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The main theorem

Theorem

Let T be a Uq = Uq(g)-tilting module. Then EndUq (T ) is a cellular algebra.

Thus, properties of EndUq (T ) follow via roots and weight system combinatorics.

I have to explain the words in red. But let us start with an example.

Example(Schur 1901)

Let Sd be the symmetric group in d letters and let ∆1(ω1) be the vector
representation of U1 = U1(gln). Take T = ∆1(ω1)⊗d , then

ΦSW : K[Sd ] � EndU1 (T ) and ΦSW : K[Sd ]
∼=−→ EndU1 (T ), if n ≥ d .

Since T is a U1-tilting module, K[Sd ] is cellular.
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Why quantum groups and tilting modules?

Interesting tensor categories.

Applications in topology: link invariants, 3-manifold invariants and modular
categories (Witten, Reshetikhin-Turaev, ...).

Connections with affine Kac-Moody algebras (Kazhdan-Lusztig, ...).

Connections with the (modular) representation theory of the symmetric group
and of Ariki-Koike algebras (Lascoux-Leclerc-Thibon, ...).

Nice combinatorics à la Kazhdan-Lusztig (Soergel, ...).

Fusion (Andersen-Stroppel, Kazhdan-Lusztig, ...).

Quantum cohomology (Witten, Korff-Stroppel, ...).

More...

Daniel Tubbenhauer July 2015 4 / 30



Quantum enveloping algebras – general g works similar

Recall that sl2 is generated by

E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
, H =

(
1 0
0 −1

)
.

The Q-algebra U1(sl2) consists of words in the symbols E ,F ,H modulo (plus
other relations)

EF − FE = H.

Its quantum cousin, the Q(v)-algebra Uv (sl2), consists of words in the symbols
E ,F ,K±1 modulo (plus other relations)

EF − FE =
K − K−1

v − v−1
.

Roughly: K = vH and limv→1 Uv (sl2) = U1(sl2).
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Quantized counting

The quantum integers and the quantum factorials are:

[a] =
v a − v−a

v1 − v−1
= v a−1 + v a−3 + · · ·+ v−a+3 + v−a+1 ∈ Q(v),

[b]! = [1] · · · [b − 1][b] ∈ Q(v).

Example

For “v = 1” the quantum numbers are [a] = a. Thus, in most cases, except some
“exceptional” cases, [a] is a quantized version of a.

The “exceptional” cases are the ones where “v = q ∈ K− {0}” is a root of unity
with q2 of order `: [a] = 0 ∈ K iff q is a root of unity with q2 of order `.

Thus, [3] = v2 + 1 + v−2 = 0 iff “v = q ∈ K− {0}” is a third root of unity.
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Quantum groups at roots of unity

Fix an arbitrary element q ∈ K− {0} and set A = Z[v , v−1]. Define

Uq = Uq(g) = UA ⊗A K.

Here UA = UA(g) is Lusztig’s A-form: the A-subalgebra of Uv = Uv (g)

generated by K±1
i , E

(j)
i = 1

[j]!E
j and F

(j)
i = 1

[j]!F
j for i = 1, . . . , n − 1 and j ∈ N.

Example

In the sl2 case, the Q(v)-algebra Uv (sl2) is generated by K ,K−1 and E ,F subject
to some relations.

Let q be a complex, primitive third root of unity. Uq(sl2) is generated by
K ,K−1,E ,F ,E (3) and F (3) subject to some relations. Here E (3),F (3) are extra
generators, since E 3 = [3]!E (3) = 0 because of [3] = 0.
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Atoms of representation categories

What are the “atoms” of the category A-Mod (e.g. finite-dimensional A-module)?
And how to construct or at least parametrize these “atoms”?

“Objects without substructure?” (aka, simple) or “Objects without finer
decomposition?” (aka, indecomposable).

A representation category A-Mod is semisimple iff all objects are sums of simples.
For these categories the questions are usually “easy” to answer.

Beware: dividing into semisimple representation categories and non-semisimple
representation categories is like dividing the world into bananas and non-bananas.

Example(Maschke 1899, Frobenius 1900, Young 1901)

K[Sd ]-Modfd is semisimple iff char(K) does not divide d!. In this case the simple
K[Sd ]-modules are parametrized by partitions aka Young diagrams.
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Weyl modules as atoms

For each dominant Uv -weight λ ∈ X+ there is a simple Uv -module ∆v (λ) called
Weyl module. Fact: the set {∆v (λ) | λ ∈ X+} is a complete set of pairwise
non-isomorphic, simple Uv -modules (of type 1).

Example

For sl2 we have X+ = Z≥0. The Weyl module ∆v (3) is

m3

[1]
//

v−3

��
m2

[3]
oo

[2]
//

v−1

��
m1

[3]
//

[2]
oo

v+1

��
m0,

[1]
oo

v+3

��

where E “acts to the right”, F “acts to the left” and K “acts as a loop”.

The category Uv -Modfd is semisimple.
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Weyl modules as atoms?

Fact: the ∆q(λ)’s are no longer (semi-)simple in general. But they have unique
simple heads Lq(λ). Fact: the set {Lq(λ) | λ ∈ X+} is a complete set of pairwise
non-isomorphic, simple Uq-modules (of type 1).

Example

Let g = sl2 and q be a complex, primitive third root of unity. ∆q(3) is

m3

+1
//

q−3

��
m2

0
oo

−1
//

q−1

��
m1

0 //

−1
oo

q+1

��
m0.

+1
oo

q+3

��

88

+1

ff

The C-span of {m1,m2} is now stable under the action of Uq(sl2): this is Lq(1).
The simple head is Lq(3) ∼= ∆q(3)/Lq(1) and is spanned by {m0,m3}.

The category Uq-Modfd is not semisimple in general.
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Uq-tilting modules as atoms?

Let ∆q(λ) be a Weyl module and ∇q(λ) its dual.
A Uq-tilting module T is a Uq-module with a ∆q-filtration and a ∇q-filtration:

T = M0 ⊃ M1 ⊃ · · · ⊃ Mk′ ⊃ · · · ⊃ Mk−1 ⊃ Mk = 0,

0 = N0 ⊂ N1 ⊂ · · · ⊂ Nk′ ⊂ · · · ⊂ Nk−1 ⊂ Nk = T ,

such that Mk′/Mk′+1 is some ∆q(λ) and Nk′+1/Nk′ is some ∇q(λ).

Example

All Uv -modules are Uv -tilting modules.

For our favorite example q3 = 1 ∈ C and g = sl2: ∆q(i) is a Uq-tilting module iff
i = 0, 1 or i ≡ −1 mod 3.
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Uq-tilting modules as atoms.

The category of Uq-tilting modules T has some nice properties:

T is closed under finite direct sums and tensor products.

The indecomposables Tq(λ) of T are parametrized by λ ∈ X+. They have λ
as their maximal weight and contain ∆q(λ) with multiplicity 1. We have

∆q(λ) �
� ιλ // Tq(λ)

πλ
// // ∇q(λ).

Example

The vector representation ∆q(1) is a Uq(sl2)-tilting module. Thus, T = ∆q(1)⊗d

is. Then Tq(d) is the indecomposable summand of T containing ∆q(d).

Example

∆q(λ) is a Uq-tilting module for minuscule λ. Thus, tensor products of these are.
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The Ext-vanishing

We have for all λ, µ ∈ X+ that

ExtiUq
(∆q(λ),∇q(µ)) ∼=

{
Kcλ, if i = 0 and λ = µ,

0, else,

where cλ : ∆q(λ)→ ∇q(λ) is the Uq-homomorphisms that sends head to socle.

Assume that M has a ∆q-filtration and N has a ∇q-filtration.

We have dim(HomUq (M,∇q(λ))) = (M : ∆q(λ)).

We have dim(HomUq (∆q(λ),N)) = (N : ∇q(λ)).
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Uq-tilting modules as atoms!

T ∈ T iff Ext1
Uq

(T ,∇q(λ)) = 0 = Ext1
Uq

(∆q(λ),T ) for all λ ∈ X+.

In particular, if M has a ∆q- and N has a ∇q-filtration:

∆q(λ)� _

ιλ

��

gλ
i

!!
M

f
λ
j
//

f λj ""

Tq(λ)

πλ

����

gλ
i

// N

∇q(λ)

In words: any Uq-homomorphism g : ∆q(λ)→ N extends to an
Uq-homomorphism g : Tq(λ)→ N whereas any Uq-homomorphism
f : M → ∇q(λ) factors through Tq(λ) via f : M → Tq(λ).
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Exempli gratia

Consequence of the discussion before:

dim(EndUq (T )) =
∑
λ∈X+

(T : ∆q(λ))2 =
∑
λ∈X+

(T : ∇q(λ))2.

Take T = ∆q(λ)⊗d . If λ ∈ X+ is minuscule as a Uq-weight, then ∆q(λ) is always
Uq-tilting and dim(EndUq (T )) is independent of K and q, since ∆q(λ) has a
character independent of K and of q.

Example (Schur 1901, de Concini-Procesi 1976)

By Schur-Weyl, we see that

ΦSW : K[Sd ] � EndU1 (T ) and ΦSW : K[Sd ]
∼=−→ EndU1 (T ), if n ≥ d .

Thus, dim(K[Sd ]) independent of K and q.
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Exempli gratia (Temperley-Lieb without diagrams)

Let us consider our favorite case again. From the construction of Tq(3):

∆q(3) �
�

// Tq(3) // // ∆q(1).

We compute:

Tv = ∆v (1)⊗∆v (1)⊗∆v (1) ∼= ∆v (3)⊕∆v (1)⊕∆v (1),

whereas
Tq = ∆q(1)⊗∆q(1)⊗∆q(1) ∼= Tq(3)⊕ Tq(1).

In particular, dim(EndUv (sl2)(Tv )) = dim(EndUq(sl2)(Tq)) = 12 + 22 = 5.

Note that EndUq(sl2)(∆q(1)⊗d) is the Temperley-Lieb algebra T Ld(δ) introduced
by Rumer-Teller-Weyl (1932).
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Cellular algebras

Definition(Graham-Lehrer 1996)

A K-algebra A is cellular if it has a basis

{cλij | λ ∈ P, i , j ∈ I},

where (P,≤) is a finite poset and Iλ is a finite set, such that

1 The map i : A→ A, cλij 7→ cλji is an anti-isomorphism.

2 We have (for friends of higher order)

acλij =
∑
k∈Iλ

rik(a)cλkj + friends.

Note that the scalars rik(a) do not depend on j . Thus, we think of the basis
elements as having “independent bottom and top parts”.
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Prototype of a cellular basis

Example(Specht 1935, Murphy 1995)

P = Young diagrams λ, Iλ = standard tableaux i , j .

cλij =

· · ·

· · ·

· · ·

· · ·
P(j)

e(λ)

P∗(i)

idempotent

permutation

permutation

Form Sλ = {cλj } with formal cλj and action given by the rik(a). The set

{Dλ = Sλ/Rad(Sλ) | λ ∈ P0}

forms a complete set of pairwise non-isomorphic, simple K[Sd ]-modules.

Theorem(Graham-Lehrer 1996)

This works in general for cellular algebras.
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And for EndUq
(T )?

Let M have a ∆q- and N have ∇q-filtration. Consider Iλ = {1, . . . , (N : ∇q(λ))}
and J λ = {1, . . . , (M : ∆q(λ))}. By Ext-vanishing, we have diagrams

M
f
λ
j
//

f λj ""

Tq(λ)

πλ

����

∇q(λ)

and

∆q(λ)� _

ιλ

��

gλ
i

!!
Tq(λ)

gλ
i

// N

Take any bases Fλ = {f λj : M → ∇q(λ) | j ∈ J λ} of HomUq (M,∇q(λ)) and

Gλ = {gλi : ∆q(λ)→ N | i ∈ Iλ} of HomUq (∆q(λ),N). Set

cλij = gλi ◦ f
λ

j ∈ HomUq (M,N)

for each λ ∈ X+ and all i ∈ Iλ, j ∈ J λ.
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EndUq
(T ) is prototypical cellular

Cell datum:

(P,≤) = ({λ ∈ X+ | (T : ∇q(λ)) = (T : ∆q(λ)) 6= 0},≤X ).

Iλ = {1, . . . , (T : ∇q(λ))} = {1, . . . , (T : ∆q(λ))} = J λ for each λ ∈ P.

K-linear anti-involution i : EndUq (T )→ EndUq (T ), φ 7→ D(φ).

Note that D(∆q(λ)) ∼= ∇q(λ) and D(∇q(λ)) ∼= ∆q(λ).

Cellular basis {cλij | λ ∈ P, i , j ∈ Iλ}.

Theorem

This gives a cellular datum on EndUq (T ) for any Uq-tilting module T .

cλij =

· · ·

· · ·

· · ·

· · ·
∆q (λ)

Tq (λ)

∇q (λ)

indecomposable

filtration part

filtration part
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Exempli gratia (generic Temperley-Lieb)

Take K = C and T = ∆v (1)⊗3 ∼= ∆v (3)⊕∆l
v (1)⊕∆r

v (1). Then P = {1, 3}.

We have I1 = {1, 2} and I3 = {1}. Thus, we have a basis

c1
11 =

· · ·

· · ·

· · ·

· · ·
∆v (1)

Tv (1)

∇v (1)

∆l
v (1)

∆l
v (1)

c1
12 =

· · ·

· · ·

· · ·

· · ·
∆v (1)

Tv (1)

∇v (1)

∆r
v (1)

∆l
v (1)

c1
21 =

· · ·

· · ·

· · ·

· · ·
∆v (1)

Tv (1)

∇v (1)

∆l
v (1)

∆r
v (1)

c1
22 =

· · ·

· · ·

· · ·

· · ·
∆v (1)

Tv (1)

∇v (1)

∆r
v (1)

∆r
v (1)

c3
11 =

· · ·

· · ·

· · ·

· · ·
∆v (3)

Tv (3)

∇v (3)

∆v (3)

∆v (3)
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Exempli gratia (roots of unity Temperley-Lieb)

Take T = ∆q(1)⊗3 ∼= Tq(3)⊕ Tq(1). Then P = {1, 3}.

We have I1 = {1, 2} and I3 = {1}. Consider 1 ∈ I1 as indexing the factor ∆q(1)
of Tq(1) and 2 ∈ I1 the factor ∆q(1) of Tq(3). Thus, we have a basis

c1
11 =

· · ·

· · ·

· · ·

· · ·
∆q (1)

Tq (1)

∇q (1)

Tq (1)

Tq (1)

c1
12 =

· · ·

· · ·

· · ·

· · ·
∆q (1)

Tq (1)

∇q (1)

Tq (3)

Tq (1)

c1
21 =

· · ·

· · ·

· · ·

· · ·
∆q (1)

Tq (1)

∇q (1)

Tq (1)

Tq (3)

c1
22 =

· · ·

· · ·

· · ·

· · ·
∆q (1)

Tq (1)

∇q (1)

Tq (3)

Tq (3)

c3
11 =

· · ·

· · ·

· · ·

· · ·
∆q (3)

Tq (3)

∇q (3)

Tq (3)

Tq (3)
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Cellular pairing and simple EndUq
(T )-modules

Let T be a Uq-tilting module. For λ ∈ P define ϑλ via

i(h) ◦ g = ϑλ(g , h)cλ, g , h ∈ C (λ) = HomUq (∆q(λ),T ).

Define P0 = {λ ∈ P | ϑλ 6= 0} and Rad(λ) = {g ∈ C (λ) | ϑλ(g ,C (λ)) = 0}.

Theorem(Graham-Lehrer – reinterpreted)

The set
{L(λ) = C (λ)/Rad(λ) | λ ∈ P0}

is a complete set of pairwise non-isomorphic, simple EndUq (T )-modules.

λ ∈ P0 iff Tq(λ) is a summand of T . Moreover,

dim(L(λ)) = mλ, T ∼=
⊕
λ∈X+

Tq(λ)⊕mλ .
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Exempli gratia (Temperley-Lieb again)

Because Tv
∼= ∆v (3)⊕∆v (1)⊕∆v (1) and Tq

∼= Tq(3)⊕ Tq(1) we see that
P0 = {1, 3} in both cases.

In the generic case:

C (3) = L(3) = {g3
1 : ∆v (3)→ Tv} , C (1) = L(1) = {g1

j : ∆v (1)→ Tv | j = 1, 2},
dim(L(3)) = 1 and dim(L(1)) = 2.

In the non-semisimple case:

C (3) = L(3) = {g3
1 : ∆q(3)→ Tq}, C (1) = {g1

j : ∆q(1)→ Tq | j = 1, 2},
dim(L(3)) = 1 and dim(L(1)) = 1.
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An alternative semisimplicity criterion

Theorem(Graham-Lehrer 1996)

Let A be a cellular algebra with cell modules C (λ) and simple modules L(λ).

A is semisimple⇔ C (λ) = L(λ) for all λ ∈ P0.

We can prove an alternative statement in our framework.

Theorem

The algebra EndUq (T ) is semisimple iff T is a semisimple Uq-module.

Corollary

The algebra EndUq (T ) is semisimple iff T has only simple Weyl factors. Check
this e.g. via Jantzen’s sum formula.
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Exempli gratia (Temperley-Lieb yet again)

Because Tv
∼= ∆v (3)⊕∆v (1)⊕∆v (1), and ∆v (3) and ∆v (1) are simple Weyl

factors, we see that EndUv (sl2)(Tv ) is semisimple.

Tq has a Weyl factor of the form ∆q(3). This is a non-simple Weyl factor and
thus, EndUq(sl2)(Tq) is non-semisimple.

Similarly: T Ld(δ) ∼= EndUq(sl2)(∆q(1)⊗d) with δ 6= 0 is semisimple iff q is not a

root of unity in K or d < ord(q2).

Maschke – reinterpreted

Similar as for g = sl2: take g = sln for n ≥ d and it follows that
K[Sd ] ∼= EndU1(sln)(∆1(ω1)⊗d) is semisimple iff char(K) does not divide d!.
Mutatis mutandis in case of the Iwahori-Hecke algebra.
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A unified approach to cellularity - part 1

Note that our approach generalizes, for example to the infinite dimensional world
(e.g. parabolic category Op): the following list is just the tip of the iceberg.

The following algebras fit in our set-up as well:

The Iwahori-Hecke algebra of type A, by Schur-Weyl duality:

ΦqSW : Hd(q) � EndUq (T ) and ΦqSW : Hd(q)
∼=−→ EndUq (T ), if n ≥ d .

This includes K[Sd ] for char(K) = p > 0.

sl2-related algebras like Temperley-Lieb T Ld(δ).

Spider algebras EndUq(sln)(∆q(ωi1 )⊗ · · · ⊗∆q(ωid )).
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A unified approach to cellularity - part 2

Take g = glm1
⊕ · · · ⊕ glmr

with m1 + · · ·+ mr = m and let V be the vector
representation of U1(glm) restricted to U1 = U1(g). Use T = V⊗d and

Φcl : C[Z/rZoSd ] � EndU1 (T ) and Φcl : C[Z/rZoSd ]
∼=−→ EndU1 (T ), if m ≥ d .

This gives the cyclotomic analogon of the first point above.

Let Uq = Uq(g). We get in the quantized case

Φqcl : Hd,r (q) � EndUq (T ) and Φqcl : Hd,r (q)
∼=−→ EndUq (T ), if m ≥ d ,

where Hd,r (q) is the Ariki-Koike algebra.

Special cases are Iwahori-Hecke algebras of type B.
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A unified approach to cellularity - part 3

Let T = ∆q(ω1)⊗d . Let g = o2n, g = o2n+1 or g = sp2n (depending on δ).

ΦBr : Bd(δ) � EndU1 (T ) and ΦBr : Bd(δ)
∼=−→ EndU1 (T ), if 2n ≥ d ,

where Bd(δ) is the Brauer algebra in d strands.

Let U1 = U1(gln) and T = ∆1(ω1)⊗r ⊗ (∆1(ω1)⊗s)∗:

ΦwBr : Bnr ,s(δ) � EndU1 (T ) and ΦwBr : Bnr ,s(δ)
∼=−→ EndU1 (T ), if n ≥ r + s,

where Bnr ,s(δ) the so-called walled Brauer algebra.

Quantizing the (walled) Brauer case: the algebra EndUq (T ) is a quotient of
the Birman-Murakami-Wenzl algebra BMWd(δ) and taking n ≥ 2d recovers
BMWd(δ). Similar for the quantized walled Brauer algebra.

Way more: quotients of these, “infinite dimensional analogons of Schur-Weyl
dualities” give cyclotomic KL-R algebras etc.
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There is still much to do...
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Thanks for your attention!
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