Cellular structures using Ug-tilting modules

Or: centralizer algebras are fun!
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The main theorem

Let T be a U, = Ugy(g)-tilting module. Then Endy,(T) is a cellular algebra.

Thus, properties of Endy,(T) follow via roots and weight system combinatorics.

| have to explain the words in red. But let us start with an example.

Example(Schur 1901)

Let Sy be the symmetric group in d letters and let Aj(w;) be the vector
representation of U; = Uy (gl,). Take T = A;(w;)®9, then

o

q)swl K[Sd] - EndUI(T) and (Dsw: K[Sd] — Endul(T), if n Z d.

Since T is a Us-tilting module, K[S4] is cellular.
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© U,-tilting modules
@ U, and its representation theory
@ The category of Ug-tilting modules

@ Cellularity of Endy,(T)
@ Cellular algebras
@ Cellularity and Ug-tilting modules

© The representation theory of Endy, (T)
o Consequences of cellularity - Ug-tilting view
@ Examples that fit into the picture
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Why quantum groups and tilting modules?

Interesting tensor categories.

Applications in topology: link invariants, 3-manifold invariants and modular
categories (Witten, Reshetikhin-Turaev, ...).

Connections with affine Kac-Moody algebras (Kazhdan-Lusztig, ...).

Connections with the (modular) representation theory of the symmetric group
and of Ariki-Koike algebras (Lascoux-Leclerc-Thibon, ...).

Nice combinatorics a la Kazhdan-Lusztig (Soergel, ...).
Fusion (Andersen-Stroppel, Kazhdan-Lusztig, ...).
Quantum cohomology (Witten, Korff-Stroppel, ...).
More...
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Quantum enveloping algebras — general g works similar

Recall that sl is generated by

S I G R ]

The Q-algebra Uy (sl,) consists of words in the symbols E, F, H modulo (plus
other relations)
EF — FE = H.

Its quantum cousin, the Q(v)-algebra U, (sl), consists of words in the symbols
E,F,K*! modulo (plus other relations)

K—-K1

EF — FE = -
vV —-Vv—

ROUgh|yZ K= VH and Iim\,_>1 Uv(ﬁ[z) = U1(§[2).
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Quantized counting

The quantum integers and the quantum factorials are:

vi—v?
[a] = VR LS B T (),

1
[b]! = [1] - [b— 1][b] € Q(v).

For “v =1" the quantum numbers are [a] = a. Thus, in most cases, except some
“exceptional” cases, [a] is a quantized version of a.

The “exceptional” cases are the ones where “v = g € K — {0}" is a root of unity
with g2 of order ¢: [a] = 0 € K iff g is a root of unity with g> of order /.

Thus, B] =v2+1+ v 2=0iff “v=g € K- {0}"is a third root of unity.
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Quantum groups at roots of unity

Fix an arbitrary element g € K — {0} and set A = Z[v, v !]. Define
Uq = Uq(g) = Uy o4 K.

Here U4 = U4(g) is Lusztig's A-form: the A-subalgebra of U, = U, (g)

generated by Kil E(J) Dl]_EJ and F,(J) = Ll]jIFJ fori=1,...,n—1andjeN.

Example

In the s, case, the Q(v)-algebra U, (sl,) is generated by K, K~! and E, F subject
to some relations.

Let g be a complex, primitive third root of unity. Ug(sly) is generated by
K,K=Y E,F,E®) and FO® subject to some relations. Here E(3), F(3) are extra
generators, since E3 = [3]!E(®) = 0 because of [3] = 0.
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Atoms of representation categories

What are the “atoms” of the category A-Mod (e.g. finite-dimensional A-module)?
And how to construct or at least parametrize these “atoms”?

“Objects without substructure?” (aka, simple) or “Objects without finer
decomposition?” (aka, indecomposable).

A representation category A-Mod is semisimple iff all objects are sums of simples.
For these categories the questions are usually “easy” to answer.

Beware: dividing into semisimple representation categories and non-semisimple
representation categories is like dividing the world into bananas and non-bananas.

Example(Maschke 1899, Frobenius 1900, Young 1901)

K[S4]-Mody, is semisimple iff char(K) does not divide d!. In this case the simple
K[S4]-modules are parametrized by partitions aka Young diagrams.
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Weyl modules as atoms

For each dominant U,-weight A\ € X there is a simple U,-module A,()) called
Weyl module. Fact: the set {A,(\) | A € XT} is a complete set of pairwise
non-isomorphic, simple U,-modules (of type 1).

Example
For sl we have X* = Z>q. The Weyl module A,(3) is
v—3 vl ! V3
(2 m CJ) @ C) m ()
my

ms3 ¢ my ¢ mo,
[3] [2] [1]

where E "acts to the right”, F “acts to the left” and K “acts as a loop”.

The category U,-Modg, is semisimple.
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Weyl modules as atoms?

Fact: the A4(\)'s are no longer (semi-)simple in general. But they have unique
simple heads Lq()). Fact: the set {L,(\) | A € Xt} is a complete set of pairwise
non-isomorphic, simple Ug-modules (of type 1).

Example

Let g = sl, and g be a complex, primitive third root of unity. Ag(3) is

=8 —1 +1 +3

() a () & (j’nz o ()

The C-span of {my, my} is now stable under the action of Ug(sly): this is Lg(1).
The simple head is L4(3) = Aq(3)/L4(1) and is spanned by {mg, m3}.

The category Ug-Modg is not semisimple in general.
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U,-tilting modules as atoms?

Let Ag(N) be a Weyl module and V() its dual.
A Ug-tilting module T is a Ug-module with a Ag-filtration and a V g-filtration:

T=MyDM; D---DMgD---DM_1DM; =0,
OIN()CNlC"‘CNk/C"'CNk_1CNk:T,

such that My /Mys41 is some Ag(A) and Nyryq1/ Ny is some Vg (N).

All U,-modules are U,-tilting modules.

For our favorite example ¢> =1 € C and g = sly: A4(i) is a Ug-tilting module iff
i=0,10ri=—1mod 3.
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U,-tilting modules as atoms.

The category of Ug-tilting modules 7 has some nice properties:
@ 7T is closed under finite direct sums and tensor products.

@ The indecomposables T4(\) of T are parametrized by A € X*. They have A
as their maximal weight and contain Ag(A) with multiplicity 1. We have

The vector representation A,4(1) is a Uy(slh)-tilting module. Thus, T = A,(1)®9
is. Then T,(d) is the indecomposable summand of T containing Ag(d).

Ag(N) is a Ug-tilting module for minuscule A. Thus, tensor products of these are. \
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The Ext-vanishing

We have for all A, x € X that

Kc*, ifi=0and A= p,

0, else,

Exty, (8q(A), Va()) = {

where c*: Ag(\) = V4()) is the Ug-homomorphisms that sends head to socle.

Assume that M has a Ag-filtration and N has a V g-filtration.
e We have dim(Homy, (M, V4()))) = (M : Ag(N)).
e We have dim(Homy,(Aq(X), N)) = (N : V4(X)).
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U,-tilting modules as atoms!

TeT iff Exty (T,Ve(A)=0=Exty (Aq(A), T) forall Xe X+,
In particular, if M has a Ag- and N has a Vg-filtration:

A)

ZA
f;

Aq(
M—— T4(A\) — N
(

\ g
A
T

A

fi l

Vq(N)

In words: any Ug-homomorphism g: Ag(A) — N extends to an
U,-homomorphism g: T,(\) — N whereas any U,-homomorphism
f: M — Vg() factors through T4(X) via £: M — T4(A).
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Exempli gratia

Consequence of the discussion before:

dim(Endy,(T)) = Y (T:A4\)> = > (T : V4>

AEXT rex+

Take T = Ag(N)®9. If A € X* is minuscule as a Ug-weight, then A,4()) is always
U,-tilting and dim(Endy,( 7)) is independent of K and g, since A4()) has a
character independent of K and of q.

Example (Schur 1901, de Concini-Procesi 1976)

By Schur-Weyl, we see that

o

d)Swi K[Sd] —» Endul(T) and ¢SW: K[Sd] — EndUI(T), if n > d.

Thus, dim(K[S4]) independent of K and gq.

Daniel Tubbenhauer The category of Ug-tilting modules July 2015 15 / 30



Exempli gratia (Temperley-Lieb without diagrams)

Let us consider our favorite case again. From the construction of T,(3):
Ag(3)— Tq(3) —» Aq(1).
We compute:
T,.=A,1)A,(1)2A,(1)2A,3)eA,(1)dA(1),
whereas
Tq = Aq(l) ® Aq(]-) ® Aq(l) = Tq(3) @ Tq(1)~
In particular, dim(Endy,(s,)( 7)) = dim(Endy,(s1,)(Tq)) = 12 +22 = 5.

Note that Endy,(s1,)(A4(1)®?) is the Temperley-Lieb algebra 7Ly4(8) introduced
by Rumer-Teller-Weyl (1932).
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Cellular algebras

Definition(Graham-Lehrer 1996)
A K-algebra A is cellular if it has a basis

{c} |XeP, ijeT}

where (P, <) is a finite poset and Z* is a finite set, such that
Q The mapi: A— A, cj — ¢ is an anti-isomorphism.

@ We have (for friends of higher order)
ac} = Y ri(a)cy; + friends.
keT>

Note that the scalars ri(a) do not depend on j. Thus, we think of the basis
elements as having “independent bottom and top parts”.
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Prototype of a cellular basis

Example(Specht 1935, Murphy 1995)

P = Young diagrams \, Z* = standard tableaux i, j.

permutation

C,-? = idempotent
I N
permutation

Form S$* = {¢*} with formal ¢;* and action given by the ri(a). The set

{D* = S*/Rad(S*) | X € Po}

forms a complete set of pairwise non-isomorphic, simple K[Sy]-modules.

Theorem(Graham-Lehrer 1996)

This works in general for cellular algebras.
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And for Endy (T)?

Let M have a Aq and N have Vfiltration. Consider T* = {1,..., (N : V4()\))}
and J* = {1,...,(M: A4()\))}. By Ext-vanishing, we have diagrams

M —— Tq(}) Aq(N)
N d N gi/\
GA T an L
Va(N) Tg(A) —— N
&

Take any bases F* = {f*: M = V() | j € J*} of Homy, (M, V4())) and
G* ={g’: Ag(A) = N | i€ I} of Homy, (Aq(N), N). Set

c,-j-‘ = g,.* o?j\ € Homy, (M, N)

foreach A€ Xt and all i € T*,j € .
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Endy,(T) is prototypical cellular

Cell datum:
o (P,<) =({AeXT (T :Vq(N) = (T : Ag(N)) # 0}, <x).
0o M ={1,... (T :V,A\)}={1,...,(T : Ay(N)} = J* for each \ € P.
o K-linear anti-involution i: Endy,(7T) — Endy,(T), ¢ — D(¢).
@ Note that D(A4(A)) = V4(A) and D(V4(A)) = Ag(N).
o Cellular basis {c; | A € P, i,j € T*}.

This gives a cellular datum on Endy,(T) for any Ug-tilting module T.

filtration part

indecomposable

filtration part
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Exempli gratia (generic Temperley-Lieb)

Take K=Cand T=A,(1)®=A,(3)® AL(1) ® A(1). Then P = {1,3}.

We have 7' = {1,2} and Z3 = {1}. Thus, we have a basis

al)
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Exempli gratia (roots of unity Temperley-Lieb)

Take T = Ay(1)®3 = T (3) @ T,(1). Then P = {1,3}.

We have Z' = {1,2} and Z*® = {1}. Consider 1 € Z' as indexing the factor A,4(1)
of T4(1) and 2 € T the factor Ay(1) of T,4(3). Thus, we have a basis

Daniel Tubbenhauer Cellularity and Ug-tilting modules July 2015



Cellular pairing and simple Endy,( T)-modules

Let T be a U,-tilting module. For A € P define ¥ via
i(h)og =v(g,h)c*, g, he C(\)=Homy,(Aq(N), T).

Define Py = {\ € P | 9* # 0} and Rad(\) = {g € C(\) | 9*(g, C(\)) = 0}.

Theorem(Graham-Lehrer — reinterpreted)

The set
{L(A) = C(A)/Rad(}) | A € Po}

is a complete set of pairwise non-isomorphic, simple Endy, (T )-modules.

A € Py iff T4(X) is a summand of T. Moreover,

dim(L(\) =my, T= P T,(N)o™.
AeXt
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Exempli gratia (Temperley-Lieb again)

Because T, Z A,(3) & A (1) ® A (1) and T4 = T4(3) & T4(1) we see that
Po = {1,3} in both cases.

In the generic case:

CB)=LB)={g: AEB) = T}, C(1)=L(1) ={g: A1) = T, |j = 1.2},
dim(L(3)) =1 and dim(L(1)) =2.

In the non-semisimple case:

CR) =LE)={e: 8q(3) = Tq},  C(1)={g/: Dq(1) > Tq|j=12},
dim(L(3)) =1 and dim(L(1))=1.
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An alternative semisimplicity criterion

Theorem(Graham-Lehrer 1996)

Let A be a cellular algebra with cell modules C(A) and simple modules L()).

Ais semisimple < C(A) = L(X) for all A € Py.

We can prove an alternative statement in our framework.

The algebra Enduq(T) is semisimple iff T is a semisimple U,-module.

The algebra Endy,(T) is semisimple iff T has only simple Weyl factors. Check
this e.g. via Jantzen's sum formula.
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Exempli gratia (Temperley-Lieb yet again)

Because T, 2 A,(3) ® A, (1) ® A,(1), and A,(3) and A, (1) are simple Weyl
factors, we see that Endy, (s1,)( T,) is semisimple.

T4 has a Weyl factor of the form A4(3). This is a non-simple Weyl factor and
thus, Endy,(s,)( T¢) is non-semisimple.

Similarly: TL4(6) = Endy,(s1,)(Aq(1)®?) with § # 0 is semisimple iff g is not a
root of unity in K or d < ord(q?).

Maschke — reinterpreted

Similar as for g = sl,: take g = sl,, for n > d and it follows that
K[Sq4] = Endy, (s1,) (A1(w1)®?) is semisimple iff char(K) does not divide d!.
Mutatis mutandis in case of the Iwahori-Hecke algebra.
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A unified approach to cellularity - part 1

Note that our approach generalizes, for example to the infinite dimensional world
(e.g. parabolic category OP): the following list is just the tip of the iceberg.

The following algebras fit in our set-up as well:
@ The Iwahori-Hecke algebra of type A, by Schur-Weyl duality:
®gsw: Ha(q) - Endy,(T) and  ®gsw: Ha(q) — Endy,(T), if n> d.

This includes K[S4] for char(K) = p > 0.
@ sly-related algebras like Temperley-Lieb T L4(4).
o Spider algebras Endy,(s,)(Aq(wi) ® -+ @ Ag(wi,))-
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A unified approach to cellularity - part 2

o Takeg=gl, ®---®gl, withmy+---+ m, = mandlet V be the vector
representation of Uy (gl,,) restricted to U; = Uy(g). Use T = V®9 and

®¢: C[Z/rZaS4] — Endy,(T) and b : C[Z/rZiS4] = Endy,(T), if m > d.

This gives the cyclotomic analogon of the first point above.

o Let Uy = Uy(g). We get in the quantized case

®ger: Ha,(q) - Endy,(T) and ®gq: Ha,(q) — Endy, (T), if m>d,

where Hq ,(q) is the Ariki-Koike algebra.

@ Special cases are lwahori-Hecke algebras of type B.
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A unified approach to cellularity - part 3

o Let T = Ay(w1)®. Let g = 025, g = 02441 OF g = 5Py, (depending on §).
®p,: By(8) - Endy,(T) and ®p,: Bg(6) — Endy,(T), if 2n > d,
where Bg4(0) is the Brauer algebra in d strands.
o Let Uy = Uy(gl,) and T = Ay(w1)® @ (A1(w1)®)*:

Gype: B (6) —~ Endy,(T) and ®yp,: B,(5) =+ Endy,(T), if n>r+s,

where B] ;(0) the so-called walled Brauer algebra.

® Quantizing the (walled) Brauer case: the algebra Endy,(T) is a quotient of
the Birman-Murakami-Wenz| algebra BMWy(6) and taking n > 2d recovers
BMW4(6). Similar for the quantized walled Brauer algebra.

@ Way more: quotients of these, “infinite dimensional analogons of Schur-Weyl
dualities” give cyclotomic KL-R algebras etc.
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There is still much to do...
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Thanks for your attention!
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