2-representation of these.

Categorical modules, functorial actions,

(co)algebra objects, conformal embeddings of affine Lie algebras, the LLT algorithm,

cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module, ...

Applications of 2-representations.

Representation theory (classical and modular), link homologies, combinatorics,

TQFTs, quantum physics, geometry, ...

Today: example based.

1) Fix some notation.

2) Discuss the cases V ec(G) and Rep(G). Semisimple

3) Discuss the case of the Hecke category. Non-semisimple
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(“weak 2-Jordan–Hölder filtration”).

Main goal of 2-representation theory. Find the periodic table of 2-simples.

Examples of 2-categories.

Monoidal categories, G -graded vector spaces V ec(G), module categories Rep(G),

Rep(Hopf algebra), tensor or fusion or modular categories,

Soergel bimodules S = S (W ) (“the Hecke category”),

categorified quantum groups, categorified Heisenberg algebras, ...

Examples of 2-representation of these.

Categorical modules, functorial actions,

(co)algebra objects, conformal embeddings of affine Lie algebras, the LLT algorithm,

cyclotomic Hecke/KLR algebras, categorified (anti-)spherical module, ...

Applications of 2-representations.

Representation theory (classical and modular), link homologies, combinatorics,

TQFTs, quantum physics, geometry, ...

Today: example based.

1) Fix some notation.

2) Discuss the cases V ec(G) and Rep(G). Semisimple

3) Discuss the case of the Hecke category. Non-semisimple

Daniel Tubbenhauer 2-representations of Soergel bimodules March 2020 2 / 8



Slogan. 2-representation theory is group theory in categories.

Let C be a (suitable) 2-category, e.g. a monoidal category.

Etingof–Ostrik, Chuang–Rouquier, many others ∼2000++. Higher
representation theory is the useful? study of actions of 2-categories:

M : C −→ End(V),

with V being some (suitable) category. (Called 2-modules or 2-representations.)

The “elements” of such an action are called 2-simple.

Mazorchuk–Miemietz ∼2014. All (suitable) 2-modules are built out of 2-simples
(“weak 2-Jordan–Hölder filtration”).
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Classification problems are impossible unless you restrict yourself.

In classical representation theory one would:

Specify what should be represented,
e.g. groups, algebra, Lie groups, Lie algebras, etc.

Specify where one wants to represent,
e.g. on finite-dimensional vector spaces, unitary representation etc.

In 2-representation theory one needs do the same.

For simplicity, let us stay with monoidal categories,

a.k.a. 2-categories with one object,

for the rest of the talk.
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What we want to represent.

A finitary category C is “linear-finite”:

I It is linear, additive and idempotent split.

I It has finitely many indecomposable objects (up to ∼=).

I It has finite-dimensional hom-spaces.

A finitary 2-category C is also “linear-finite”:

I It has finitely many objects and its hom-categories are finitary.

I The horizontal composition of 2-morphisms is bilinear.

I The identity 1-morphisms are indecomposable.

One also needs dualities, so we add “rigid”:

I If additionally there is an object-preserving, linear biequivalence
? : C → C coop of finite order, then C is called weakly fiat. (Fiat=order two.)

I Weakly fiat + semisimple is called fusion.

The Grothendieck ring [C (i, i)] of such C is a finite-dimensional algebra.

Classification problems are impossible unless you restrict yourself.

In classical representation theory one would:

Specify what should be represented,
e.g. groups, algebra, Lie groups, Lie algebras, etc.

Specify where one wants to represent,
e.g. on finite-dimensional vector spaces, unitary representation etc.

In 2-representation theory one needs do the same.
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What we want to represent.

A f
K: 2-category of finitary categories, linear functors and natural transformations.

A (left) finitary 2-representation of C is a linear 2-functor M : C →A f
K.

Concretely, it associates:

I A finitary category M(i) to each object i.

I A linear functor M(F) to each 1-morphism F.

I A natural transformation M(α) to each 1-morphism α.

The Grothendieck group [M(i)] is a module of [C (i, i)].

[M(F)] are N-valued matrices in End([M]).

Classification problems are impossible unless you restrict yourself.

In classical representation theory one would:

Specify what should be represented,
e.g. groups, algebra, Lie groups, Lie algebras, etc.

Specify where one wants to represent,
e.g. on finite-dimensional vector spaces, unitary representation etc.

In 2-representation theory one needs do the same.
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a.k.a. 2-categories with one object,

for the rest of the talk.
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Example (V ec(Z/2Z): the skeleton of Z/2Z-graded (C-)vector spaces).

I As a category V ec(Z/2Z) is boring: two objects and no non-trivial homs.

1 -1id1 id -1

I As a monoidal category this is not much more exciting:

a⊗ b = ab, ida ⊗ ida = idab.

I As a fusion category this is still not complicated:

close C-linear, take ⊕-sums and let a? = a−1.

(I will write V ec(Z/2Z) for the above and its linear and additive closure.)

I Clearly, [V ec(Z/2Z)] ∼= Z[Z/2Z].

Theorem (folklore?).

Completeness. All 2-simples of V ec(Z/2Z) are of the form V(1, 1) or V(Z/2Z, 1).

Non-redundancy. These are non-equivalent.

Note that V ec(Z/2Z) has only finitely many 2-simples.

This is no coincidence.

Theorem (folklore?).

Completeness. All 2-simples of V ecω(Z/2Z) are of the form V(Z/2Z, 1).

Non-redundancy. (I have nothing to say in this case...)

Note that V ecω(Z/2Z) has only finitely many 2-simples.

This is no coincidence.

Note: twisting, even in this toy example,

is non-trivial and affects the 2-representation theory.
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Example (V ec(Z/2Z): the skeleton of Z/2Z-graded (C-)vector spaces).

The fusion category V ec(Z/2Z) has two evident 2-modules:

I The trivial 2-module V(1, 1) given by the trivial 2-representation

M : V ec(Z/2Z)→ V ec, “forget Z/2Z-grading”.

The N-matrices are 1, -1 ( 1 ).

I The regular 2-module V(Z/2Z, 1) given by the regular 2-representation
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The N-matrices are 1 ( 1 0
0 1 ) and -1 ( 0 1
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Example (V ec(Z/2Z): the skeleton of Z/2Z-graded (C-)vector spaces).

I One can twist the ⊗ by a sign:

id -1 ⊗ id -1 = −id1,

and get another fusion category V ecω(Z/2Z).

I V ecω(Z/2Z) is skeletal with non-trivial associator.

I There is no trivial 2-module V(1, 1) since V ec has a trivial associator.
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Example (Rep(G )).

I Let C = Rep(G ) for G a finite group.

I For any M, N ∈ C , we have M⊗ N ∈ C :

g(m ⊗ n) = gm ⊗ gn

for all g ∈ G , m ∈ M, n ∈ N. There is a trivial representation 1 = C.

I Thus, C is fusion.

I Example: the regular 2-representation M : C → End(C ) is

M //

f

��

M⊗
f⊗
��

N // N⊗

.

Theorem (folklore?).

Completeness. All 2-simples of Rep(G) are of the form V(K , ψ).

Non-redundancy. We have V(K , ψ) ∼= V(K ′, ψ′)
⇔

the subgroups are conjugate and ψ′ = ψg , where ψg (k, l) = ψ(gkg−1, glg−1).

Note that Rep(G) has only finitely many 2-simples.

This is no coincidence.

Note: twisting, also in this example,

is non-trivial and affects the 2-representation theory.

Ocneanu rigidity (Etingof–Nikshych–Ostrik ∼2004).

If C is fusion, then it has only finitely many 2-simples.

Proof? Find a computable obstruction for twists.

Problems in general.

If C is non-semisimple, then things get complicated:

There can be uncountably (twists giving uncountably) many 2-simples. Example

Schur’s lemma does not hold.

Twist are not given by any reasonable obstruction etc.
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I Let K ⊂ G be a subgroup.
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)
,
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Example (Rep(G )).

I Let ψ ∈ H2(K ,C∗). Let V(K , ψ) be the category of projective K -modules
with Schur multiplier ψ, i.e. vector spaces V with ρ : K → End(V) such that

ρ(g)ρ(h) = ψ(g , h)ρ(gh), for all g , h ∈ K .

I Note that V(K , 1) = Rep(K ) and

⊗ : V(K , φ)� V(K , ψ)→ V(K , φψ).

I V(K , ψ) is also a 2-representation of C = Rep(G ):

Rep(G ) � V(K , ψ)
ResGK�Id−−−−−→ Rep(K ) � V(K , ψ)

⊗−→ V(K , ψ).

I In short, one can twist the 2-representations ResGK .

Theorem (folklore?).

Completeness. All 2-simples of Rep(G) are of the form V(K , ψ).
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Theorem (folklore?).

Completeness. All 2-simples of Rep(G) are of the form V(K , ψ).

Non-redundancy. We have V(K , ψ) ∼= V(K ′, ψ′)
⇔

the subgroups are conjugate and ψ′ = ψg , where ψg (k, l) = ψ(gkg−1, glg−1).
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Note: twisting, also in this example,
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Is the case of Soergel bimodules hopeless?

Theorem (Soergel–Elias–Williamson ∼1990,2012).
There exists a non-semisimple, graded, fiat category S v = S v (W ) such that:

(1) For every w ∈W , there exists an indecomposable object Cw .

(2) The Cw , for w ∈W , form a complete set of pairwise non-isomorphic
indecomposable objects up to shifts.

(3) The identity object is C1, where 1 is the unit in W .

(4) S v categorifies the Hecke algebra with [Cw ] = cw being the KL basis;
forgetting the grading [S v ] ∼= Z[W ]

(5) grdim
(
homS v (Cv , v

kCw )
)

= δv ,wδ0,k . (Soergel’s hom formula a.k.a. positively graded.)

v degree, W = (W ,S) a (finite) Coxeter group, ground field C, using the
coinvariant algebra attached to the geometric representation.

Examples (W = Sn).

In this case S v has n! indecomposable objects up to shifts.

Beyond some very small cases, they may be difficult to describe.

The classification problem appears to be very hard.

Examples (W of type E8).

In this case S v has 696729600 indecomposable objects up to shifts.

Beyond some very small cases, they are difficult to describe.

The classification problem appears to be hopeless.

By the way: Why should one care, a.k.a. motivation for S v .

1) S v categorifies the Hecke algebra.
Its 2-representation theory categorifies the
representation theory of Hecke algebras.

2) S v originates from projective functors acting on category O,
and proj(O0) is a 2-module of S v .

This was already used to solve questions in Lie theory.

3) S v and its 2-representations
appear in low-dimensional topology

and we are working on applications therein.

4) S v and its 2-representations
appear in quantum and modular representation,

which albeit needs affine Weyl groups.

5) S v and its 2-representations
are helpful to study braid groups

as they tend to give faithful representations.

6) More...
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The “crystal limit” (ignoring some details, sorry).

Theorem (Lusztig, Elias–Williamson ∼2012).
There exists a (multi)fusion bicategory A 0 =A 0(W ) such that:

(1) For every w ∈W , there exists a simple object Aw .

(2) The Aw , for w ∈W , form a complete set of pairwise non-isomorphic simple
objects.

(3) The local identity objects are Ad , where d are Duflo involutions.

(4) A 0 categorifies the asymptotic Hecke algebra with [Aw ] = aw being the
degree zero of the KL basis.

(5) A 0 is the degree zero part of S v ; roughly:

A 0 = add
(
{vkCw | w ∈ H, k ≥ 0}

)
/add

(
{vkCw | w ∈ H, k > 0}

)
.
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The “crystal limit” (ignoring some details, sorry).

The main statement:

{
equivalence classes of graded

2-simples of S v

}
1:1←→

{
equivalence classes of

2-simples of A 0

}
.

Why is this awesome? Because this...

I ...reduces questions from a non-semisimple, non-abelian setup to the
semisimple world.

I ...implies that there are finitely many equivalence classes of graded 2-simples
of S v , by Ocneanu rigidity (“uniqueness of categorification statement”).

I ...provides a complete classification of the 2-simples in the Weyl types. Example

I ...is a potential approach to similar questions in 2-representation theory beyond
Soergel bimodules.
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Example (V ec(Z/2Z): the skeleton of Z/2Z-graded (C-)vector spaces).

I As a category V ec(Z/2Z) is boring: two objects and no non-trivial homs.

1 -1id1 id -1

I As a monoidal category this is not much more exciting:

a⊗ b = ab, ida ⊗ ida = idab.

I As a fusion category this is still not complicated:

close C-linear, take ⊕-sums and let a? = a−1.

(I will write V ec(Z/2Z) for the above and its linear and additive closure.)

I Clearly, [V ec(Z/2Z)] ∼= Z[Z/2Z].

Theorem (folklore?).

Completeness. All 2-simples of V ec(Z/2Z) are of the form V(1, 1) or V(Z/2Z, 1).

Non-redundancy. These are non-equivalent.

Note that V ec(Z/2Z) has only finitely many 2-simples.

This is no coincidence.

Theorem (folklore?).

Completeness. All 2-simples of V ecω(Z/2Z) are of the form V(Z/2Z, 1).

Non-redundancy. (I have nothing to say in this case...)

Note that V ecω(Z/2Z) has only finitely many 2-simples.

This is no coincidence.

Note: twisting, even in this toy example,

is non-trivial and affects the 2-representation theory.
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The fusion category V ec(Z/2Z) has two evident 2-modules:

I The trivial 2-module V(1, 1) given by the trivial 2-representation

M : V ec(Z/2Z)→ V ec, “forget Z/2Z-grading”.

The N-matrices are 1, -1 ( 1 ).

I The regular 2-module V(Z/2Z, 1) given by the regular 2-representation

M : V ec(Z/2Z)→ V ec(Z/2Z), M(a) = a⊗ −.

The N-matrices are 1 ( 1 0
0 1 ) and -1 ( 0 1

1 0 ).

Theorem (folklore?).

Completeness. All 2-simples of V ec(Z/2Z) are of the form V(1, 1) or V(Z/2Z, 1).

Non-redundancy. These are non-equivalent.

Note that V ec(Z/2Z) has only finitely many 2-simples.

This is no coincidence.

Theorem (folklore?).

Completeness. All 2-simples of V ecω(Z/2Z) are of the form V(Z/2Z, 1).

Non-redundancy. (I have nothing to say in this case...)

Note that V ecω(Z/2Z) has only finitely many 2-simples.

This is no coincidence.

Note: twisting, even in this toy example,

is non-trivial and affects the 2-representation theory.

Daniel Tubbenhauer 2-representations of Soergel bimodules March 2020 4 / 8

Example (V ec(Z/2Z): the skeleton of Z/2Z-graded (C-)vector spaces).

I One can twist the ⊗ by a sign:

id -1 ⊗ id -1 = −id1,

and get another fusion category V ecω(Z/2Z).

I V ecω(Z/2Z) is skeletal with non-trivial associator.

I There is no trivial 2-module V(1, 1) since V ec has a trivial associator.
However, V(Z/2Z, 1) still makes sense.

I Moreover, [V ecω(Z/2Z)] ∼= Z[Z/2Z].
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Example (Rep(G )).

I Let C = Rep(G ) for G a finite group.

I For any M, N ∈ C , we have M⊗ N ∈ C :

g(m ⊗ n) = gm ⊗ gn

for all g ∈ G , m ∈ M, n ∈ N. There is a trivial representation 1 = C.

I Thus, C is fusion.

I Example: the regular 2-representation M : C → End(C ) is

M //

f

��

M⊗
f⊗
��

N // N⊗

.

Theorem (folklore?).

Completeness. All 2-simples of Rep(G) are of the form V(K , ψ).

Non-redundancy. We have V(K , ψ) ∼= V(K ′, ψ′)
⇔

the subgroups are conjugate and ψ′ = ψg , where ψg (k, l) = ψ(gkg−1, glg−1).

Note that Rep(G) has only finitely many 2-simples.

This is no coincidence.

Note: twisting, also in this example,

is non-trivial and affects the 2-representation theory.

Ocneanu rigidity (Etingof–Nikshych–Ostrik ∼2004).

If C is fusion, then it has only finitely many 2-simples.

Proof? Find a computable obstruction for twists.

Problems in general.

If C is non-semisimple, then things get complicated:

There can be uncountably (twists giving uncountably) many 2-simples. Example

Schur’s lemma does not hold.

Twist are not given by any reasonable obstruction etc.

Daniel Tubbenhauer 2-representations of Soergel bimodules March 2020 5 / 8

Example (Rep(G )).

I Let ψ ∈ H2(K ,C∗). Let V(K , ψ) be the category of projective K -modules
with Schur multiplier ψ, i.e. vector spaces V with ρ : K → End(V) such that

ρ(g)ρ(h) = ψ(g , h)ρ(gh), for all g , h ∈ K .

I Note that V(K , 1) = Rep(K ) and

⊗ : V(K , φ)� V(K , ψ)→ V(K , φψ).

I V(K , ψ) is also a 2-representation of C = Rep(G ):

Rep(G ) � V(K , ψ)
ResGK�Id−−−−−→ Rep(K ) � V(K , ψ)

⊗−→ V(K , ψ).

I In short, one can twist the 2-representations ResGK .

Theorem (folklore?).

Completeness. All 2-simples of Rep(G) are of the form V(K , ψ).

Non-redundancy. We have V(K , ψ) ∼= V(K ′, ψ′)
⇔

the subgroups are conjugate and ψ′ = ψg , where ψg (k, l) = ψ(gkg−1, glg−1).

Note that Rep(G) has only finitely many 2-simples.

This is no coincidence.

Note: twisting, also in this example,

is non-trivial and affects the 2-representation theory.

Ocneanu rigidity (Etingof–Nikshych–Ostrik ∼2004).

If C is fusion, then it has only finitely many 2-simples.

Proof? Find a computable obstruction for twists.

Problems in general.

If C is non-semisimple, then things get complicated:

There can be uncountably (twists giving uncountably) many 2-simples. Example

Schur’s lemma does not hold.

Twist are not given by any reasonable obstruction etc.

Daniel Tubbenhauer 2-representations of Soergel bimodules March 2020 5 / 8

Example (Rep(G )).

I Let ψ ∈ H2(K ,C∗). Let V(K , ψ) be the category of projective K -modules
with Schur multiplier ψ, i.e. vector spaces V with ρ : K → End(V) such that

ρ(g)ρ(h) = ψ(g , h)ρ(gh), for all g , h ∈ K .

I Note that V(K , 1) = Rep(K ) and

⊗ : V(K , φ)� V(K , ψ)→ V(K , φψ).

I V(K , ψ) is also a 2-representation of C = Rep(G ):

Rep(G ) � V(K , ψ)
ResGK�Id−−−−−→ Rep(K ) � V(K , ψ)

⊗−→ V(K , ψ).

I In short, one can twist the 2-representations ResGK .

Theorem (folklore?).

Completeness. All 2-simples of Rep(G) are of the form V(K , ψ).

Non-redundancy. We have V(K , ψ) ∼= V(K ′, ψ′)
⇔

the subgroups are conjugate and ψ′ = ψg , where ψg (k, l) = ψ(gkg−1, glg−1).

Note that Rep(G) has only finitely many 2-simples.

This is no coincidence.

Note: twisting, also in this example,

is non-trivial and affects the 2-representation theory.

Ocneanu rigidity (Etingof–Nikshych–Ostrik ∼2004).

If C is fusion, then it has only finitely many 2-simples.

Proof? Find a computable obstruction for twists.

Problems in general.

If C is non-semisimple, then things get complicated:

There can be uncountably (twists giving uncountably) many 2-simples. Example

Schur’s lemma does not hold.

Twist are not given by any reasonable obstruction etc.

Daniel Tubbenhauer 2-representations of Soergel bimodules March 2020 5 / 8

The “crystal limit” (ignoring some details, sorry).

The main statement:

{
equivalence classes of graded

2-simples of S v

}
1:1←→

{
equivalence classes of

2-simples of A 0

}
.

Why is this awesome? Because this...

I ...reduces questions from a non-semisimple, non-abelian setup to the
semisimple world.

I ...implies that there are finitely many equivalence classes of graded 2-simples
of S v , by Ocneanu rigidity (“uniqueness of categorification statement”).

I ...provides a complete classification of the 2-simples in the Weyl types. Example

I ...is a potential approach to similar questions in 2-representation theory beyond
Soergel bimodules.
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Another aspect of the main theory.

For W being a Weyl group, the classification problem for S v reduces to the
classification problem for V ec(G ) and Rep(G ) where G is (Z/2Z)k , S3, S4, or S5.
We have seen that 2-simples of V ec(G ) and Rep(G ) are classified by subgroups
H ⊂ G and φ ∈ H2(H,C×), up to conjugacy.

Thus, this is a numerical problem.

For example, for Rep(S5) (appears in type E8) we have:

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 Z/5Z S3 Z/6Z D4 D5 A4 D6 GA(1, 5) S4 A5 S5

# 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1

H2 1 1 1 1 Z/2Z 1 1 1 Z/2Z Z/2Z Z/2Z Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 5 3 6 5, 2 4, 2 4, 3 6, 3 5 5, 3 5, 4 7, 5

Rep(S5)

Please, stop!

There is still much to do...

Thanks for your attention!
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I There is no trivial 2-module V(1, 1) since V ec has a trivial associator.
However, V(Z/2Z, 1) still makes sense.

I Moreover, [V ecω(Z/2Z)] ∼= Z[Z/2Z].

Theorem (folklore?).

Completeness. All 2-simples of V ec(Z/2Z) are of the form V(1, 1) or V(Z/2Z, 1).

Non-redundancy. These are non-equivalent.

Note that V ec(Z/2Z) has only finitely many 2-simples.

This is no coincidence.

Theorem (folklore?).

Completeness. All 2-simples of V ecω(Z/2Z) are of the form V(Z/2Z, 1).

Non-redundancy. (I have nothing to say in this case...)

Note that V ecω(Z/2Z) has only finitely many 2-simples.

This is no coincidence.

Note: twisting, even in this toy example,

is non-trivial and affects the 2-representation theory.
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Example (Rep(G )).

I Let C = Rep(G ) for G a finite group.

I For any M, N ∈ C , we have M⊗ N ∈ C :

g(m ⊗ n) = gm ⊗ gn

for all g ∈ G , m ∈ M, n ∈ N. There is a trivial representation 1 = C.

I Thus, C is fusion.

I Example: the regular 2-representation M : C → End(C ) is

M //

f

��

M⊗
f⊗
��

N // N⊗

.

Theorem (folklore?).

Completeness. All 2-simples of Rep(G) are of the form V(K , ψ).

Non-redundancy. We have V(K , ψ) ∼= V(K ′, ψ′)
⇔

the subgroups are conjugate and ψ′ = ψg , where ψg (k, l) = ψ(gkg−1, glg−1).

Note that Rep(G) has only finitely many 2-simples.

This is no coincidence.

Note: twisting, also in this example,

is non-trivial and affects the 2-representation theory.

Ocneanu rigidity (Etingof–Nikshych–Ostrik ∼2004).

If C is fusion, then it has only finitely many 2-simples.

Proof? Find a computable obstruction for twists.

Problems in general.

If C is non-semisimple, then things get complicated:

There can be uncountably (twists giving uncountably) many 2-simples. Example

Schur’s lemma does not hold.

Twist are not given by any reasonable obstruction etc.
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Example (Rep(G )).

I Let ψ ∈ H2(K ,C∗). Let V(K , ψ) be the category of projective K -modules
with Schur multiplier ψ, i.e. vector spaces V with ρ : K → End(V) such that
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Rep(G ) � V(K , ψ)
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The “crystal limit” (ignoring some details, sorry).

The main statement:

{
equivalence classes of graded

2-simples of S v

}
1:1←→

{
equivalence classes of

2-simples of A 0

}
.

Why is this awesome? Because this...

I ...reduces questions from a non-semisimple, non-abelian setup to the
semisimple world.

I ...implies that there are finitely many equivalence classes of graded 2-simples
of S v , by Ocneanu rigidity (“uniqueness of categorification statement”).

I ...provides a complete classification of the 2-simples in the Weyl types. Example

I ...is a potential approach to similar questions in 2-representation theory beyond
Soergel bimodules.
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Another aspect of the main theory.

For W being a Weyl group, the classification problem for S v reduces to the
classification problem for V ec(G ) and Rep(G ) where G is (Z/2Z)k , S3, S4, or S5.
We have seen that 2-simples of V ec(G ) and Rep(G ) are classified by subgroups
H ⊂ G and φ ∈ H2(H,C×), up to conjugacy.

Thus, this is a numerical problem.

For example, for Rep(S5) (appears in type E8) we have:

K 1 Z/2Z Z/3Z Z/4Z (Z/2Z)2 Z/5Z S3 Z/6Z D4 D5 A4 D6 GA(1, 5) S4 A5 S5

# 1 2 1 1 2 1 2 1 1 1 1 1 1 1 1 1

H2 1 1 1 1 Z/2Z 1 1 1 Z/2Z Z/2Z Z/2Z Z/2Z 1 Z/2Z Z/2Z Z/2Z

rk 1 2 3 4 4, 1 5 3 6 5, 2 4, 2 4, 3 6, 3 5 5, 3 5, 4 7, 5

Rep(S5)

Please, stop!

There is still much to do...

Thanks for your attention!
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Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).

Back

Nowadays representation theory is pervasive across mathematics, and beyond.

But this wasn’t clear at all when Frobenius started it.
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Example (G = S3).

# of subgroups (up to conjugacy), Schur multipliers H2 and ranks rk of the
2-simples.

K 1 Z/2Z Z/3Z S3

# 1 1 1 1

H2 1 1 1 1

rk 1 2 3 3

Example (K = S3); the N-matrices.

⊗

⊕ ⊕

⊗ −  
(

1 0 0
0 1 0
0 0 1

)
, ⊗ −  

(
0 1 0
1 1 1
0 1 0

)
, ⊗ −  

(
0 0 1
0 1 0
1 0 0

)
.
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Example (Taft Hopf algebra).

Let T2 = C〈g , x〉/(g2 = 1, x2 = 0, gx = −xg)
vs
= C[Z/2Z]⊗ C[x ]/(x2).

I T2-proj is a non-semisimple, weakly fiat category with [T2-proj] ∼= Z[Z/2Z].

I It has only two indecomposable objects:

1-dim.
simples

: S+,S−

{
g .m = ±m,
x .m = 0,

2-dim.
pr.in.

: P+ =
S+
S−
,P− =

S−
S+
.

I Two evident 2-simples V± obtained via:

P± ⊗ − : T2-proj→ T2-proj.

Looks harmless, but:

I Twisted by λ ∈ C gives other 2-simples Vλ±.

I One gets two one-parameter families of 2-simples.

I [Vλ±] ∼= [Vµ±], i.e. this is not detectable on the Grothendieck level.

Back
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