Green's theory of cells in categorification

Or: Mind your cells!

Daniel Tubbenhauer

Shamelessly stolen from https://arxiv.org/abs/1707.07740:

Joint with Marco Mackaay, Volodymyr Mazorchuk, Vanessa Miemietz and Xiaoting Zhang

December 2020

Daniel Tubbenhauer

Green's theory of cells in categorification

Clifford, Munn, Ponizovskii, Green ~1942++. Finite semigroups or monoids.

Example. \mathbb{N} , $\operatorname{Aut}(\{1, ..., n\}) = S_n \subset T_n = \operatorname{End}(\{1, ..., n\})$, groups, groupoids, categories, any \cdot closed subsets of matrices, "everything" relice, etc.

The cell orders and equivalences:

$$\begin{aligned} x \leq_L y \Leftrightarrow \exists z \colon y = zx, & x \sim_L y \Leftrightarrow (x \leq_L y) \land (y \leq_L x), \\ x \leq_R y \Leftrightarrow \exists z' \colon y = xz', & x \sim_R y \Leftrightarrow (x \leq_R y) \land (y \leq_R x), \\ x \leq_{LR} y \Leftrightarrow \exists z, z' \colon y = zxz', & x \sim_{LR} y \Leftrightarrow (x \leq_{LR} y) \land (y \leq_{LR} x). \end{aligned}$$

Left, right and two-sided cells (a.k.a. \mathcal{L} -, \mathcal{R} - and \mathcal{J} -cells): Equivalence classes.

Example (group-like). The unit 1 is always in the lowest cell -e.g. $1 \le_L y$ because we can take z = y. Invertible elements g are always in the lowest cell -e.g. $g \le_L y$ because we can take $z = yg^{-1}$.

\mathcal{L} -cells \longleftrightarrow left modules / left ideals.
\mathcal{R} -cells $\leftrightarrow ight$ modules / right ideals.
$\mathcal{J}\text{-cells } ``\mathcal{L} \otimes_{\mathbb{K}} \mathcal{R}" \iff bimodules \ / \ ideals.$
$\mathcal H$ -cells " $\mathcal R\otimes_{\mathcal S}\mathcal L$ " \longleftrightarrow subalgebras.

Clifford, Munn, Ponizovskii, Green ~1942++. Finite semigroups or monoids.

Example (the transformation monoid T_3). Cells – \mathcal{L} (columns), \mathcal{R} (rows), \mathcal{J} (big rectangles), \mathcal{H} (small rectangles).

$\mathcal{J}_{biggest}$	(111) (222) (333)	$\mathcal{H}\cong \mathcal{S}_1$
\mathcal{J}_{middle}	(122), (221) (121), (212) (221), (112)	(133), (331) (313), (131) (113), (311)	(233), (322) (323), (232) (223), (332)	$\mathcal{H}\cong \mathcal{S}_2$
\mathcal{J}_{lowest}	(123), (213), (132 (231), (312), (321)	2))	$\mathcal{H}\cong S_3$

Cute facts.

- ▶ Each \mathcal{H} contains precisely one idempotent *e* or no idempotent. Each *e* is contained in some $\mathcal{H}(e)$. (Idempotent separation.)
- Each $\mathcal{H}(e)$ is a maximal subgroup. (Group-like.)
- ▶ Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ does not kill it. (Apex.)

Cute facts.

- ► Each *H* contains precisely one idempotent *e* or no idempotent. Each *e* is contained in some *H*(*e*). (Idempotent separation.)
- Each $\mathcal{H}(e)$ is a maximal subgroup. (Group-like.)
- Each simple has a unique maximal $\mathcal{J}(e)$ whose $\mathcal{H}(e)$ does not kill it. (Apex.)

Kazhdan-Lusztig (KL) and others ~1979++. Green's theory in linear.

Choose a basis. For a finite-dimensional algebra S fix a basis B_S . For $x, y, z \in B_S$ write $y \in zx$ if y appears in zx with non-zero coefficient.

The cell orders and equivalences:

$$\begin{aligned} x \leq_{L} y \Leftrightarrow \exists z \colon y \in zx, \quad x \sim_{L} y \Leftrightarrow (x \leq_{L} y) \land (y \leq_{L} x), \\ x \leq_{R} y \Leftrightarrow \exists z' \colon y \in xz', \quad x \sim_{R} y \Leftrightarrow (x \leq_{R} y) \land (y \leq_{R} x), \\ x \leq_{LR} y \Leftrightarrow \exists z, z' \colon y \in zxz', \quad x \sim_{LR} y \Leftrightarrow (x \leq_{LR} y) \land (y \leq_{LR} x). \end{aligned}$$

 \mathcal{L} -, \mathcal{R} - and \mathcal{J} -cells: Equivalence classes. $S_{\mathcal{H}} = \mathbb{K}\{B_{\mathcal{H}}\}/\text{bigger friends}$.

Example (group-like). For $S = \mathbb{Z}[G]$ and the choice of the group element basis $B_S = G$, cell theory is boring.

$$\begin{array}{l} \mathcal{L}\text{-cells} \nleftrightarrow \text{ left modules } / \text{ left ideals.} \\ \mathcal{R}\text{-cells} \nleftrightarrow \text{ right modules } / \text{ right ideals.} \\ \mathcal{J}\text{-cells} ``\mathcal{L} \otimes_{\mathbb{K}} \mathcal{R}" \nleftrightarrow \text{ bimodules } / \text{ ideals.} \\ \mathcal{H}\text{-cells} ``\mathcal{R} \otimes_{\mathbb{S}} \mathcal{L}" \nleftrightarrow \text{ subalgebras.} \end{array}$$

Kazhdan–Lusztig (KL) and others ~1979++. Green's theory in linear.

Example (H(1 $\stackrel{4}{---}$ 2), $B_S = KL$ basis, [2], [4] $\neq 0$ and $2 \neq 0$).

We count the wrong number of simples, namely 1 + 2 + 1 = 4 < 5.

Kazhdan-Lusztig (KL) and others ~1979++. Green's theory in linear.

Example (H(1 $-$ 2), $B_{ m S}=$ KL basis with $b_{121}'=b_{121}+b_1$ and				
$b_{212}'=b_{212}-b_2$), [2] $ eq 0$ and $2 eq 0$.				
$\mathcal{J}_{(\emptyset,(2))}$	<i>b</i> ₁₂₁₂	$\mathrm{S}_{\mathcal{H}}\cong\mathbb{K}$		
$\mathcal{J}_{(\emptyset,(1,1))}$	b'_{212}	$\mathrm{S}_{\mathcal{H}}\cong \mathbb{K}$		
$\mathcal{J}_{((1),(1))}$	$\begin{array}{c c} b_{121}' & b_{21} \\ \hline b_{12} & b_{2} \end{array}$	$\mathrm{S}_{\mathcal{H}}\cong \mathbb{K}$		
$\mathcal{J}_{((1,1),\emptyset)}$	b_1	$\mathrm{S}_{\mathcal{H}}\cong \mathbb{K}$		
$\mathcal{J}_{((2),\emptyset)}$	b_{\emptyset}	$\mathrm{S}_{\mathcal{H}}\cong \mathbb{K}$		

We count the correct number of simples, namely 1 + 1 + 1 + 1 + 1 = 5.

Kazhdan–Lusztig (KL) and others ~1979++. Green's theory in linear.

Example (H(1 $-\frac{5}{2}$), $B_{\rm S}$ =KL basis, [2], [5] $\neq 0$ and 2, 5 $\neq 0$).

We count the correct number of simples, namely 1 + 2 + 1 = 4.

\mathcal{H} -reduction in linear.

Problem 1. Everything depends on the choice of basis.

Problem 2. If \mathcal{H} -cells are of varying size within a \mathcal{J} -cell, you might count a too low number of simples.

Aside: The case where all \mathcal{H} -cells are of size one is called cellular.

\mathcal{H} -reduction in linear.

Problem 1. Everything depends on the choice of basis.

Problem 2. If \mathcal{H} -cells are of varying size within a \mathcal{J} -cell, you might count a too low number of simples.

Aside: The case where all \mathcal{H} -cells are of size one is called cellular.

Spoiler.

On the categorified level all problems vanish and (a version of) the ${\cal H}\mbox{-}reduction$ can be recovered.

Mazorchuk-Miemietz and others ~2010++. Green's theory in categories.

There is a good basis. For a \bigcirc monoidal category \mathscr{S} , and X, Y, Z indecomposable write Y GZX if Y is a direct summand of ZX.

The cell orders and equivalences:

$$\begin{split} \mathbf{X} &\leq_{L} \mathbf{Y} \Leftrightarrow \exists \mathbf{Z} \colon \mathbf{Y} \Subset \mathbf{Z} \mathbf{X}, \quad \mathbf{X} \sim_{L} \mathbf{Y} \Leftrightarrow (\mathbf{X} \leq_{L} \mathbf{Y}) \land (\mathbf{Y} \leq_{L} \mathbf{X}), \\ \mathbf{X} &\leq_{R} \mathbf{Y} \Leftrightarrow \exists \mathbf{Z}' \colon \mathbf{Y} \Subset \mathbf{X} \mathbf{Z}', \quad \mathbf{X} \sim_{R} \mathbf{Y} \Leftrightarrow (\mathbf{X} \leq_{R} \mathbf{Y}) \land (\mathbf{Y} \leq_{R} \mathbf{X}), \\ \mathbf{X} &\leq_{LR} \mathbf{Y} \Leftrightarrow \exists \mathbf{Z}, \mathbf{Z}' \colon \mathbf{Y} \Subset \mathbf{Z} \mathbf{X} \mathbf{Z}', \quad \mathbf{X} \sim_{LR} \mathbf{Y} \Leftrightarrow (\mathbf{X} \leq_{LR} \mathbf{Y}) \land (\mathbf{Y} \leq_{LR} \mathbf{X}). \end{split}$$

 \mathcal{L} -, \mathcal{R} - and \mathcal{J} -cells: Equivalence classes. $\mathscr{S}_{\mathcal{H}} = \operatorname{add}(\mathcal{H}, 1)/$ "bigger friends".

Example (group-like). For $\mathscr{S} = \mathscr{V}ect_{\mathcal{G}}$ cell theory is boring. (In general cell theory is boring for fusion categories.)

 \mathcal{L} -cells \iff left modules / left ideals. \mathcal{R} -cells \iff right modules / right ideals. \mathcal{J} -cells " $\mathcal{L} \otimes_{\mathbb{K}} \mathcal{R}$ " \longleftrightarrow bimodules / ideals. \mathcal{H} -cells " $\mathcal{R} \otimes_{\mathrm{S}} \mathcal{L}$ " \longleftrightarrow subalgebras.

Examples.

- ▶ Cells in \mathscr{S} give \otimes -ideals.
- ▶ If S is semisimple, then XX^{*} and X^{*}X both contain the identity, so cell theory is trivial.
- ► For Soergel bimodules cells are Kazhdan-Lusztig cells.
- ► For 2-Kac–Moody algebras you can push everything to cyclotomic KLR algebras, and *H*-cells are of size one.

Mazorchuk-Miemietz and others ~2010++. Green's theory in categories.

Example (H(1 $\stackrel{4}{--}$ 2), but now Soergel bimodules over \mathbb{C} with their indecomposables).

We count the correct number of \checkmark 2-simples, namely 1 + 2 + 1 = 4.

To make the " \simeq " above precise is a whole paper...but it works. For example, $B_{1212}B_{1212} \cong pB_{1212}$ for $p = [2][4] \in \mathbb{N}[v, v^{-1}]$ being a shift. So B_{1212} is a pseudo-idempotent, but you can't easily rescale on the categorical level.

stmod means the category of 2-simples.

	Totality	Associativity	Identity	Invertibility	Commutativity
Semigroupoid	Unneeded	Required	Unneeded	Unneeded	Unneeded
Small Category	Unneeded	Required	Required	Unneeded	Unneeded
Groupoid	Unneeded	Required	Required	Required	Unneeded
Magnia	Required	Unneeded	Unneeded	Unneeded	Unneeded
Quasigroup	Required	Unneeded	meeded	Required	Unneeded
Loop	Required	Unneeded	Required	Required	Unneeded
Semigroup	Required	Required	Unneeded	Unneeded	Unneeded
Inverse Semigroup	Required	Required	Unneeded	Required	Unneeded
Monoid	Required	Required	Required	Unneeded	Unneeded
Group	Required	Required	Required	Required	Unneeded
Abelian group	Required	Required	Required	Required	Required

Picture from https://en.wikipedia.org/wiki/Semigroup.

- ▶ There are zillions of semigroups, e.g. 1843120128 of order 8. (Compare: There are 5 groups of order 8.)
- \blacktriangleright Already the easiest of these are not semisimple not even over \mathbb{C} .
- ► Almost all of them are of wild representation type.

Is the study of semigroups hopeless?

Cells of $TL_4(\delta)$, with the circle value $\delta \neq 0$.

 $\mathcal{J}_i = \text{diagrams}$ with through-degree *i*.

▲ Back

Cells of $TL_4(\delta)$, with the circle value $\delta \neq 0$.

 $\mathcal{J}_i = \text{diagrams}$ with through-degree *i*.

▲ Back

 \mathcal{J}_i = diagrams with through-degree *i*.

▲ Back

Cells of $TL_4(\delta)$, with the circle value $\delta \neq 0$.

$$\mathcal{J}_{0} \qquad \qquad \mathcal{H} \cong 1$$

$$\mathcal{J}_{2} \qquad \qquad \begin{cases} \text{simples of} \\ \mathrm{TL}_{n}(\delta) \end{cases} \xleftarrow{\text{one-to-one}} \begin{cases} \text{possible} \\ \text{through-degrees} \end{cases} \cdot \qquad \mathcal{H} \cong 1$$

$$\mathcal{J}_{4} \qquad \qquad \qquad \mathcal{H} \cong 1$$

 $\mathcal{J}_i = \text{diagrams}$ with through-degree *i*.

▲ Back

Classification of simples of the Brauer algebra – in real time

Cells of $Br_3(\delta)$, with the circle value $\delta \neq 0$.

 $\mathcal{J}_i = \text{diagrams}$ with through-degree *i*.

▲ Back

Classification of simples of the Brauer algebra – in real time

Cells of $Br_3(\delta)$, with the circle value $\delta \neq 0$.

 $\mathcal{J}_i = \text{diagrams}$ with through-degree *i*.

There is an antiinvolution (flip pictures), so \mathcal{J} -cells are squares and \mathcal{H} -cells are diagonal. Moreover, \mathcal{H} -cells are group-like.

Classification of simples of the Brauer algebra - in real time

One cell of $Br_4(\delta)$ (the dimension of $Br_4(\delta)$ is 105 and I wasn't able to fit the whole thing on the slide...), with the circle value $\delta \neq 0$.

In general, \mathcal{H} -cells in \mathcal{J}_i are S_i .

▲ Back

Classification of simples of the Brauer algebra – in real time

One cell of $Br_4(\delta)$ (the dimension of $Br_4(\delta)$ is 105 and I wasn't able to fit the whole thing on the slide...), with the circle value $\delta \neq 0$.

In general, \mathcal{H} -cells in \mathcal{J}_i are S_i .

Classification of simples of the type A Hecke algebra – cheating a bit

Cells of H(1 — 2 — 3), with b_w being the Kazhdan–Lusztig (KL) basis.

$\mathcal{J}_{(4)}$		b_{12321}		$\mathcal{H}\cong 1$
	<i>b</i> ₁₂₁	b_{1321}	b ₂₁₃₂₁	
$\mathcal{J}_{(3+1)}$	<i>b</i> ₁₂₃₂	b ₂₃₂	<i>b</i> ₁₂₁₃₂	$\mathcal{H}\cong 1$
	b_{1213}	b_{2321}	b_{12321}	
$\mathcal{J}_{(2+2)}$	b b	$b_{13} b_{2} \\ b_{132} b_{2}$	213 132	$\mathcal{H}\cong 1$
-	b_1	b ₂₁	b ₃₂₁	
$\mathcal{J}_{(2+1+1)}$	b ₁₂	<i>b</i> ₂	b ₃₂	$\mathcal{H}\cong 1$
	b ₁₂₃	<i>b</i> ₂₃	<i>b</i> ₃	
$\mathcal{J}_{(1+1+1+1)}$		b_{\emptyset}		$\mathcal{H}\cong 1$

In general, \mathcal{J} -cells are indexed by partitions, and \mathcal{H} -cells are the trivial group.

Back

Classification of simples of the type A Hecke algebra – cheating a bit

Cells of H(1 — 2 — 3), with b_w being the Kazhdan–Lusztig (KL) basis.

In general, \mathcal{J} -cells are indexed by partitions, and \mathcal{H} -cells are the trivial group.

Back

Classification of simples of the type A Hecke algebra – cheating a bit

Cells of H(1 — 2 — 3), with b_w being the Kazhdan–Lusztig (KL) basis.

In general, $\mathcal J\text{-cells}$ are indexed by partitions, and $\mathcal H\text{-cells}$ are the trivial group.

🖣 Back

- ▶ Basics. S is K-linear and monoidal, ⊗ is K-bilinear. Moreover, S is abelian (this implies idempotent complete).
- ▶ Involution. \mathscr{S} is pivotal, e.g. $F^{\star\star} \cong F$.
- ► Finiteness. Hom-spaces are finite-dimensional, the number of simples is finite, finite length, enough projectives.
- Categorification. The abelian Grothendieck ring gives a finite-dimensional algebra with involution.

We only formulate the precise statements for the additive setting, but then at least for 2-categories.

A monoidal (multi)fiat category \mathscr{S} :

- ▶ Basics. \mathscr{S} is \mathbb{K} -linear and monoidal, \otimes is \mathbb{K} -bilinear. Moreover, \mathscr{S} is additive and idempotent complete.
- ▶ Involution. \mathscr{S} is pivotal, e.g. $F^{\star\star} \cong F$.
- Finiteness. Hom-spaces are finite-dimensional, the number of indecomposables is finite.
- Categorification. The additive Grothendieck ring gives a finite-dimensional algebra with involution.

- ▶ Basics. S is K-linear and monoidal, ⊗ is K-bilinear. Moreover, S is abelian (this implies idempotent complete).
- ▶ Involution. \mathscr{S} is pivotal, e.g. $F^{\star\star} \cong F$.
- ► Finiteness. Hom-spaces are finite-dimensional, the number of simples is finite, finite length, enough projectives.

The crucial difference...

... is what we like to consider as "elements" of our theory:

Abelian prefers simples, additive prefers indecomposables.

Timteness. Hom-spaces are mille-unitensional, the number of

indecomposables is finite.

 Categorification. The additive Grothendieck ring gives a finite-dimensional algebra with involution.

ve.

►

▶ Basics. S is K-linear and monoidal, ⊗ is K-bilinear. Moreover, S is abelian (this implies idempotent complete).

fir H- \mathcal{M} od for H a finite-dimensional Hopf algebra. (Think: $\mathbb{K}G$, G finite.) C. Finite Serre quotients of G- \mathcal{M} od for G being a reductive group. In al algebra with involution.

Abelian and additive examples.

H- \mathscr{M} od for H a finite-dimensional, semisimple Hopf algebra. (Think: $\mathbb{C}G$, G finite.) \mathscr{V} ect_G for G graded \mathbb{K} -vector spaces, *e.g.* \mathscr{V} ect = \mathscr{V} ect₁.

Finiteness. Hom-spaces are finite-dimensional, the number of indecomposables is finite.

Additive examples.

onal

is

^{al} H- \mathscr{P} roj for H a finite-dimensional Hopf algebra. (Think: $\mathbb{K}G$, G finite.) Finite quotients of G- \mathscr{T} ilt for G being a reductive group.

- ▶ Basics. S is K-linear and monoidal, ⊗ is K-bilinear. Moreover, S is abelian (this implies idempotent complete).
- ▶ Involution. \mathscr{S} is pivotal, e.g. $F^{\star\star} \cong F$.

A mon

► F

а

- ► Finiteness. Hom-spaces are finite-dimensional, the number of simples is finite, finite length, enough projectives.
- Categorification The abelian Grothendieck ring gives a finite-dimensional Why I like the additive case.

All the example I know from my youth are not abelian, but only additive:

Diagram categories, 2-Kac–Moody algebras and their Schur quotients, Soergel bimodules, tilting module categories *etc.*

And these only fit into the fiat and not the tensor framework.

 Categorification. The additive Grothendieck ring gives a finite-dimensional algebra with involution.

additive

Example $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (Klein four group).

If \mathbb{K} is not of characteristic 2, $\mathbb{K}G$ is semisimple and additive=abelian. So let us have a look at characteristic 2, where we have $\mathbb{K}G \cong \mathbb{K}[X, Y]/(X^2, Y^2)$

First, abelian:

- ▶ X and Y have to act as zero on each simple, so $\mathbb{K}G$ has just \mathbb{K} as a simple.
- ▶ $\mathbb{K}G$ - \mathcal{M} od has just one element.

Then additive:

► Only X² and Y² have to act as zero on each indecomposable, and one can cook-up infinitely many, *e.g.*

$$\bullet \xleftarrow{X} \bullet \xrightarrow{Y} \bullet \xleftarrow{X} \bullet \xrightarrow{Y} \bullet \xleftarrow{X} \dots \xrightarrow{Y} \bullet \xleftarrow{X} \bullet$$

▶ $\mathbb{K}G$ - \mathcal{M} od has infinitely many elements.

Back

Example $G = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ (Klein four group).

If \mathbb{K} is not of characteristic 2, $\mathbb{K}G$ is semisimple and additive=abelian. So let us have a look at characteristic 2, where we have $\mathbb{K}G \cong \mathbb{K}[X, Y]/(X^2, Y^2)$

First, abelian:

• $\mathbb{K}G$ - \mathcal{M} od has infinitely many elements.

Back

Abelian. A *S*-module M:

- ▶ Basics. M is K-linear and abelian. The action is a monoidal functor
 M: S → End_{K,lex}(M) (K-linear, left exactness).
- ► Finiteness. Hom-spaces are finite-dimensional, the number of simples is finite, finite length, enough projectives.
- ► Categorification. The abelian Grothendieck group gives a finite-dimensional G₀(𝒴)-module.

Additive. A *S*-module M:

- Basics. M is K-linear, additive and idempotent complete. The action is a monoidal functor M: S → End_K(M) (K-linear).
- Finiteness. Hom-spaces are finite-dimensional, the number of indecomposables is finite.
- ► Categorification. The additive Grothendieck group gives a finite-dimensional K₀(S)-module.

Abelian. A *S*-module M:

Basics. M is K-linear and abelian. The action is a monoidal functor M: S → End_{K loc}(M) (K-linear, left exactness).

 Finiteness. finite, finite 	The easiest of such modules are called simple transitive (2-simple for short) and they satisfy a Jordan–Hölder theorem.	simples is
► Categorifica G ₀ (S)-mod	By definition, these are those $\mathscr{S}\text{-modules}$ without $\mathscr{S}\text{-stable}$ ideals on the morphism level.	te-dimensional
Additive. A S-ı ▶ Basics. M i	This categorifies the definition of a simple having no S-stable subspaces.	le action is a
monoidal fı ▶ Finiteness.	Inctor Example. Homber of	F
indecompo ► Categorifica	sables For 2-Kac–Moody algebras the minimal categorifications of the <i>g</i> -simples in the ation. sense of Chuang–Rouguier are 2-simple, s a fin	iite-dimensional
$K_0(\mathscr{S})$ -mo	dule.	

▲ Back]

► Further

Example (G- \mathcal{M} od, ground field \mathbb{C}).

- ► Let S = G-Mod, for G being a finite group. As S is semisimple, abelian=additive. Simples are simple G-modules.
- ▶ For any $M, N \in \mathscr{S}$, we have $M \otimes N \in \mathscr{S}$:

$$g(m \otimes n) = gm \otimes gn$$

for all $g \in G$, $m \in M$, $n \in N$. There is a trivial module \mathbb{C} .

▶ The regular \mathscr{S} -module $\mathsf{M} \colon \mathscr{S} \to \mathscr{E}\mathrm{nd}_{\mathbb{C}}(\mathscr{S})$:

• The decategorification is the regular $K_0(\mathscr{S})$ -module.

Back

Example (G- \mathcal{M} od, ground field \mathbb{C}).

- Let $K \subset G$ be a subgroup.
- K-Mod is a \mathscr{S} -module, with action

$$\mathcal{R}\textit{es}^{\mathcal{G}}_{\mathcal{K}}\otimes _: \operatorname{\mathcal{G}} extsf{.} \mathcal{M}\operatorname{od}
ightarrow \operatorname{\mathcal{E}nd}_{\mathbb{C}}(\operatorname{\mathcal{K}} extsf{.} \operatorname{\mathsf{Mod}}),$$

which is indeed an action because $\mathcal{R}es^{\mathcal{G}}_{\mathcal{K}}$ is a \otimes -functor.

- ► All of these are 2-simple.
- The decategorifications are $K_0(\mathscr{S})$ -modules.

