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Pioneers of representation theory

Let G be a finite group G.

Frobenius ~1895+, Burnside ~1900++. Representation theory is the
study of linear group actions:

M: G — End(V), M(g)=a "matrix’ in End(V),

with V being some C-vector space. We call V a module or a representation.

The “"atoms” of such an action are called simple.
Maschke ~1899. All modules are built out of atoms (“Jordan-Holder").

We want to have a categorical version of this!
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Pioneers of representation theory

Let A be a finite-dimensional algebra.

Noether ~1928-. Representation theory is the (useful) study of algebra actions
actions:
M: A— End(V), M(a)=2a “matrix’ in End(V),

with V being some C-vector space. We call V a module or a representation.

The "atoms” of such an action are called simple.
Noether, Schreier ~1928. All modules are built out of atoms (“Jordan-Hdélder”).

We want to have a categorical version of this!
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Categorification: A picture to keep in mind

forms r

relate relate ~
2-category <~ categorles Ko functors <
“categorifies” “categorify” categ‘crlfy
reT T T T T T T T T Trelate T T T T T T T T T
1-category VU | vector spaces < linear maps
“categorifies” “categorify”

An algebra A can be viewed as an one-object category C

functor from C into the one-object category End(V), i.e. M: C — End(V).
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An algebra A can be viewed as an one-object category C, and a representation as a
functor from C into the one-object category End(V), i.e. M: C — End(V).

Daniel Tubbenhauer

Categorical representation theory

February 2017



“Lifting” representation theory

Let € be a 2-category, Ql]’li be the 2-category of categories and M
be a 2-functor M: ¢ — . Then M is a 2-representation, and
2-representations decategorify to representations:

2-morphisms a— M(a)
nat. trafo
1-morphisms Fe=M(F) [F] — [M(F)]
functor —®> linear map
objects i M(i) ™ [i] = [M(4)]
category vector space

A lot of statements from classical representation theory “lift", e.g.:

Mazorchuk-Miemietz ~2014. Notion of “2-atoms” (called simple transitive). All
2-representations are built out of 2-atoms ( “2-Jordan-Hdlder"). These are
“determined” on the level of the Grothendieck group []g.
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“Lifting” representation theory

Let € be a 2-category, 2! be the 2-category of @EEID categories and M
be a 2-functor M: ¢ — . Then M is a 2-representation, and
2-representations decategorify to representations:

2-morphisms a— M(a)
nat. trafo
1-morphisms Fe=M(F) [F] — [M(F)]
functor —e’) linear map
objects i M(1) ™ [i] = [M(1)]
category vector space

2-atoms of the symmetric group decategorify to atoms.

Beware: This is wrong in general.

A lot of statements from classical representation theory “lift", e.g.:

Mazorchuk-Miemietz ~2014. Notion of “2-atoms” (called simple transitive). All
2-representations are built out of 2-atoms (“2-Jordan-Holder”). These are
“determined” on the level of the Grothendieck group [-]o-
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2-representation theory — the “How"

Basic philosophy: Stay as long in the Grothendieck group as possible!

list of candidates
reduce the list

construct the remaining ones
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2-representation theory — the “How"

Basic philosophy: Stay as long in the Grothendieck group as possible!

list of candidates « <~ relations among the [M(F)]
reduce the list <~ S assumptions for 4 and M

- ?
construct the remaining ones no general procedure

Example(construction). We have the i-th principal 2-representation €(i, ).

> This "lifts" the regular representation of algebras.

> Sadly: These are usually not 2-atoms.
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The state of the arts

> Chuang-Rouquier ~2004, Khovanov-Lauda ~2008. Systematic study of
2-representations of Lie algebras.

> Chuang-Rouquier ~2004, Khovanov-Lauda ~2008. All (simple)
representations have categorifications.

> Rouquier ~2008, Losev-Webster ~2013. These are “unique”.

> Plenty of applications and generalizations are known. It is hard to
overestimate the influence of Chuang-Rouquier’'s and Khovanov-Lauda's work.

> Mazorchuk-Miemietz ~2014. All of these are 2-atoms, and there are no
other 2-atoms. (Both morally.)
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Mazorchuk-Miemietz ~2010. Systematic study of 2-representations of
finite Coxeter groups.
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finite Coxeter groups.

> Mazorchuk-Miemietz & coauthors ~2010++. Not all representations
have categorifications.
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> Applications. Connections to quantum groups at roots of unity, to
fusion /ribbon/modular categories and to subfactors, and hopefully more.
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The state of the arts

> Mazorchuk-Miemietz ~2010. Systematic study of 2-representations of
finite Coxeter groups.

> Mazorchuk-Miemietz & coauthors ~2010++. Not all representations
have categorifications.

>> Mackaay & coauthors ~2016. “Uniqueness” fails in general.

> Applications. Connections to quantum groups at roots of unity, to
fusion /ribbon/modular categories and to subfactors, and hopefully more.

> Classification results are rare at the moment. But:

» Mazorchuk-Miemietz ~2014. There is a classification in Coxeter type

A. (And its quite “boring”.)

» | Kildetoft-Mackaay-Mazorchuk-Zimmermann & coauthors ~2016.

There is a classification in dihedral Coxeter type.

This is what | am going to explain today.
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The main example today: dihedral groups

The dihedral groups are of L(n):

2 _ .2
W, = (s,t|s*=1t"=1,s,=_...5ts = wg =_..t5t = ty),
n n

eg: Wy = (s t|s> =12 =1,tsts = wg = stst)

Example. These are the symmetry groups of regular n-gons, e.g. for n = 4; the
Coxeter complex is:
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Kazhdan-Lusztig combinatorics of dihedral groups

Consider W,, = C[W,] for n € Z~, U {oo} and define
95:S+17 9t=t+1

(This remind you of the Kazhdan-Lusztig basis.)

These elements generate W, and their relations are fully understood:

0,0, =2-6., 0.0, =2-0,, a relation for ...sts = wqg =...tst.
n n

D> Any categorical action will assign to these endofunctors 6., 8.
> The relations of ; = [0;] and 6, = [6,] have to be satisfied in []g.
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Kazhdan-Lusztig combinatorics of dihedral groups

Consider W,, = C[W,] for n € Z~, U {oo} and define
95:S+1, Qtzt—i—l.

(This remind you of the Kazhdan-Lusztig basis.)

These elements generate W,, and their relations are fully understood:

0,0, =2-6., 0.0, =2-0,, a relation for ...sts = wg = ... tst.
N—— SN——
Working with the group is possible, n

but requires complexes and does not
directly fit into the our setup.

> Any categorical a s0.,0..

> The relations of ; = [0;] and 6, = [6,] have to be satisfied in []g.
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The principal graph - a preparatory example

Construct a W,-module V associated to a bipartite graph G:

V= <l7 27 éa 1? §>C

20100 00000
02111 000600
0 = 060000 |, 0, = 11200
00000 01020
00000 01002
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action Q
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The principal graph - a preparatory example

Construct a W,-module V associated to a bipartite graph G:
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The principal graph - a preparatory example

Construct a W,-module V associated to a bipartite graph G:

V= <l7 27 éa 1, §>C

action

0. ——
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The principal graph - a preparatory example

Construct a W,-module V associated to a bipartite graph G:

V= <l7 27 éa 1? §>C
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The principal graph - a preparatory example

Construct a W,-module V associated to a bipartite graph G:

V= <l7 27 éa 1? §>C

action

th\ﬁ

C:\ow- -

i3 33
20100 00000
02111 00000

0 = 060000 |, 0, = 11200
00000 01020
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The first steps towards i} and

Assume one has a category V and a “categorical action m: W, — &nd(V)".

Mazorchuk-Miemietz ~2014, Zimmermann ~2015: If m corresponds to a
2-atom, then there are two disjoint cases:

> If 8,,, does not act as zero, then m is trivial.

>> Otherwise, there is an ordering of indecomposable objects in V such that

2 0 0 0| o
0 .0 |A 2 0 0
BI=1 0 o 2 o Bd= g o
0 |0 0 0 2

(A similar statement is actually true in way bigger generality.)

The graph Gp, for ( 2r 6‘) € Mat..(Z>o) is called the principal graph of m.

Daniel Tubbenhauer Cooking-up candidate lists
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“Killing" and

By doing calculations in the Grothendieck group (checking the relations for the
matrices corresponding to s and ;) one gets:

A category V and a simple transitive 2-representation m as before can only exist if
Gm is of ADE Dynkin type. Hereby, the Coxeter number h of Gy, is n — 2.

Thus, it is easy to write down the of all candidates.

It remains — the construction of the 2-representations.
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“Killing" [l and

By doing calculations in the Grothendieck group (checking the relations for the
matrices corresponding to 65 and 6;) one gets:

A category V and | Surprisingly: The condition of [6 ],[0 | for K. only exist if
Gm is of ADE Dyn the “braid relation” is hereby equivalent to Jay SR
" Gm having spectral radius < 4. " '

Thus, it is easy to write down the @ of all candidates.

It remains — the construction of the 2-representations.
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Honorable mentions

> There are so-called cell 2-representations C.

» Their definition involves only combinatorics of 1-morphisms —i.e. C. is
basically determined on the Grothendieck group.

» These work for any Coxeter group and categorify the cell representations
of Kazhdan-Lusztig.

D> Having a 2-representation M and a (coherent) symmetry ¢ of it, one can
construct a orbit 2-representation Om 4.
> Direct construction by guessing a quiver algebra for the principal graphs.
> Representations of the quiver algebra provides the categories M(1).

» In dihedral type these are “zig-zag algebras” (in the sense of
Huerfano-Khovanov ~2000) for the graphs in question.

Daniel Tubbenhauer Some general methods February 2017 13 /28
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(Co)algebras in 2-categories

The following result is inspired by work of Ostrik and several of his
coauthors on fusion categories and related notions ~2001-4+.

Up to some technicalities: For any transitive 2-representation M of a fiat 2-category
% one can find a (co)algebra in € whose (co)module 2-category is
equivalent to M.

> A (co)algebra A in € has some (co)multiplication 2-morphism p satisfying
suitably formulated associativity and unit axioms. Its (Co)modules are pairs
(M, @) with M € % and a: A o M = M being the (co)action.

> Checking if some 1-morphism has a (co)algebra structure is hard.

> However, a lot of (co)algebras are determined on the level of the Grothendieck
group, e.g. (pseudo) idempotents in [-]g give rise to (co)algebras.

> There is a related Morita(-Takeuchi) 2-theory for these (co)algebras.
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(Co)algebras in the dihedral case

[Algebra 1-morphism] | Diagram W, [Module] dimension
0 Ax n=k n—1
0.+ 0., , Dy n=2k—2 (n+2)
0. +0., Es n=12 6
05 + 05 + 0., = n=18 7
0.+ 0., +0.,+0., | Es n=30 8

Similar in “tomato”.

> The type A and D algebra 1-morphisms decategorify to (pseudo) idempotents

in the Grothendieck group. Hence, without further work, we see that these are
indeed algebra 1-morphisms.

D> This is not true for the one’s of type E.
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(Co)algebras in the dihedral case

[Algebra 1-morphism] | Diagram W, [Module] dimension
0 Ax n=k n—1
0. +0., Dy n=2k-2 (n+2)
0s + 05, Es n=12 6
05 + 05 + 0., = n=18 7
0. + 0., + 0., + 0o, n=30 8

Eg

> The type A and D al This completes again the classification do)
of simple transitive 2-representations. VRETNANIIEN

in the Grothendieck g

Up to colors:

indeed algebra 1-morphisms.

D> This is not true for the one’s of type E.

Daniel Tubbenhauer

2-representations via (co)algebras

idempotents
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Concluding remarks

v

all simple modules of the dihedral group are “categorifyable”.
Everything works graded as well.
The dihedral story is just the tip of the iceberg: We hope that the general
theory has impact beyond the case of Soergel calculus for finite Coxeter
groups, e.g. for “Soergel calculi associated to complex reflection groups
G(n,n,m)" a la Elias.
There are various connections:

» To the theory of subfactors, fusion categories etc. a la
Etingof-Gelaki-Nikshych-Ostrik, ...

» To quantum groups at roots of unity and their “subgroups” a la
Etingof-Khovanov, Ocneanu, Kirillov-Ostrik, ...

» To web calculi a la Kuperberg, Cautis-Kamnitzer-Morrison,...

More?
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There is still much to do...
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Thanks for your attention!
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It may then be asked why, in a book which professes to leave
all applications on one side, a iderable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that
could be most directly obtained by the consideration of grou

of linear transformations.

ERY considerable advances in the theory of groups of

finite order have been made since the appearance of the

first edition of this book. In particular the theory of groups

of linear substitutions has been the subject of numerous and

important _investigati by several writers; and the reason

given in the original preface for omitting any account of it no
longer holds good.

In fact it in now more true to say that for further advances

in the abstract theory one must look largely to the representa-

tion of a group as a group of linear substitutions. There is

Figure: Quotes from “Theory of Groups of Finite Order” by Burnside — top: first edition
(1897); bottom: second edition (1911).
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The philosophy: If you have a very restrictive notion of “higher" representation
theory, then your theory will be boring. If you have a very flexible notion, then your
theory will be uncontrollable.

The (2-)categories and 2-representations which we consider are:

finitary finiteness conditions
fiat 2-category “finitary + involution 4+ adjunction”
transitive 2-representation finitary + connectivity condition
simple 2-representation finitary + no 2-action stable 2-ideal
Examples. Soergel bimodules and categorified quantum groups.
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Figure: The Coxeter graphs of finite type.

Example. The type A family is given by the symmetric groups using the simple
transpositions as generators.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)
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https://en.wikipedia.org/wiki/Coxeter_group

Define the Kazhdan-Lusztig basis elements

6, = Z w', w,w’ € W,,

w!'<w

eg.: 0, =s+1, 0, =1t+1, Osis = sts+ts+st+s—+1t+1, etc

These are our players!
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Elias-Khovanov ~2009, Elias-Williamson ~2013. For any Coxeter group W

the Hecke 2-category v is given by diagrammtic generators and relations, e.g.:

Soergel ~1992, Elias-Khovanov ~2009, Elias-Williamson ~2013. .%}y
categorifies W and indecomposable 1-morphisms decategorify to the
Kazhdan-Lusztig basis.
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The type A family

n=3 n=4 n=25 n==6

*—o *—o—o—0

adian
<

The type D family

n=10 n=12

L
13

The type E exceptions

n=18 n =30

N

-}
i
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Dihedral case

Type A

Type D

Daniel Tubbenhauer

Cell v X X
Orbit v v ?
Quiver v~ v~ v~

cell =~ ® o ®
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Dihedral case

Type A

Type D

Daniel Tubbenhauer

Cell v X X
Orbit v v ?
Quiver v~ v~ v~

7.)21
symmetry @ ® @ ®
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Dihedral case Type A Type D Type E

Cell v X X
Orbit v v ?
Quiver v~ v~ v~

|' fix point
splits o —— 0
pir <
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Dihedral case Type A Type D Type E

Cell v X X
Orbit v v ?
Quiver v~ v~ v~

H two
Orb|t indecomposables
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Dihedral case Type A Type D Type E

Cell v X X
Orbit v v ?

Quiver In particular: v~
there are 2-representations

associated to the type
ADE principal graphs

. two
indecomposables

orbit

Daniel Tubbenhauer February 2017
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AOA s s s s AOA

AocAoA- s s s s sAoAoA
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>
>

A A s S S s A A
’“‘“djr A| |A Tﬁd"“

AoAoA- s s s s sAoAocA
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AoA = s
A s s A
K K
AoA = AoA
poid idop
AoAoA- s s s s sAoAoA
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B s t s t
s t s t
A olN s s t s t s s t s t
“algebra” “module” “algebra” “module”
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“module” “module”

s s t s t T T T T
1 1 1 1 s t s t
some diagram |
T T T T
AoM = s i s ‘ s s ‘ s "
“algebra” “module” “algebra” “module”
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=

“module”

«
@
b=

| intertwining diagram

o | | = T T
intertwining diagram |
T T T T
AoM = s : s : g s ¢ s i
“algebra” “module” “algebra” “module”
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Let n be even. Then the simple W,-modules are either

one-dimensional or two-dimensional (for k = 1,..., 252):

T P 1,-1,
Vo =g 0T TR
0s ~~2,0;0: ~ 2,0,

Most of these do not “categorify”.
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“Cell gives type A"

Beware:
Work
in progress!

“The case of Uq(s[3) for g8 = 1 which equals G(18, 18, 3)"

Daniel Tubbenhauer




“Z/3Z-symmetry"

Beware:
Work
in progress!

“The case of Uq(s[3) for g8 = 1 which equals G(18, 18, 3)"
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“Orbit gives type D"

A2

Work
in progress!

“The case of Uq(s[3) for g8 = 1 which equals G(18, 18, 3)"
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SUER)

Orbifold series

A{ A Az
CgA
=

A3 A3 A3l3 Ay

As3

Ag/3 ...

Conjugate orbifold series

o ﬁs f '5}: ﬁ:
Y 3

[A] [AJ A3 A5

;@'@\%

Al A
[3A3)[3A5] 3A% 3A%

Exceptionals

)

o
o

Ny B &

Es Es/3=(Es)° Eg (Ag)

Eg/3=(Eg)* (Ag3) Ezq

Figure: “Subgroups” of quantum SU(3).

(Picture from “The classification of subgroups of quantum SU(N)” by Ocneanu ~2000.)
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