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Let A(Γ) be the adjacency matrix of a finite, connected, loopless graph Γ. Let
Ue+1(X) be the Chebyshev polynomial .

Classification problem (CP). Classify all Γ such that Ue+1(A(Γ)) = 0.

for e = 2

for e = 4

Smith ∼1969. The graphs solutions to (CP) are precisely
ADE graphs for e + 2 being (at most) the Coxeter number.

Type Am: • • • · · · • • • for e = m − 1

Type Dm: • • · · · • •

•

•

for e = 2m − 4

Type E6:
• • • • •

•
for e = 10

Type E7:
• • • • • •

•
for e = 16

Type E8:
• • • • • • •

•
for e = 28
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1 A bit of motivation

2 Dihedral (2-)representation theory
Classical vs. N-representation theory
Dihedral N-representation theory
Categorified picture

3 Non-semisimple fusion rings
The asymptotic limit
The limit v→ 0 of the N-representations
Beyond
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g semisimple Lie algebra gives O ⊃ O0.
Bernštĕın–Gel’fand ∼1980. Projective functors P act on O0 and

O0 x P decat.−−−→ Z[W ] x Z[W ]

categorifies the regular representation of the associated Weyl group W .
Aside. Add grading and get Hecke algebra.

List of properties.

I P is additive, Krull–Schmidt, C-linear and monoidal, has finitely many
indecomposables, and Hom-spaces are finite-dimensional. An adjoint of a
projective functor is a projective functor. “Finitary/fiat acting 2-category”

I O ∼= A-pMod for A a finite-dimensional algebra. “Finitary 2-module”

Question. What kind of theory governs such actions? Our answer. Finitary
2-representation theory.

Goal. Classify the “simplest” such actions. “Simple transitive 2-modules or 2-simples”

Example/Theorem (Bernštĕın–Gel’fand ∼1980).

g = slm.

2-simples are in 1:1 correspondence with simples of W = Sm.
Beyond this case not much was known.

Soergel ∼1990++.

Soergel bimodules S are a combinatorial, graded model of P,
and work for any Coxeter group.

Classifying 2-simples of S is classifying 2-simples of P.

The main theorem tomorrow will imply a complete classification of 2-simples for P
for any semisimple g, except two cases in type E8.

Appearance of Soergel bimodules and there 2-representations in the wild.

O, Hecke algebra, Kazhdan–Lusztig theory, braid group actions,
link homologies, modular representation theory, 3-manifold invariants,

tensor and fusion categories etc.

Today: Dihedral 2-representation theory.

But keep in mind that we have a more general machinery
to study such questions. (More tomorrow.)
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The dihedral groups are of Coxeter type I2(e + 2):

We+2 = 〈s, t | s2 = t2 = 1, se+2 = . . . sts︸ ︷︷ ︸
e+2

= w0 = . . . tst︸ ︷︷ ︸
e+2

= te+2〉,

e.g.: W4 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2:

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.
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And the braid relation measures the angle between hyperplanes.
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Dihedral representation theory on one slide.

One-dimensional modules. Mλs,λt
, λs, λt ∈ C, bs 7→ λs, bt 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M0,0, M2,0, M0,2, M2,2 M0,0, M2,2

Two-dimensional modules. Mz , z ∈ C, bs 7→ ( 2 z
0 0 ), bt 7→ ( 0 0

z 2 ).

e ≡ 0 mod 2 e 6≡ 0 mod 2

Mz , z ∈ V±e −{0} Mz , z ∈ V±e

Ve = roots(Ue+1(X)) and V±e the Z/2Z-orbits under z 7→ −z .

The Bott–Samelson (BS) generators bs = s + 1, bt = t + 1.
There is also a Kazhdan–Lusztig (KL) basis cw . We will nail it down later.

Proposition (Lusztig?).

The list of one- and two-dimensional We+2-modules
is a complete, irredundant list of simple modules.

I learned this construction in 2017.
Example.

M0,0 is the sign representation and M2,2 is the trivial representation.

In case e is odd, Ue+1(X) has a constant term, so M2,0, M0,2 are not representations.

Example.

These representations are indexed by Z/2Z-orbits of the Chebyshev roots:
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An algebra A with a fixed basis BA is called a (multi) N-algebra if

xy ∈ NBA (x, y ∈ BA).

A A-module M with a fixed basis BM is called a N-module if

xm ∈ NBM (x ∈ BA,m ∈ BM).

These are N-equivalent if there is a N-valued change of basis matrix.

Example. N-algebras and N-modules arise naturally as the decategorification of
2-categories and 2-modules, and N-equivalence comes from 2-equivalence.

Example (group like).

Group algebras of finite groups with basis given by group elements are N-algebras.

The regular module is an N-module.

Example (group like).

Fusion rings are with basis given by classes of simples are N-algebras.

Key example: K0(Rep(G ,C)) (easy N-representation theory).

Key example: K0(Repss
q (Uq(g)) = Gq) (intricate N-representation theory).

Example (semigroup like).

Hecke algebras of (finite) Coxeter groups with
their KL basis are N-algebras.

Their N-representation theory is non-semisimple.
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Clifford, Munn, Ponizovskĭı, Green ∼1942++, Kazhdan–Lusztig ∼1979.
x ≤L y if y appears in zx with non-zero coefficient for z ∈ BA. x ∼L y if x ≤L y
and y ≤L x.
∼L partitions A into left cells L. Similarly for right R, two-sided cells LR or
N-modules.

A N-module M is transitive if all basis elements belong to the same ∼L

equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive N-module has a unique apex.

Hence, one can study them cell-wise.

Example. Transitive N-modules arise naturally as the decategorification of
2-simples.

Example (group like).

Group algebras with the group element basis have only one cell, G itself.

Transitive N-modules are C[G/H] for H ⊂ G subgroup/conjugacy. The apex is G .

Example (group like).

Fusion rings in general have only one cell
since each basis element [Vi ] has a dual [V ∗i ]
such that [Vi ][V

∗
i ] contains 1 as a summand.

Cell theory is useless for them!

Example (Lusztig ≤2003; semigroup like).

Hecke algebras for the dihedral group with KL basis have the following cells:

1

s ts sts tsts ststs

t st tst stst tstst

w0

We will see the transitive N-modules in a second.

Left cells. Right cells.

Two-sided cells.
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N-modules via graphs.

Construct a W∞-module M associated to a bipartite graph Γ:

M = C〈1, 2, 3, 4, 5〉

1 3 2 4 5

H F H

F

F

bs  Ms =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, bt  Mt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







The adjacency matrix A(Γ) of Γ is

A(Γ) =

0 0 1 0 0
0 0 1 1 1
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0







These are We+2-modules for some e
only if A(Γ) is killed by the Chebyshev polynomial Ue+1(X).

Morally speaking: These are constructed like the simples
but with integral matrices having the Chebyshev-roots as eigenvalues.

It is not hard to see that the Chebyshev–braid-like relation can not hold otherwise.

Hence, by Smith’s (CP) and Lusztig: We get a representation of We+2

if Γ is a ADE Dynkin diagram for e + 2 being the Coxeter number.

That these are N-modules follows from categorification.

‘Smaller solutions’ are never N-modules.

Classification.

Complete, irredundant list of transitive N-modules of We+2:

apex 1 cell s – t cell w0 cell

N-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

I learned this from Kildetoft–Mackaay–Mazorchuk–Zimmermann ∼2016.

Fun fact about associated simples: Click .
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H F H

F

F

graph D5

B The category to act on is Z(D5)-pMod.

B We have endofunctors Bs =
⊕
H Pi ⊗ iP ⊗ and Bt =

⊕
F Pj ⊗ jP ⊗ .

B Lemma. The relations of bs and bt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

The zigzag relations.

The composite of two arrows between different vertices is zero.

The composite of three arrows is zero.

All loops are equal.

Example.

There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.

Example.

Projective left module Pi = Z(D5)i .
Projective right module iP = iZ(D5).

Bi-projective bimodule Pi ⊗ iP.

The punchline.

The categorical action on Z(D5)-pMod decategorifies
to the N-valued action from before.

Example.

One checks that Bt(P2) ∼= P3 ⊕ P4 ⊕ P5.

Example.

One easily checks that Bs ◦ Bs
∼= Bs ⊕ Bs and Bt ◦ Bt

∼= Bt ⊕ Bt.
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.

Classification.

Complete, irredundant list of 2-simples of We+2:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Upshot of this approach.

Very explicit and one can get further consequences,
e.g. a characterization of Dynkin diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A) do not grow when e →∞.

Γ is an affine type ADE graph
if and only if

entries of Ue(A) grow linearly when e →∞.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A) grow exponentially when e →∞.

Problem with this approach.

Too explicit – no chance to work in general.

For the rest of today, I show you the
decategorification of something that does work in general.

Daniel Tubbenhauer 2-representations of Soergel bimodules—dihedral case September 2019 10 / 15



H F H

F

F

graph D5

1 3 2

4

5

path algebra PD5

B The category to act on is Z(D5)-pMod.

B We have endofunctors Bs =
⊕
H Pi ⊗ iP ⊗ and Bt =

⊕
F Pj ⊗ jP ⊗ .

B Lemma. The relations of bs and bt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

The zigzag relations.

The composite of two arrows between different vertices is zero.

The composite of three arrows is zero.

All loops are equal.

Example.

There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.

Example.

Projective left module Pi = Z(D5)i .
Projective right module iP = iZ(D5).

Bi-projective bimodule Pi ⊗ iP.

The punchline.

The categorical action on Z(D5)-pMod decategorifies
to the N-valued action from before.

Example.

One checks that Bt(P2) ∼= P3 ⊕ P4 ⊕ P5.

Example.

One easily checks that Bs ◦ Bs
∼= Bs ⊕ Bs and Bt ◦ Bt

∼= Bt ⊕ Bt.
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.

Classification.

Complete, irredundant list of 2-simples of We+2:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Upshot of this approach.

Very explicit and one can get further consequences,
e.g. a characterization of Dynkin diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A) do not grow when e →∞.

Γ is an affine type ADE graph
if and only if

entries of Ue(A) grow linearly when e →∞.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A) grow exponentially when e →∞.

Problem with this approach.

Too explicit – no chance to work in general.

For the rest of today, I show you the
decategorification of something that does work in general.

Daniel Tubbenhauer 2-representations of Soergel bimodules—dihedral case September 2019 10 / 15



H F H

F

F

graph D5

1 3 2

4

5

path algebra PD5

1 3 2

4

5

zigzag algebra Z(D5)

“P(D5) modulo relations”

B The category to act on is Z(D5)-pMod.

B We have endofunctors Bs =
⊕
H Pi ⊗ iP ⊗ and Bt =

⊕
F Pj ⊗ jP ⊗ .

B Lemma. The relations of bs and bt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

The zigzag relations.

The composite of two arrows between different vertices is zero.

The composite of three arrows is zero.

All loops are equal.

Example.

There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.

Example.

Projective left module Pi = Z(D5)i .
Projective right module iP = iZ(D5).

Bi-projective bimodule Pi ⊗ iP.

The punchline.

The categorical action on Z(D5)-pMod decategorifies
to the N-valued action from before.

Example.

One checks that Bt(P2) ∼= P3 ⊕ P4 ⊕ P5.

Example.

One easily checks that Bs ◦ Bs
∼= Bs ⊕ Bs and Bt ◦ Bt

∼= Bt ⊕ Bt.
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.

Classification.

Complete, irredundant list of 2-simples of We+2:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Upshot of this approach.

Very explicit and one can get further consequences,
e.g. a characterization of Dynkin diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A) do not grow when e →∞.

Γ is an affine type ADE graph
if and only if

entries of Ue(A) grow linearly when e →∞.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A) grow exponentially when e →∞.

Problem with this approach.

Too explicit – no chance to work in general.

For the rest of today, I show you the
decategorification of something that does work in general.

Daniel Tubbenhauer 2-representations of Soergel bimodules—dihedral case September 2019 10 / 15



H F H

F

F

graph D5

1 3 2

4

5

path algebra PD5

1 3 2

4

5

zigzag algebra Z(D5)

“P(D5) modulo relations”

B The category to act on is Z(D5)-pMod.

B We have endofunctors Bs =
⊕
H Pi ⊗ iP ⊗ and Bt =

⊕
F Pj ⊗ jP ⊗ .

B Lemma. The relations of bs and bt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

The zigzag relations.

The composite of two arrows between different vertices is zero.

The composite of three arrows is zero.

All loops are equal.

Example.

There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.

Example.

Projective left module Pi = Z(D5)i .
Projective right module iP = iZ(D5).

Bi-projective bimodule Pi ⊗ iP.

The punchline.

The categorical action on Z(D5)-pMod decategorifies
to the N-valued action from before.

Example.

One checks that Bt(P2) ∼= P3 ⊕ P4 ⊕ P5.

Example.

One easily checks that Bs ◦ Bs
∼= Bs ⊕ Bs and Bt ◦ Bt

∼= Bt ⊕ Bt.
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.

Classification.

Complete, irredundant list of 2-simples of We+2:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Upshot of this approach.

Very explicit and one can get further consequences,
e.g. a characterization of Dynkin diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A) do not grow when e →∞.

Γ is an affine type ADE graph
if and only if

entries of Ue(A) grow linearly when e →∞.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A) grow exponentially when e →∞.

Problem with this approach.

Too explicit – no chance to work in general.

For the rest of today, I show you the
decategorification of something that does work in general.

Daniel Tubbenhauer 2-representations of Soergel bimodules—dihedral case September 2019 10 / 15



H F H

F

F

graph D5

1 3 2

4

5

path algebra PD5

1 3 2

4

5

zigzag algebra Z(D5)

“P(D5) modulo relations”

We get a categorical action of W7:

B The category to act on is Z(D5)-pMod.

B We have endofunctors Bs =
⊕
H Pi ⊗ iP ⊗ and Bt =

⊕
F Pj ⊗ jP ⊗ .

B Lemma. The relations of bs and bt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

The zigzag relations.

The composite of two arrows between different vertices is zero.

The composite of three arrows is zero.

All loops are equal.

Example.

There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.

Example.

Projective left module Pi = Z(D5)i .
Projective right module iP = iZ(D5).

Bi-projective bimodule Pi ⊗ iP.

The punchline.

The categorical action on Z(D5)-pMod decategorifies
to the N-valued action from before.

Example.

One checks that Bt(P2) ∼= P3 ⊕ P4 ⊕ P5.

Example.

One easily checks that Bs ◦ Bs
∼= Bs ⊕ Bs and Bt ◦ Bt

∼= Bt ⊕ Bt.
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.

Classification.

Complete, irredundant list of 2-simples of We+2:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Upshot of this approach.

Very explicit and one can get further consequences,
e.g. a characterization of Dynkin diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A) do not grow when e →∞.

Γ is an affine type ADE graph
if and only if

entries of Ue(A) grow linearly when e →∞.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A) grow exponentially when e →∞.

Problem with this approach.

Too explicit – no chance to work in general.

For the rest of today, I show you the
decategorification of something that does work in general.

Daniel Tubbenhauer 2-representations of Soergel bimodules—dihedral case September 2019 10 / 15



H F H

F

F

graph D5

1 3 2

4

5

path algebra PD5

1 3 2

4

5

zigzag algebra Z(D5)

“P(D5) modulo relations”

We get a categorical action of W7:

B The category to act on is Z(D5)-pMod.

B We have endofunctors Bs =
⊕
H Pi ⊗ iP ⊗ and Bt =

⊕
F Pj ⊗ jP ⊗ .

B Lemma. The relations of bs and bt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

The zigzag relations.

The composite of two arrows between different vertices is zero.

The composite of three arrows is zero.

All loops are equal.

Example.

There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.

Example.

Projective left module Pi = Z(D5)i .
Projective right module iP = iZ(D5).

Bi-projective bimodule Pi ⊗ iP.

The punchline.

The categorical action on Z(D5)-pMod decategorifies
to the N-valued action from before.

Example.

One checks that Bt(P2) ∼= P3 ⊕ P4 ⊕ P5.

Example.

One easily checks that Bs ◦ Bs
∼= Bs ⊕ Bs and Bt ◦ Bt

∼= Bt ⊕ Bt.
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.

Classification.

Complete, irredundant list of 2-simples of We+2:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Upshot of this approach.

Very explicit and one can get further consequences,
e.g. a characterization of Dynkin diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A) do not grow when e →∞.

Γ is an affine type ADE graph
if and only if

entries of Ue(A) grow linearly when e →∞.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A) grow exponentially when e →∞.

Problem with this approach.

Too explicit – no chance to work in general.

For the rest of today, I show you the
decategorification of something that does work in general.

Daniel Tubbenhauer 2-representations of Soergel bimodules—dihedral case September 2019 10 / 15



H F H

F

F

graph D5

1 3 2

4

5

path algebra PD5

1 3 2

4

5

zigzag algebra Z(D5)

“P(D5) modulo relations”

We get a categorical action of W7:

B The category to act on is Z(D5)-pMod.

B We have endofunctors Bs =
⊕
H Pi ⊗ iP ⊗ and Bt =

⊕
F Pj ⊗ jP ⊗ .

B Lemma. The relations of bs and bt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

The zigzag relations.

The composite of two arrows between different vertices is zero.

The composite of three arrows is zero.

All loops are equal.

Example.

There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.

Example.

Projective left module Pi = Z(D5)i .
Projective right module iP = iZ(D5).

Bi-projective bimodule Pi ⊗ iP.

The punchline.

The categorical action on Z(D5)-pMod decategorifies
to the N-valued action from before.

Example.

One checks that Bt(P2) ∼= P3 ⊕ P4 ⊕ P5.

Example.

One easily checks that Bs ◦ Bs
∼= Bs ⊕ Bs and Bt ◦ Bt

∼= Bt ⊕ Bt.
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.

Classification.

Complete, irredundant list of 2-simples of We+2:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Upshot of this approach.

Very explicit and one can get further consequences,
e.g. a characterization of Dynkin diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A) do not grow when e →∞.

Γ is an affine type ADE graph
if and only if

entries of Ue(A) grow linearly when e →∞.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A) grow exponentially when e →∞.

Problem with this approach.

Too explicit – no chance to work in general.

For the rest of today, I show you the
decategorification of something that does work in general.

Daniel Tubbenhauer 2-representations of Soergel bimodules—dihedral case September 2019 10 / 15



H F H

F

F

graph D5

1 3 2

4

5

path algebra PD5

1 3 2

4

5

zigzag algebra Z(D5)

“P(D5) modulo relations”

We get a categorical action of W7:

B The category to act on is Z(D5)-pMod.

B We have endofunctors Bs =
⊕
H Pi ⊗ iP ⊗ and Bt =

⊕
F Pj ⊗ jP ⊗ .

B Lemma. The relations of bs and bt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

The zigzag relations.

The composite of two arrows between different vertices is zero.

The composite of three arrows is zero.

All loops are equal.

Example.

There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.

Example.

Projective left module Pi = Z(D5)i .
Projective right module iP = iZ(D5).

Bi-projective bimodule Pi ⊗ iP.

The punchline.

The categorical action on Z(D5)-pMod decategorifies
to the N-valued action from before.

Example.

One checks that Bt(P2) ∼= P3 ⊕ P4 ⊕ P5.

Example.

One easily checks that Bs ◦ Bs
∼= Bs ⊕ Bs and Bt ◦ Bt

∼= Bt ⊕ Bt.
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.

Classification.

Complete, irredundant list of 2-simples of We+2:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Upshot of this approach.

Very explicit and one can get further consequences,
e.g. a characterization of Dynkin diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A) do not grow when e →∞.

Γ is an affine type ADE graph
if and only if

entries of Ue(A) grow linearly when e →∞.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A) grow exponentially when e →∞.

Problem with this approach.

Too explicit – no chance to work in general.

For the rest of today, I show you the
decategorification of something that does work in general.

Daniel Tubbenhauer 2-representations of Soergel bimodules—dihedral case September 2019 10 / 15



H F H

F

F

graph D5

1 3 2

4

5

path algebra PD5

1 3 2

4

5

zigzag algebra Z(D5)

“P(D5) modulo relations”

We get a categorical action of W7:

B The category to act on is Z(D5)-pMod.

B We have endofunctors Bs =
⊕
H Pi ⊗ iP ⊗ and Bt =

⊕
F Pj ⊗ jP ⊗ .

B Lemma. The relations of bs and bt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

The zigzag relations.

The composite of two arrows between different vertices is zero.

The composite of three arrows is zero.

All loops are equal.

Example.

There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.

Example.

Projective left module Pi = Z(D5)i .
Projective right module iP = iZ(D5).

Bi-projective bimodule Pi ⊗ iP.

The punchline.

The categorical action on Z(D5)-pMod decategorifies
to the N-valued action from before.

Example.

One checks that Bt(P2) ∼= P3 ⊕ P4 ⊕ P5.

Example.

One easily checks that Bs ◦ Bs
∼= Bs ⊕ Bs and Bt ◦ Bt

∼= Bt ⊕ Bt.
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.

Classification.

Complete, irredundant list of 2-simples of We+2:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Upshot of this approach.

Very explicit and one can get further consequences,
e.g. a characterization of Dynkin diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A) do not grow when e →∞.

Γ is an affine type ADE graph
if and only if

entries of Ue(A) grow linearly when e →∞.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A) grow exponentially when e →∞.

Problem with this approach.

Too explicit – no chance to work in general.

For the rest of today, I show you the
decategorification of something that does work in general.

Daniel Tubbenhauer 2-representations of Soergel bimodules—dihedral case September 2019 10 / 15



H F H

F

F

graph D5

1 3 2

4

5

path algebra PD5

1 3 2

4

5

zigzag algebra Z(D5)

“P(D5) modulo relations”

We get a categorical action of W7:

B The category to act on is Z(D5)-pMod.

B We have endofunctors Bs =
⊕
H Pi ⊗ iP ⊗ and Bt =

⊕
F Pj ⊗ jP ⊗ .

B Lemma. The relations of bs and bt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

The zigzag relations.

The composite of two arrows between different vertices is zero.

The composite of three arrows is zero.

All loops are equal.

Example.

There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.

Example.

Projective left module Pi = Z(D5)i .
Projective right module iP = iZ(D5).

Bi-projective bimodule Pi ⊗ iP.

The punchline.

The categorical action on Z(D5)-pMod decategorifies
to the N-valued action from before.

Example.

One checks that Bt(P2) ∼= P3 ⊕ P4 ⊕ P5.

Example.

One easily checks that Bs ◦ Bs
∼= Bs ⊕ Bs and Bt ◦ Bt

∼= Bt ⊕ Bt.
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.

Classification.

Complete, irredundant list of 2-simples of We+2:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Upshot of this approach.

Very explicit and one can get further consequences,
e.g. a characterization of Dynkin diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A) do not grow when e →∞.

Γ is an affine type ADE graph
if and only if

entries of Ue(A) grow linearly when e →∞.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A) grow exponentially when e →∞.

Problem with this approach.

Too explicit – no chance to work in general.

For the rest of today, I show you the
decategorification of something that does work in general.

Daniel Tubbenhauer 2-representations of Soergel bimodules—dihedral case September 2019 10 / 15



H F H

F

F

graph D5

1 3 2

4

5

path algebra PD5

1 3 2

4

5

zigzag algebra Z(D5)

“P(D5) modulo relations”

We get a categorical action of W7:

B The category to act on is Z(D5)-pMod.

B We have endofunctors Bs =
⊕
H Pi ⊗ iP ⊗ and Bt =

⊕
F Pj ⊗ jP ⊗ .

B Lemma. The relations of bs and bt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

The zigzag relations.

The composite of two arrows between different vertices is zero.

The composite of three arrows is zero.

All loops are equal.

Example.

There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.

Example.

Projective left module Pi = Z(D5)i .
Projective right module iP = iZ(D5).

Bi-projective bimodule Pi ⊗ iP.

The punchline.

The categorical action on Z(D5)-pMod decategorifies
to the N-valued action from before.

Example.

One checks that Bt(P2) ∼= P3 ⊕ P4 ⊕ P5.

Example.

One easily checks that Bs ◦ Bs
∼= Bs ⊕ Bs and Bt ◦ Bt

∼= Bt ⊕ Bt.
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.

Classification.

Complete, irredundant list of 2-simples of We+2:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Upshot of this approach.

Very explicit and one can get further consequences,
e.g. a characterization of Dynkin diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A) do not grow when e →∞.

Γ is an affine type ADE graph
if and only if

entries of Ue(A) grow linearly when e →∞.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A) grow exponentially when e →∞.

Problem with this approach.

Too explicit – no chance to work in general.

For the rest of today, I show you the
decategorification of something that does work in general.

Daniel Tubbenhauer 2-representations of Soergel bimodules—dihedral case September 2019 10 / 15



H F H

F

F

graph D5

1 3 2

4

5

path algebra PD5

1 3 2

4

5

zigzag algebra Z(D5)

“P(D5) modulo relations”

We get a categorical action of W7:

B The category to act on is Z(D5)-pMod.

B We have endofunctors Bs =
⊕
H Pi ⊗ iP ⊗ and Bt =

⊕
F Pj ⊗ jP ⊗ .

B Lemma. The relations of bs and bt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

The zigzag relations.

The composite of two arrows between different vertices is zero.

The composite of three arrows is zero.

All loops are equal.

Example.

There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.

Example.

Projective left module Pi = Z(D5)i .
Projective right module iP = iZ(D5).

Bi-projective bimodule Pi ⊗ iP.

The punchline.

The categorical action on Z(D5)-pMod decategorifies
to the N-valued action from before.

Example.

One checks that Bt(P2) ∼= P3 ⊕ P4 ⊕ P5.

Example.

One easily checks that Bs ◦ Bs
∼= Bs ⊕ Bs and Bt ◦ Bt

∼= Bt ⊕ Bt.
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.

Classification.

Complete, irredundant list of 2-simples of We+2:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Upshot of this approach.

Very explicit and one can get further consequences,
e.g. a characterization of Dynkin diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A) do not grow when e →∞.

Γ is an affine type ADE graph
if and only if

entries of Ue(A) grow linearly when e →∞.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A) grow exponentially when e →∞.

Problem with this approach.

Too explicit – no chance to work in general.

For the rest of today, I show you the
decategorification of something that does work in general.

Daniel Tubbenhauer 2-representations of Soergel bimodules—dihedral case September 2019 10 / 15



H F H

F

F

graph D5

1 3 2

4

5

path algebra PD5

1 3 2

4

5

zigzag algebra Z(D5)

“P(D5) modulo relations”

We get a categorical action of W7:

B The category to act on is Z(D5)-pMod.

B We have endofunctors Bs =
⊕
H Pi ⊗ iP ⊗ and Bt =

⊕
F Pj ⊗ jP ⊗ .

B Lemma. The relations of bs and bt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

The zigzag relations.

The composite of two arrows between different vertices is zero.

The composite of three arrows is zero.

All loops are equal.

Example.

There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.
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Projective left module Pi = Z(D5)i .
Projective right module iP = iZ(D5).

Bi-projective bimodule Pi ⊗ iP.
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∼= Bs ⊕ Bs and Bt ◦ Bt

∼= Bt ⊕ Bt.
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.

Classification.

Complete, irredundant list of 2-simples of We+2:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Upshot of this approach.

Very explicit and one can get further consequences,
e.g. a characterization of Dynkin diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A) do not grow when e →∞.

Γ is an affine type ADE graph
if and only if

entries of Ue(A) grow linearly when e →∞.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A) grow exponentially when e →∞.

Problem with this approach.

Too explicit – no chance to work in general.

For the rest of today, I show you the
decategorification of something that does work in general.
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Example (I2(4), e = 2).

Cell structure:

s, sts st

ts t, tst

1

w0

number of elements−−−−−−−−−−−→ 2 1

1 2

1

1

2 1

1 2

1

1

left cells

“left modules”

2 1

1 2

1

1

right cells

“right modules”

2 1

1 2

1

1

two-sided cells

“bimodules”

2 1

1 2

1

1

H-cells

“subalgebras”

Example.

1 · 1 = v01.
(v is the Hecke parameter deforming e.g. s2 = 1 to T 2

s = (v−1 − v)Ts + 1.)

Example.

bs · bs = (v-1+bigger powers)bs.
bsts · bs = (v-1+bigger powers)bsts.

bsts · bsts = (v-1+bigger powers)bs+higher cell elements.
bsts · btst = (bigger powers)bst + higher cell elements.

Example.

bw0 · bw0 = (v-4+bigger powers)bw0 .

Fact (Lusztig ∼1980++).

For any Coxeter group W
there is a well-defined function

a : W → N

which is constant on two-sided cells such that
vabw has structure constants in Z[v] up to higher cells.

Asymptotic limit v→ 0 “=” kill non-leading terms of cw = vabw ,
e.g. cs = v1bs and c2s = (1+v2)cs.

Think: Positively graded, and asymptotic limit is taking degree 0 part.
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Compare multiplication tables. Example (e = 2).

a=asymptotic element and [2] = 1 + v2. (Note the “subalgebras”.)

as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

cs csts cst ct ctst cts

cs [2]cs [2]csts [2]cst cst cst + cw0 cs + csts

csts [2]csts [2]cs + [2]2cw0 [2]cst + [2]cw0 cs + csts cs + [2]2cw0 cs + csts + [2]cw0

cts [2]cts [2]cts + [2]cw0 [2]ct + [2]ctst ct + ctst ct + ctst + [2]cw0 2cts + cw0

ct cts cts + cw0 ct + ctst [2]ct [2]ctst [2]cts

ctst ct + ctst ct + [2]2cw0 ct + ctst + [2]cw0 [2]ctst [2]ct + [2]2cw0 [2]cts + [2]cw0

cst cs + csts cs + csts + [2]cw0 2cst + cw0 [2]cst [2]cst + [2]cw0 [2]cs + [2]csts

The limit v→ 0 is much simpler! Have you seen this before ?
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Back to graphs. Example (e = 2).

M = C〈1, 2, 3〉

1 3 2

H F H

cs ;




1+v2 0 v

0 1+v2 v

0 0 0


 ct ;




0 0 0
0 0 0
v v 1+v2




csts ;




0 1+v2 v

1+v2 0 v

0 0 0


 ctst ;




0 0 0
0 0 0
v v 1+v2




cts ;




0 0 0
0 0 0

1+v2 1+v2 v


 cst ;



v v 1+v2

v v 1+v2

0 0 0




Example.

astats = as + asts
!

[L1][L1] = [L0] + [L2]
!


0 0 1
0 0 1
0 0 0







0 0 0
0 0 0
1 1 0


 =




1 1 0
1 1 0
0 0 0


 =




1 0 0
0 1 0
0 0 0


 +




0 1 0
1 0 0
0 0 0


.

This works in general and recovers the transitive N-modules
of K0(SL(2)q) found by

Etingof–Khovanov ∼1995, Kirillov–Ostrik ∼2001 and Ostrik ∼2003,
which are also ADE classified.

(For the experts: the bicoloring kills the tadpole solutions.)

However, at this point this was just an observation
and it took a while until we understood its meaning.

(Cliffhanger: Wait for tomorrow.)

Classification.

Complete, irredundant list of graded

2-simples of dihedral Soergel bimodules:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Construction

I learned this from Kildetoft–Mackaay–Mazorchuk–Zimmermann ∼2016.

Proof?

The first proof was “brute force”.
Now we have a much better way of doing this.

(Again: cliffhanger.)

Please stop!
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H F H

as ;




1 0 0
0 1 0
0 0 0


 at ;




0 0 0
0 0 0
0 0 1




asts ;




0 1 0
1 0 0
0 0 0


 atst ;




0 0 0
0 0 0
0 0 1




ats ;




0 0 0
0 0 0
1 1 0


 ast ;




0 0 1
0 0 1
0 0 0




Example.

astats = as + asts
!

[L1][L1] = [L0] + [L2]
!


0 0 1
0 0 1
0 0 0







0 0 0
0 0 0
1 1 0


 =




1 1 0
1 1 0
0 0 0


 =




1 0 0
0 1 0
0 0 0


 +




0 1 0
1 0 0
0 0 0


.

This works in general and recovers the transitive N-modules
of K0(SL(2)q) found by

Etingof–Khovanov ∼1995, Kirillov–Ostrik ∼2001 and Ostrik ∼2003,
which are also ADE classified.

(For the experts: the bicoloring kills the tadpole solutions.)

However, at this point this was just an observation
and it took a while until we understood its meaning.

(Cliffhanger: Wait for tomorrow.)

Classification.

Complete, irredundant list of graded

2-simples of dihedral Soergel bimodules:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Construction

I learned this from Kildetoft–Mackaay–Mazorchuk–Zimmermann ∼2016.

Proof?

The first proof was “brute force”.
Now we have a much better way of doing this.

(Again: cliffhanger.)

Please stop!
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Where to find SL(m)q?

First try: What are the asymptotic limits of finite types?

I No luck in finite Weyl type: v→ 0 is (almost always) Rep((Z/2Z)k).

I No luck in dihedral type: v→ 0 is SL(2)q (q2(n−2) = 1).

I No luck for the pentagon types H3 and H4 .

B Maybe generalize the dihedral case?

Idea 1: Chebyshev knows everything!

So where have we seen the magic formula
XUm+1(X) = Um+2(X) + Um(X)

before?

Here:
[2] · [e + 1] = [e + 2] + [e]
L1 ⊗ Le+1

∼= Le+2 ⊕ Le

Le = eth symmetric power of the vector representation of (quantum) sl2.

Idea 2: The dihedral type is
a quotient of affine type A1.

Very vague philosophy I want to sell:

Fusion categories appear as degree 0 parts of Soergel bimodules.

Quantum Satake (Elias ∼2013, Mackaay–Mazorchuk–Miemietz ∼2018)
– rough version.

SL(m)q is the semisimple version of
a subquotient of Soergel bimodules for affine type Am−1.

The KL basis correspond to the images of Le .

Beware: Only the cases m = 2 (dihedral) and m = 3 (trihedral) are proven,
as everything gets combinatorially more complicated.

Summary of Nhedral.

Most questions are still open, but nice patterns appear.

Leaves the realm of groups. (No associated Coxeter group; only a subquotient.)

Generalized zigzag algebras, Chebyshev polynomials and ADE diagrams appear.

ADE-type classification(?) of 2-representations.

Fusion: SL(m)q appears.
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The dihedral groups are of Coxeter type I2(e + 2):

We+2 = 〈s, t | s2 = t2 = 1, se+2 = . . . sts︸ ︷︷ ︸
e+2

= w0 = . . . tst︸ ︷︷ ︸
e+2

= te+2〉,

e.g.: W4 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2:

•
cos(π/4)

4• •

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.
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Dihedral representation theory on one slide.

One-dimensional modules. Mλs,λt
, λs, λt ∈ C, bs 7→ λs, bt 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M0,0, M2,0, M0,2, M2,2 M0,0, M2,2

Two-dimensional modules. Mz , z ∈ C, bs 7→ ( 2 z
0 0 ), bt 7→ ( 0 0

z 2 ).

e ≡ 0 mod 2 e 6≡ 0 mod 2

Mz , z ∈ V±e −{0} Mz , z ∈ V±e

Ve = roots(Ue+1(X)) and V±e the Z/2Z-orbits under z 7→ −z .

The Bott–Samelson (BS) generators bs = s + 1, bt = t + 1.
There is also a Kazhdan–Lusztig (KL) basis cw . We will nail it down later.

Proposition (Lusztig?).

The list of one- and two-dimensional We+2-modules
is a complete, irredundant list of simple modules.

I learned this construction in 2017.
Example.

M0,0 is the sign representation and M2,2 is the trivial representation.

In case e is odd, Ue+1(X) has a constant term, so M2,0, M0,2 are not representations.

Example.

These representations are indexed by Z/2Z-orbits of the Chebyshev roots:
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N-modules via graphs.

Construct a W∞-module M associated to a bipartite graph Γ:

M = C〈1, 2, 3, 4, 5〉

1 3 2 4 5

bt
action

H F H

F

F

bs  Ms =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, bt  Mt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







The adjacency matrix A(Γ) of Γ is

A(Γ) =

0 0 1 0 0
0 0 1 1 1
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0







These are We+2-modules for some e
only if A(Γ) is killed by the Chebyshev polynomial Ue+1(X).

Morally speaking: These are constructed like the simples
but with integral matrices having the Chebyshev-roots as eigenvalues.

It is not hard to see that the Chebyshev–braid-like relation can not hold otherwise.

Hence, by Smith’s (CP) and Lusztig: We get a representation of We+2

if Γ is a ADE Dynkin diagram for e + 2 being the Coxeter number.

That these are N-modules follows from categorification.

‘Smaller solutions’ are never N-modules.

Classification.

Complete, irredundant list of transitive N-modules of We+2:

apex 1 cell s – t cell w0 cell

N-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

I learned this from Kildetoft–Mackaay–Mazorchuk–Zimmermann ∼2016.

Fun fact about associated simples: Click .
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The type A family
e = 0

H

F

e = 1

H F

e = 2

H F H

F H F

e = 3

H F H F

e = 4

H F H F H

F H F H F

. . .

The type D family
e = 4

H F
H

H

F H
F

F

e = 6

F H F
H

H

H F H
F

F

e = 8

H F H F
H

H

F H F H
F

F

e = 10

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
e = 10

H F H F H

F

F H F H F

H

e = 16

H F H F H F

F

F H F H F H

H

e = 28

H F H F H F H

F

F H F H F H F

H

Back

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the classical representations.

Example (e = 2). Simples associated to cells.

Classical representation theory. The simples from before.

M0,0 M2,0 M√2 M0,2 M2,2

atom sign trivial-sign rotation sign-trivial trivial
rank 1 1 2 1 1

apex(KL) 1 s – t s – t s – t w0

KL basis. ADE diagrams and ranks of transitive N-modules.

bottom cell H F H F H F top cell

atom sign M2,0⊕M√2 M0,2⊕M√2 trivial
rank 1 3 3 1

apex(KL) 1 s – t s – t w0

The simples are arranged according to cells. However, a cell might have more
than one associated simple.
(For the experts: This means that the Hecke algebra with the KL basis is in
general not cellular in the sense of Graham–Lehrer.)

Back

H F H

F

F

graph D5

1 3 2

4

5

path algebra PD5

1 3 2

4

5

zigzag algebra Z(D5)

“P(D5) modulo relations”

We get a categorical action of W7:

B The category to act on is Z(D5)-pMod.

B We have endofunctors Bs =
⊕
H Pi ⊗ iP ⊗ and Bt =

⊕
F Pj ⊗ jP ⊗ .

B Lemma. The relations of bs and bt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

The zigzag relations.

The composite of two arrows between different vertices is zero.

The composite of three arrows is zero.

All loops are equal.

Example.

There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.

Example.

Projective left module Pi = Z(D5)i .
Projective right module iP = iZ(D5).

Bi-projective bimodule Pi ⊗ iP.

The punchline.

The categorical action on Z(D5)-pMod decategorifies
to the N-valued action from before.

Example.

One checks that Bt(P2) ∼= P3 ⊕ P4 ⊕ P5.

Example.

One easily checks that Bs ◦ Bs
∼= Bs ⊕ Bs and Bt ◦ Bt

∼= Bt ⊕ Bt.
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.

Classification.

Complete, irredundant list of 2-simples of We+2:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Upshot of this approach.

Very explicit and one can get further consequences,
e.g. a characterization of Dynkin diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A) do not grow when e →∞.

Γ is an affine type ADE graph
if and only if

entries of Ue(A) grow linearly when e →∞.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A) grow exponentially when e →∞.

Problem with this approach.

Too explicit – no chance to work in general.

For the rest of today, I show you the
decategorification of something that does work in general.
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Example (e = 2).

The fusion ring K0(SL(2)q) for q2e = 1 has simple objects [L0], [L1], [L2]. The
limit v→ 0 has simple objects as, asts, ast, at, atst, ats.

Comparison of multiplication tables:

[L0] [L2] [L1]

[L0] [L0] [L2] [L1]

[L2] [L2] [L0] [L1]

[L1] [L1] [L1] [L0] + [L2]

&

as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

The limit v→ 0 is a bicolored version of K0(SL(2)q):

as&at! [L0], asts&atst! [L2], ast&ats! [L1].

Back

This is the slightly nicer statement.

Fact.

Both connections are always true (i.e. for any e).

The bicoloring is basically coming from slightly different fusion graphs e.g. for e = 6:

Back
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Back to graphs. Example (e = 2).

M = C〈1, 2, 3〉

1 3 2

H F H

as ;




1 0 0
0 1 0
0 0 0


 at ;




0 0 0
0 0 0
0 0 1




asts ;




0 1 0
1 0 0
0 0 0


 atst ;




0 0 0
0 0 0
0 0 1




ats ;




0 0 0
0 0 0
1 1 0


 ast ;




0 0 1
0 0 1
0 0 0




Example.

astats = as + asts
!

[L1][L1] = [L0] + [L2]
!


0 0 1
0 0 1
0 0 0







0 0 0
0 0 0
1 1 0


 =




1 1 0
1 1 0
0 0 0


 =




1 0 0
0 1 0
0 0 0


 +




0 1 0
1 0 0
0 0 0


.

This works in general and recovers the transitive N-modules
of K0(SL(2)q) found by

Etingof–Khovanov ∼1995, Kirillov–Ostrik ∼2001 and Ostrik ∼2003,
which are also ADE classified.

(For the experts: the bicoloring kills the tadpole solutions.)

However, at this point this was just an observation
and it took a while until we understood its meaning.

(Cliffhanger: Wait for tomorrow.)

Classification.

Complete, irredundant list of graded

2-simples of dihedral Soergel bimodules:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Construction

I learned this from Kildetoft–Mackaay–Mazorchuk–Zimmermann ∼2016.

Proof?

The first proof was “brute force”.
Now we have a much better way of doing this.

(Again: cliffhanger.)

Please stop!
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There is still much to do...

Thanks for your attention!
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The dihedral groups are of Coxeter type I2(e + 2):

We+2 = 〈s, t | s2 = t2 = 1, se+2 = . . . sts︸ ︷︷ ︸
e+2

= w0 = . . . tst︸ ︷︷ ︸
e+2

= te+2〉,

e.g.: W4 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2:

•
cos(π/4)

4• •

Idea (Coxeter ∼1934++).

Fact. The symmetries are given by exchanging flags.

Fix a flag F .

Fix a hyperplane H0 permuting
the adjacent 0-cells of F .

Fix a hyperplane H1 permuting
the adjacent 1-cells of F , etc.

Write a vertex i for each Hi .

Connect i , j by an n-edge for
Hi ,Hj having angle cos(π/n).

This gives a generator-relation presentation.

And the braid relation measures the angle between hyperplanes.
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Dihedral representation theory on one slide.

One-dimensional modules. Mλs,λt
, λs, λt ∈ C, bs 7→ λs, bt 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M0,0, M2,0, M0,2, M2,2 M0,0, M2,2

Two-dimensional modules. Mz , z ∈ C, bs 7→ ( 2 z
0 0 ), bt 7→ ( 0 0

z 2 ).

e ≡ 0 mod 2 e 6≡ 0 mod 2

Mz , z ∈ V±e −{0} Mz , z ∈ V±e

Ve = roots(Ue+1(X)) and V±e the Z/2Z-orbits under z 7→ −z .

The Bott–Samelson (BS) generators bs = s + 1, bt = t + 1.
There is also a Kazhdan–Lusztig (KL) basis cw . We will nail it down later.

Proposition (Lusztig?).

The list of one- and two-dimensional We+2-modules
is a complete, irredundant list of simple modules.

I learned this construction in 2017.
Example.

M0,0 is the sign representation and M2,2 is the trivial representation.

In case e is odd, Ue+1(X) has a constant term, so M2,0, M0,2 are not representations.

Example.

These representations are indexed by Z/2Z-orbits of the Chebyshev roots:
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N-modules via graphs.

Construct a W∞-module M associated to a bipartite graph Γ:

M = C〈1, 2, 3, 4, 5〉

1 3 2 4 5

bt
action

H F H

F

F

bs  Ms =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, bt  Mt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







The adjacency matrix A(Γ) of Γ is

A(Γ) =

0 0 1 0 0
0 0 1 1 1
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0







These are We+2-modules for some e
only if A(Γ) is killed by the Chebyshev polynomial Ue+1(X).

Morally speaking: These are constructed like the simples
but with integral matrices having the Chebyshev-roots as eigenvalues.

It is not hard to see that the Chebyshev–braid-like relation can not hold otherwise.

Hence, by Smith’s (CP) and Lusztig: We get a representation of We+2

if Γ is a ADE Dynkin diagram for e + 2 being the Coxeter number.

That these are N-modules follows from categorification.

‘Smaller solutions’ are never N-modules.

Classification.

Complete, irredundant list of transitive N-modules of We+2:

apex 1 cell s – t cell w0 cell

N-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

I learned this from Kildetoft–Mackaay–Mazorchuk–Zimmermann ∼2016.

Fun fact about associated simples: Click .
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The type A family
e = 0

H

F

e = 1

H F

e = 2

H F H

F H F

e = 3

H F H F

e = 4

H F H F H

F H F H F

. . .

The type D family
e = 4

H F
H

H

F H
F

F

e = 6

F H F
H

H

H F H
F

F

e = 8

H F H F
H

H

F H F H
F

F

e = 10

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
e = 10

H F H F H

F

F H F H F

H

e = 16

H F H F H F

F

F H F H F H

H

e = 28

H F H F H F H

F

F H F H F H F

H

Back

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the classical representations.

Example (e = 2). Simples associated to cells.

Classical representation theory. The simples from before.

M0,0 M2,0 M√2 M0,2 M2,2

atom sign trivial-sign rotation sign-trivial trivial
rank 1 1 2 1 1

apex(KL) 1 s – t s – t s – t w0

KL basis. ADE diagrams and ranks of transitive N-modules.

bottom cell H F H F H F top cell

atom sign M2,0⊕M√2 M0,2⊕M√2 trivial
rank 1 3 3 1

apex(KL) 1 s – t s – t w0

The simples are arranged according to cells. However, a cell might have more
than one associated simple.
(For the experts: This means that the Hecke algebra with the KL basis is in
general not cellular in the sense of Graham–Lehrer.)

Back

H F H

F

F

graph D5

1 3 2

4

5

path algebra PD5

1 3 2

4

5

zigzag algebra Z(D5)

“P(D5) modulo relations”

We get a categorical action of W7:

B The category to act on is Z(D5)-pMod.

B We have endofunctors Bs =
⊕
H Pi ⊗ iP ⊗ and Bt =

⊕
F Pj ⊗ jP ⊗ .

B Lemma. The relations of bs and bt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

The zigzag relations.

The composite of two arrows between different vertices is zero.

The composite of three arrows is zero.

All loops are equal.

Example.

There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.

Example.

Projective left module Pi = Z(D5)i .
Projective right module iP = iZ(D5).

Bi-projective bimodule Pi ⊗ iP.

The punchline.

The categorical action on Z(D5)-pMod decategorifies
to the N-valued action from before.

Example.

One checks that Bt(P2) ∼= P3 ⊕ P4 ⊕ P5.

Example.

One easily checks that Bs ◦ Bs
∼= Bs ⊕ Bs and Bt ◦ Bt

∼= Bt ⊕ Bt.
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.

Classification.

Complete, irredundant list of 2-simples of We+2:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Upshot of this approach.

Very explicit and one can get further consequences,
e.g. a characterization of Dynkin diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A) do not grow when e →∞.

Γ is an affine type ADE graph
if and only if

entries of Ue(A) grow linearly when e →∞.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A) grow exponentially when e →∞.

Problem with this approach.

Too explicit – no chance to work in general.

For the rest of today, I show you the
decategorification of something that does work in general.
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H F H

F

F

graph D5

1 3 2

4

5

path algebra PD5

1 3 2

4

5

zigzag algebra Z(D5)

“P(D5) modulo relations”

We get a categorical action of W7:

B The category to act on is Z(D5)-pMod.

B We have endofunctors Bs =
⊕
H Pi ⊗ iP ⊗ and Bt =

⊕
F Pj ⊗ jP ⊗ .

B Lemma. The relations of bs and bt are satisfied by these functors.

B A coherent choice of natural transformations can be made. (Skipped today.)

The zigzag relations.

The composite of two arrows between different vertices is zero.

The composite of three arrows is zero.

All loops are equal.

Example.

There are two path from 2 to itself:
2 and 2|3|2 = 2|4|2 = 2|5|2.

Example.

Projective left module Pi = Z(D5)i .
Projective right module iP = iZ(D5).

Bi-projective bimodule Pi ⊗ iP.

The punchline.

The categorical action on Z(D5)-pMod decategorifies
to the N-valued action from before.

Example.

One checks that Bt(P2) ∼= P3 ⊕ P4 ⊕ P5.

Example.

One easily checks that Bs ◦ Bs
∼= Bs ⊕ Bs and Bt ◦ Bt

∼= Bt ⊕ Bt.
This ensures a categorical action of W∞.

Checking the braid-like relation for n = 7 is a bit harder, but not much.

Classification.

Complete, irredundant list of 2-simples of We+2:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Upshot of this approach.

Very explicit and one can get further consequences,
e.g. a characterization of Dynkin diagrams.

Γ is a finite type ADE graph
if and only if

entries of Ue(A) do not grow when e →∞.

Γ is an affine type ADE graph
if and only if

entries of Ue(A) grow linearly when e →∞.

Γ is neither finite nor affine type ADE graph
if and only if

entries of Ue(A) grow exponentially when e →∞.

Problem with this approach.

Too explicit – no chance to work in general.

For the rest of today, I show you the
decategorification of something that does work in general.
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Example (e = 2).

The fusion ring K0(SL(2)q) for q2e = 1 has simple objects [L0], [L1], [L2]. The
limit v→ 0 has simple objects as, asts, ast, at, atst, ats.

Comparison of multiplication tables:

[L0] [L2] [L1]

[L0] [L0] [L2] [L1]

[L2] [L2] [L0] [L1]

[L1] [L1] [L1] [L0] + [L2]

&

as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

The limit v→ 0 is a bicolored version of K0(SL(2)q):

as&at! [L0], asts&atst! [L2], ast&ats! [L1].

Back

This is the slightly nicer statement.

Fact.

Both connections are always true (i.e. for any e).

The bicoloring is basically coming from slightly different fusion graphs e.g. for e = 6:

Back
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Back to graphs. Example (e = 2).

M = C〈1, 2, 3〉

1 3 2

H F H

as ;




1 0 0
0 1 0
0 0 0


 at ;




0 0 0
0 0 0
0 0 1




asts ;




0 1 0
1 0 0
0 0 0


 atst ;




0 0 0
0 0 0
0 0 1




ats ;




0 0 0
0 0 0
1 1 0


 ast ;




0 0 1
0 0 1
0 0 0




Example.

astats = as + asts
!

[L1][L1] = [L0] + [L2]
!


0 0 1
0 0 1
0 0 0







0 0 0
0 0 0
1 1 0


 =




1 1 0
1 1 0
0 0 0


 =




1 0 0
0 1 0
0 0 0


 +




0 1 0
1 0 0
0 0 0


.

This works in general and recovers the transitive N-modules
of K0(SL(2)q) found by

Etingof–Khovanov ∼1995, Kirillov–Ostrik ∼2001 and Ostrik ∼2003,
which are also ADE classified.

(For the experts: the bicoloring kills the tadpole solutions.)

However, at this point this was just an observation
and it took a while until we understood its meaning.

(Cliffhanger: Wait for tomorrow.)

Classification.

Complete, irredundant list of graded

2-simples of dihedral Soergel bimodules:

apex 1 cell s – t cell w0 cell

2-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

Construction

I learned this from Kildetoft–Mackaay–Mazorchuk–Zimmermann ∼2016.

Proof?

The first proof was “brute force”.
Now we have a much better way of doing this.

(Again: cliffhanger.)

Please stop!
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There is still much to do...

Thanks for your attention!
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U0(X) = 1, U1(X) = X, XUe+1(X) = Ue+2(X) + Ue(X)
U0(X) = 1, U1(X) = 2X, 2XUe+1(X) = Ue+2(X) + Ue(X)

Kronecker ∼1857. Any complete set of conjugate algebraic integers in ]− 2, 2[ is
a subset of roots(Ue+1(X)) for some e.

Figure: The roots of the Chebyshev polynomials (of the second kind).

Back



Figure: The connected Coxeter diagrams of finite type. Their numbers ordered by
dimension: 1,∞, 3, 5, 3, 4, 4, 4, 3, 3, 3, 3, 3, . . . .

Examples.
Type A3 ! tetrahedron ! symmetric group S4.
Type B3 ! cube/octahedron ! Weyl group (Z/2Z)3 n S3.
Type H3 ! dodecahedron/icosahedron ! exceptional Coxeter group.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Back

https://en.wikipedia.org/wiki/Coxeter_group


The positivity on the KL basis is non-trivial.
Example (e = 2). What happens for a different graph? For example,

Γ = H F H , A(Γ) =




0 0 2
0 0 1
2 1 0


 .

b1  

1 0 0
0 1 0
0 0 1

 ,

bs  

2 0 2
0 2 1
0 0 0

 , bts  

0 0 0
0 0 0
4 2 5

 , bsts  

8 4 10
4 2 5
0 0 0

 ,

bt  

0 0 0
0 0 0
2 1 2

 , bst  

4 2 4
2 1 2
0 0 0

 , btst  

 0 0 0
0 0 0
10 5 10

 ,

bstst  

20 10 20
10 5 10
0 0 0

 6=
 0 0 0

0 0 0
20 10 25

  btsts.

Back

KL basis.

c1 = b1, cs = bs, ct = bt, cts = bts, cst = bst,
but

csts = bsts − bs and ctst = btst − bt
and cstst = bstst − 2bst and ctsts = btsts − 2bts.Theorem.

For the infinite dihedral group
all except the ADE graphs work.

The only proof of this I know uses categorification.

This implies that the Chebyshev polynomials evaluated at non-ADE graphs
stay positive for all e.

Note that this is much harder to prove
than the vanishing of the Chebyshev polynomials.
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12 6 12
6 3 6
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 6=
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0 0 0
12 16 15
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The type A family
e = 0

H

F

e = 1

H F

e = 2

H F H

F H F

e = 3

H F H F

e = 4

H F H F H

F H F H F

. . .

The type D family
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H

F H
F

F

e = 6

F H F
H

H

H F H
F

F
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F H F H
F

F
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H
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F

F

. . .
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Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the classical representations.



The type A family
e = 0

H

F

e = 1

H F

e = 2

H F H

F H F

e = 3

H F H F

e = 4

H F H F H

F H F H F

. . .

The type D family
e = 4

H F
H

H

F H
F

F

e = 6

F H F
H

H

H F H
F

F

e = 8

H F H F
H

H

F H F H
F

F

e = 10

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
e = 10

H F H F H

F

F H F H F

H

e = 16

H F H F H F

F

F H F H F H

H

e = 28

H F H F H F H

F

F H F H F H F

H

Back

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the classical representations.



Example (e = 2). Simples associated to cells.

Classical representation theory. The simples from before.

M0,0 M2,0 M√2 M0,2 M2,2

atom sign trivial-sign rotation sign-trivial trivial
rank 1 1 2 1 1

apex(KL) 1 s – t s – t s – t w0

KL basis. ADE diagrams and ranks of transitive N-modules.

bottom cell H F H F H F top cell

atom sign M2,0⊕M√2 M0,2⊕M√2 trivial
rank 1 3 3 1

apex(KL) 1 s – t s – t w0

The simples are arranged according to cells. However, a cell might have more
than one associated simple.
(For the experts: This means that the Hecke algebra with the KL basis is in
general not cellular in the sense of Graham–Lehrer.)

Back



Example (e = 2).

The fusion ring K0(SL(2)q) for q2e = 1 has simple objects [L0], [L1], [L2]. The
limit v→ 0 has simple objects as, asts, ast, at, atst, ats.

Comparison of multiplication tables:

[L0] [L2] [L1]

[L0] [L0] [L2] [L1]

[L2] [L2] [L0] [L1]

[L1] [L1] [L1] [L0] + [L2]

&

as asts ast at atst ats

as as asts ast

asts asts as ast

ats ats ats at + atst

at at atst ats

atst atst at ats

ast ast ast as + asts

The limit v→ 0 is a bicolored version of K0(SL(2)q):

as&at! [L0], asts&atst! [L2], ast&ats! [L1].

Back

This is the slightly nicer statement.

Fact.

Both connections are always true (i.e. for any e).

The bicoloring is basically coming from slightly different fusion graphs e.g. for e = 6:

Back
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The zigzag algebra Z(Γ)

u

d

u

d
H F H

uu = 0 = dd , ud = du

Apply the usual philosophy:

I Take projectives Ps =
⊕
H Pi ⊗ iP ⊗ and Pt =

⊕
F Pj ⊗ jP ⊗ .

I Get endofunctors Bs = Ps ⊗Z(Γ) − and Bt = Pt ⊗Z(Γ) −.

I Check: These decategorify to bs and bt. (Easy.)

I Check: These give a genuine 2-representation. (Bookkeeping.)

I Check: There are no graded deformations. (Bookkeeping.)

Difference to SL(2)q: There is an honest quiver as this is non-semisimple.

Back



Example (type H4).

cell 0 1 2 3 4 5 6=6′ 5′ 4′ 3′ 2′ 1′ 0′

size 1 32 162 512 625 1296 9144 1296 625 512 162 32 1

a 0 1 2 3 4 5 6 15 16 18 22 31 60

v→ 0 � 2� 2� 2� � � big � � 2� 2� 2� �

The big cell :
148,8 1310,8 146,8

138,10 1810,10 186,10

148,6 1810,6 246,6

148,8 :
PFdim(gen) = 1 +

√
5,

PFdim = 120(9 + 4
√

5).

Back
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Example (Fusion graphs for level 3).

In the non-semisimple case one gets quiver algebras supported on these graphs.
(“Trihedral zigzag algebras”.)

Stop - you are annoying!
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