What is...finitary 2-representation theory?

Or: A (fairy) tale of matrices and functors
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Slogan. Representation theory is group theory in vector spaces.

symmetries of n-gons C Aut(R?)
|Idea (Coxeter ~1934+|-).|
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Fix a flag F.
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the adjacent O-cells of F.
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Slogan. Representation theory is group theory in vector spaces.

symmetries of n-gons C Aut(R?)

|Idea (Coxeter ~1934+|-).|

Fix a flag F.

Fix a hyperplane Hy permuting
the adjacent O-cells of F.

Fix a hyperplane H; permuting
the adjacent 1-cells of F, etc.
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Slogan. Representation theory is group theory in vector spaces.

symmetries of n-gons C Aut(R?)

|Idea (Coxeter ~1934+|-).|

Fix a flag F.

Fix a hyperplane Hy permuting
the adjacent O-cells of F.

Fix a hyperplane H; permuting
the adjacent 1-cells of F, etc.

This gives a
generator-relation presentation.

{
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Slogan. Representation theory is group theory in vector spaces.

symmetries of n-gons C Aut(R?)

Idea (Tits ~1961-++).
The reflection representation.
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Slogan. Representation theory is group theory in vector spaces.

symmetries of n-gons C Aut(R?)

Idea (Tits ~1961-++).
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Slogan. Representation theory is group theory in vector spaces.

symmetries of n-gons C Aut(R?)

Idea (Tits ~1961-++).
The reflection representation.
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Slogan. Representation theory is group theory in vector spaces.

symmetries of n-gons C Aut(R?)

Idea (Tits ~1961-++).
The reflection representation.
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Slogan. Representation theory is group theory in vector spaces.

These symmetry groups of the regular n-gons are the so-called dihedral groups
Doy = (s,t | s> =t2=1,...tsts = wp =,..stst)
—— N—

n n
which are the easiest examples of Coxeter groups.

Example n = 4; its Coxeter complex.

Wo
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Pioneers of representation theory

Let G be a finite group.

Frobenius ~1895+, Burnside ~1900++. Representation theory is the
study of linear group actions

M: G — Aut(v), |["M(g) = a matrix in Aut(v)"]

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple. A module is called semisimple if
it is a direct sum of simples.

Maschke ~1899. All modules are built out of simples (“Jordan—Hdlder”
filtration).
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Pioneers of representation theory

Let G be a finite group.

Frobenius ~1895+, Burnside ~1900++. Representation theory is the
study of linear group actions

M: G — Aut(V),

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple. A module is called semisimple if
it is a direct sum of simples.

Maschke ~1899. All modules are built out of simples (“Jordan—Hdlder”
filtration).

We want to have a
categorical version of this!
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Pioneers of representation theory

Let A be a finite-dimensional algebra.

Noether ~1928-. Representation theory is the useful? study of algebra actions

M: A — &nd(V), ["M(a) = a matrix in End(V)" |

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple. A module is called semisimple if
it is a direct sum of simples.

Noether, Schreier ~1928. All modules are built out of simples
(*“Jordan—Halder" filtration).
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Pioneers of representation theory

Let A be a finite-dimensional algebra.

Noether ~1928-. Representation theory is the useful? study of algebra actions
M: A — End(V),

with V being some vector space. (Called modules or representations.)

The “atoms” of such an action are called simple. A module is called semisimple if
it is a direct sum of simples.

Noether, Schreier ~1928. All modules are built out of simples
(*“Jordan—Halder" filtration).

We want to have a
categorical version of this.

| am going to explain what we can do at present.
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collection of modules «~ the world
modules «~ chemical compounds

simples «~ elements

semisimple «~ only trivial compounds
non-semisimple «~ non-trivial compounds

Main goal of representation theory. Find the periodic table of simples.
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Example.
collg
Back to the dihedral group, an invariant of
the module is the x which only remembers the
traces of the acting matrices:

"6 DG 96 D6 DE DE D)

semi 1 s s s sts=ts

mod

Main goal of representation theory. Find the periodic table of simples.
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collg

mod

simp

semi

the

Example.

Back to the dihedral group, an invariant of
module is the X Which only remembers the
traces of the acting matrices:

-1 0) (1 1 0 1 -1 -1 0 -1
1 1)°\0 -1)°\-1 -1)°\1 o0)’\-1 o0
S S S STS=T1TsS
Wo
x=0 x=0 x=-1 x=-1 x=0

Main goal of repreg

Daniel Tubbenhauer

Fact.

Semisimple case:
the character determines the module

oy

mass determines the chemical compound.
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collection

modules

simples

semisimple

Example.

10 0 1
7./27, — Aut(C?), 0+ <0 1) & 1+ (1 0)

Common eigenvectors: (1,1) and (1,—1) and base change gives

1|0 1 0
0%(0 1)&1»—><0 _1>

and the module decomposes.

Main goal of representation theory. Find the periodic table of simples.
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collection

modules

simples

Example.

) 1 0 0 1
Z/2Z—>Aut((C),0»—><0 1) &1%(1 0)

Common eigenvectors: (1,1) and (1,—1) and base change gives

1|0 1 0
0%(0 1)&1»—><0 _1>

semisimpld and the module decomposes.
Example.
Main goal of 7.)27 .Aut(E2), 0 1 0 L 1 0 1\ [mples.

0 1 1 0
Common eigenvector: (1,1) and base change gives

1 0 1 1

0— 01 & 1+— < 01 >
and the module is non-simple, yet does not decompose.
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collection

modules

simples

Example.

) 1 0 0 1
Z/2Z—>Aut((C),0»—><0 1) &1%(1 0)

Common eigenvectors: (1,1) and (1,—1) and base change gives

1|0 1 0
0%(0 1)&1»—><0 _1>

semisimpld and the module decomposes.
|Mora|ly: representation theory over Z is never semisimple. |
Example.
Main goal of 7.)27 .Aut(E2), 0 1 0 L 1 0 1\ [mples.

0 1 1 0
Common eigenvector: (1,1) and base change gives

1 0 1 1

0— 01 & 1+— < 01 >
and the module is non-simple, yet does not decompose.
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Dihedral representation theory on one slide.

One-dimensional modules. M_» ,As, A € C s = Ag,t = AL
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Dihedral representation theory on one slide.

One-dimensiond Proposition (Lusztig?).

The list of one- and two-dimensional D2,-modules
is a complete, irredundant list of simples. -

T
|

M-l,-l; Ml,-h M-l,la M1,1 | M-l,-1, Ml,l
\

|I learned this construction from Mackaay in 2017.

|
Two-dimensional modules. M,z € C,s — (§ %), t— (F9).

V(n) ={2cos(rk/n—1) | k=1,...,n—2}.
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Dihedral representation theory on one slide.

One-dimensiond Proposition (Lusztig?).

The list of one- and two-dimensional D2,-modules
is a complete, irredundant list of simples. -

T
|

Mg, My, Mg, Mg 0 Mg, Mag
|

|I learned this construction from Mackaay in 2017. |

Two-dimensional modules. M,z € C,s — (§ %), t— (F9).

Note that this requires complex parameters.
This does not work over Z.
T

M,z e V(n)—{0} i M, ze V(n)

V(n) ={2cos(rk/n—1) | k=1,...,n—2}.
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An algebra P with a fixed, finite basis B is called a N-algebra if

xy € NBF  (x,y € BY).

A P-module M with a fixed, finite basis BM is called a N-module if
xm € NBM  (x € BY,m € BM).

These are N-equivalent if there is a N-valued change of basis matrix.

Example. N-algebras and N-modules arise naturally as the decategorification of
2-categories and 2-modules, and N-equivalence comes from 2-equivalence.

Daniel Tubbenhauer What is...finitary 2-representation theory? February 2019 7/12



Example (semisimple world).
Group algebras of finite groups with basis given by group elements are N-algebras.

The regular module is a N-module, which decomposes over C into simples,
but almost never over N.

A P-module M with a fixed, finite basis BM is called a N-module if
xm € NBM  (x € BY,m € BM).

These are N-equivalent if there is a N-valued change of basis matrix.

Example. N-algebras and N-modules arise naturally as the decategorification of
2-categories and 2-modules, and N-equivalence comes from 2-equivalence.
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Example (semisimple world).

A Group algebras of finite groups with basis given by group elements are N-algebras.
The regular module is a N-module, which decomposes over C into simples,
but almost never over N.

A P-module M with a basis BM is called a N-module if

Example (semisimple world).
These are N-equ Fusion algebras, e.g. Ko(Rep]™ (g)ievel ), rix.

with the basis coming from indecomposable objects.

Example. N-algebras and N-modules arise naturally as the decategorification of
2-categories and 2-modules, and N-equivalence comes from 2-equivalence.
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Example (semisimple world).

A Group algebras of finite groups with basis given by group elements are N-algebras.
The regular module is a N-module, which decomposes over C into simples,
but almost never over N.

A P-module M with a basis BM is called a N-module if

Example (semisimple world).
These are N-equ Fusion algebras, e.g. Ko(Rep]™ (g)ievel ), rix.

with the basis coming from indecomposable objects.

Example. N-algebras and N-modules arise naturally as the decategorification of
2-categories and 2-

Example (non-semisimple world). Pquivalence.

Hecke algebras of (finite) Coxeter groups with
their KL basis are N-algebras.
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Clifford, Munn, Ponizovskit ~1942+4, Kazhdan-Lusztig ~1979. x <  y if y
appears in zx with non-zero coefficient for z € BP. x ~| y if x </ y and y <| x.
~ partitions P into left cells L. Similarly for right R, two-sided cells J or
N-modules.

A N-module M is transitive if all basis elements belong to the same ~
equivalence class.
Fact. N-modules have transitive Jordan—Holder filtrations. (The “atoms”.)

Main goal of N-representation theory. Find the periodic table of transitives.

Example. Transitive N-modules arise naturally as the decategorification of simple
2-modules.
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Clifford, Munn, Ponizovskit ~1942+4, Kazhdan—-Lusztig ~1979. x <  y if y
appears in zx with non-zero coefficient for z € BY. x ~ y if x </ y and y <| x.
~ partitions P into left cells L. Similarly for right R, two-sided cells J or

N-modules. Proposition ~2016.
Fixing the KL basis, there is a one-to-one correspondence
A N-module < 3 ~L
equivalence { N-transitive D2,-modules}/N-iso
Fact. N-mod 11 bms”" )
—
{bicolored ADE Dynkin diagrams with Coxeter number n}.
Main goal o transitives.

Thus, its easy to write down a

Example. Transitive N-modules arise naturally as the decategorification of simple
2-modules.
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Clifford, Munn, Ponizovskit ~1942+4, Kazhdan—-Lusztig ~1979. x <  y if y
appears in zx with non-zero coefficient for z € BP. x ~| y if x < y and v <| x.

L [REY] Example (semisimple world).
N-mod
Group algebras with the group element basis have only one cell, G itself.
A N-m
equiva Transitive N-modules C[G/H] for H C G subgroup/conjugacy.

Fact. N-modules have transitive Jordan—Hdlder filtrations. (The “atoms”.)
Main goal of N-representation theory. Find the periodic table of transitives.

Example. Transitive N-modules arise naturally as the decategorification of simple
2-modules.
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Clifford, Munn, Ponizovskit ~1942+, Kazhdan—Lusztig ~1979. x <, y if y
appears in zx with non-zero coefficient for z € BY. x ~ y if x <_ y and y < x.

L [REY] Example (semisimple world).
N-mod
Group algebras with the group element basis have only one cell, G itself.
A N-m . )
equiva Transitive N-modules C[G/H] for H C G subgroup/conjugacy.
Fact. N Example (semisimple world). )
Main g Fusion algebras have only one cell. .
The transitive N-modules are known in special cases, e.g. for g = SLp|
Examp and | “basically know" the classification more generally. f simple
2-modules:
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Clifford, Munn, Ponizovskit ~1942+, Kazhdan—Lusztig ~1979. x <, y if y
appears in zx with non-zero coefficient for z € BY. x ~ y if x <_ y and y < x.

L [REY] Example (semisimple world).
N-mod
Group algebras with the group element basis have only one cell, G itself.
A N-m . )
equiva Transitive N-modules C[G/H] for H C G subgroup/conjugacy.
Fact. N Example (semisimple world). )
Main g Fusion algebras have only one cell. .
The transitive N-modules are known in special cases, e.g. for g = SLp|
Examp and | “basically know" the classification more generally. f simple
2-modules:

Example (non-semisimple world).

Hecke algebras with KL basis
have a cell theory.

The transitive N-modules are only known in
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Categorification in a nutshell

category Vect
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Categorification in a nutshell

category Vect

® XK
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Categorification in a nutshell

category Vect
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Categorification in a nutshell

A universe itself!
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Categorification in a nutshell

A universe itself!

g all n-dim.
Ik (_ ]1{2 vector spaces
all rank 1 vV — W
“...2—1-matrices... f

A universe itself!
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Categorification in a nutshell

A universe itself!

category Vect

“all p-dim.
vector spaces

The point.

The category Vect has the whole power of linear algebra at hand! [self!

There is nothing comparable for N:
N is just a shadow of Vect.
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Slogan. 2-representation theory is group theory in categories.
Categ
categorical module
i A (1) F — A(F) a s M(a)
2fm<‘>du|e category functor nat. trafo
categorifies categl)riﬁes categ‘orifies
A N N
— i M(1) F —M(F)
l—deule vect‘or space linear map
categorifies categorifies
—r i m(i)
0-module AmbEr
A UTTVETSE TTSEn |
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Slogan. 2-representation theory is group theory in categories.
Categ
categorical module

—— i AM(1) F— M (F) o M(a)
2fm(‘)du|e category functor nat. trafo
categorifies categLrifies categ‘orifies

/ o +

— i M(1) F s M(F)
1-module vector space linear map
categ‘oriﬁes categLrifies

—~ i m(i)
0-module AmbEr

. AUTITVETSE TUSET l
What one can hope for.
Problem involving iy Problem involving
a group action  ceeeeees ; t) a categorical
GCc'x group action
.
new .
insights? -, Decomposition of -

the problem
into 2-simples
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Pioneers of 2-representation theory.

Slogan (finitary).

Let 6 be a finitary 2-category. . o
Everything that could be finite is finite.

Etingof—Ostrik, Chuang—Rouquier, many others ~2000+4. Higher
representation theory is the useful? study of actions of 2-categories:

M EC — End(V), |.//Z(F) = a functor in é’nd(V)”|

with V being some finitary category. (Called 2-modules or 2-representations.)

The “atoms” of such an action are called 2-simple.

Mazorchuk—Miemietz ~2014. All 2-modules are built out of
2-simples (“ 2-Jordan—Hdlder filtration™).
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Pioneers of 2-representation theory.

Let 6 be a finitary 2-category.

Etingof—Ostrik, Chuang—Rouquier, many others ~2000+4. Higher
representation theory is the useful? study of actions of 2-categories:

M€ — End(V),

with V being some fi|A main goal of 2-representation theory. representations.)
Classify 2-simples.

The “atoms” of such an action are called 2-simple.

Mazorchuk—Miemietz ~2014. All 2-modules are built out of
2-simples (“ 2-Jordan—Hdlder filtration™).
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Pioneers of 2-representation theory.

Let

Example. ¢ = Vecg or Rep(G).
6 be| Features. Semisimple, classification of 2-simples well-understood.
Comments. | will (try to) discuss the classification “in real time”.

Etingof—Ostrik, Chuang—Rouquier, many others ~2000-+-. Higher
representation theory is the useful? study of actions of 2-categories:

with

Th

sesi

Example. 6 = Rep]™ (g)ievel n-
Features. Semisimple, finitely many 2-simples,
classification of 2-simples only known for g = Sl, some guesses for general g.
Comments. The classification of 2-simples is related to Dynkin diagrams.

“2tomc” of ciich an action are called 2-cimnle

Example. 6 = Hecke category.
Features. Non-semisimple, not known whether there are finitely many 2-simples,
classification of 2-simples only known in special cases.
Comments. Hopefully, by the end of the year we have a classification
by reducing the problem to the above examples.
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An additive, k-linear, idempotent complete, Krull-Schmidt category C is called
finitary if it has only finitely many isomorphism classes of indecomposable objects
and the morphism sets are finite-dimensional. A 2-category 6 with finitely many
objects is finitary if its hom-categories are finitary, ox-composition is additive and
linear, and identity 1-morphisms are indecomposable.

A simple transitive 2-module (2-simple) of € is an additive, k-linear 2-functor
M : € — o/ (= 2-cat of finitary cats),

such that there are no non-zero proper %6-stable ideals.
There is also the notion of 2-equivalence.

Example. N-algebras and N-modules arise naturally as the decategorification of
2-categories and 2-modules, and N-equivalence comes from 2-equivalence.
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An additive, k-linear, idempotent complete, Krull-Schmidt category C is called
finitary if it has only finitely many isomorphism classes of indecomposable objects
and the morphism sets are finite-dimensional. A 2-category %6 with finitely many

obje Mazorchuk—Miemietz ~2014. and
linea
2-Simples e~ simples (e.g. 2-Jordan—Holder filtration),
A sin . . . . br
but their decategorifications are transitive N-modules and usually not simple.

M : 6 — o (= 2-cat of finitary cats),

such that there are no non-zero proper 6-stable ideals.
There is also the notion of 2-equivalence.

Example. N-algebras and N-modules arise naturally as the decategorification of
2-categories and 2-modules, and N-equivalence comes from 2-equivalence.
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An additive, k-linear, idempotent complete, Krull-Schmidt category C is called
finitary if it has only finitely many isomorphism classes of indecomposable objects
and the morphism sets are finite-dimensional. A 2-category %6 with finitely many

obje Mazorchuk—Miemietz ~2014. and
linea
2-Simples e~ simples (e.g. 2-Jordan—Holder filtration),
A sir . T - . pr
but their decategorifications are transitive N-modules and usually not simple.

M€ — (= 2-cat of finitary cats),
such tha Example.
There is

B-pMod (with B finite-dimensional) is a prototypical object of .¢/f.

Example A 2-module usually is given by endofunctors on B-pMod. tion of
2-categories and 2-modules, and N-equivalence comes from 2-equivalence.
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Example (semisimple).

T

Q)

G can be (naively) categorified using G-graded vector spaces Vecg € .&/*.

—_— 0

The are indexed by (conjugacy classes of) subgroups H and ¢ € H?(H, C*).

A simple transitive 2-module (2-simple) of 6 is an additive, k-linear 2-functor
M € — (= 2-cat of finitary cats),

such that there are no non-zero proper 6-stable ideals.
There is also the notion of 2-equivalence.

Example. N-algebras and N-modules arise naturally as the decategorification of
2-categories and 2-modules, and N-equivalence comes from 2-equivalence.
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Example (semisimple).

G can be (naively) categorified using G-graded vector spaces Vece € .of".

|| The are indexed by (conjugacy classes of) subgroups H and ¢ € H?(H, C*).

A simp Example (semisimple). Ftor

Fusion or modular categories are semisimple examples

such t of finitary 2-categories, e.g. RepZGSi(g)n.

Their 2-modules play a prominent role in quantum algebra and topology.
There = -

Example. N-algebras and N-modules arise naturally as the decategorification of
2-categories and 2-modules, and N-equivalence comes from 2-equivalence.
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Example (semisimple).

G can be (naively) categorified using G-graded vector spaces Vece € .of".

|| The are indexed by (conjugacy classes of) subgroups H and ¢ € H?(H, C*).

A simp Example (semisimple). Ftor

Fusion or modular categories are semisimple examples

such t of finitary 2-categories, e.g. RepZGSi(g)n.

Their 2-modules play a prominent role in quantum algebra and topology.
There = -

Example (non-semisimple).
Exampl€ htion of
2-categof Soergel bimodules for finite Coxeter groups are finitary 2-categories.

Dihedral group: the have an ADE classification.

Daniel Tubbenhauer What is...finitary 2-representation theory? February 2019 11/12



An additive, k-linear, idempotent complete, Krull-Schmidt category C is called

finitary if it has only finitely many isomorphism classes of indecomposable objects
and the morphism sets are finite-dimensional. A 2-category 6 with finitely many
objects is finitary if its hom-categories are finitary, o,-composition is additive and
linear, and identity 1-morphisms are indecomposable.

A simple

such tha
There is

On the categorical level the impact of the choice of basis is evident: |t

These are the indecomposable objects in some 2-category,
and different bases are categorified by
potentially non-equivalent 2-categories.

So, of course, the 2-representation theory differs!

Example. N-algebras and N-modules arise naturally as the decategorification of
2-categories and 2-modules, and N-equivalence comes from 2-equivalence.

Daniel Tubbenhauer What is...finitary 2-representation theory?

February 2019 11/12



An additive, k-linear, idempotent complete, Krull-Schmidt category C is called
finitary if it has only finitely many isomorphism classes of indecomposable objects
and the morphism sets are finite-dimensional. A 2-category 6 with finitely many
objects is finitary if its hom-categories are finitary, o,-composition is additive and
linear, and identity 1-morphisms are indecomposable.

A simple transiti Philosophy to take away. near 2-functor

“Finitary 2-representation theory

such that there &

representation theory of finite-dimensional algebras
for all primes p > 0.”

There is also the

Example. N-algebras and N-modules arise naturally as the decategorification of
2-categories and 2-modules, and N-equivalence comes from 2-equivalence.

Daniel Tubbenhauer What is...finitary 2-representation theory? February 2019 11/12
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Piancers of representaion theory

Let A b it dimensons! slebrs.
Noether ~1928 . Reprsenttion thory s th usfl? study of slebes sctions
M: A £adly),

with V bing some vector space. (Called modtles o reprsentations )
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Dibedral representaion theory on one side.

Onc.dimensional modules. A4, A, A, € C.e s

Mo Mo Mg Mig | A

Two-dimensional modules. M,z & Ce - (| %), 0o+ (319)

2

Mz € Vio)- (0} Mze Vi)
V(o) = (2cestikfn-1) [ = 1.....n~ 2]
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It may then be asked why, in a book which professes to leave
all applications on one side, a iderable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that
could be most directly obtained by the consideration of grou
of linear transformations.

ERY considerable advances in the theory of groups of
finite order have been made since the appearance of the
first edition of this book. In particular the theory of groups
of linear substitutions has been the subject of numerous and

important investigations by several writers; and the reason
given in the original preface for omitting any account of it no
longer holds good.

In fact it is now more true to say that for further advances

in the abstract theory one must look largely to the representa-
tion of a group as a group of linear substitutions. There is

Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).



It may then be asked why, in a book which professes to leave
all applications on one side, a iderable space is devoted to
substitution groups; while other particular modes of repre-
sentation, such as groups of linear transformations, are not
even referred to. My answer to this question is that while, in
the present state of our knowledge, many results in the pure
theory are arrived at most readily by dealing with properties
of substitution groups, it would be difficult to find a result that

|Nowadays representation theory is pervasive across mathematics, and beyond.|

‘7ERY considerable advances in the theory of groups of

[But this wasn't clear at all when Frobenius started it.]

of linear substitutions has been the subject of numerous and
important investigations by several writers; and the reason
given in the original preface for omitting any account of it no
longer holds good.

In fact it in now more true to say that for further advances
in the abstract theory one must look largely to the representa-
tion of a group as a group of linear substitutions. There is

Figure: Quotes from “Theory of Groups of Finite Order” by Burnside. Top: first edition
(1897); bottom: second edition (1911).



bilden
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Figure: “Uber Gruppencharaktere (i.e. characters of groups)” by Frobenius (1896).
Bottom: first published character table.

Note the root of unity p!



The type A family
n=5

n;z n=3 n=4
—k — —
* ——

A
~«
L

The type D family

n =10

The type E exceptions

n =18

f
i

1L

n =30



The type A family

= n=>5 n==6
—k — —
* —— ——

|This is an unexpected ADE classification. |

Tne type D Tamiry
n =10

JHJH_FJM

Fun, and of course related
Rep;™ (SL2), (semisimplified at level n)
] has, up to forgetting bicoloring, the same classification of 2-simples.

N X N X

There is a similar story for all types,
I e.g. Repy™ (SLs)n (semisimplified at level n)

30

relates to some “trihedral algebra”.
—_— = X k¥




The regular Z/3Z-module is

0 (398) & 1e- (383) & 2 (339)
001 010 100

Jordan decomposition over C with (3 = 1 gives
0%(010) & 1%(040) & 2«w><
001 00 C_l
However, Jordan decomposition over f3 gives
OM((IJ(I)S) & 1«M(é%‘1’) & 2M(
001 001

and the regular module does not decompose.

1
0
0

1
1
0

RO



The regular Z/3Z-module is

ow(é?g) & 1M(?88) & 2w(86
001 010 10

y
1
0

Jordan de Fun fact.

Choose your favorite field and perform the Jordan decomposition.
Then you will see all simples appearing!

However, Jordan decomposition over f3 gives
100 110 11
Ow(ow) & 1%(011) & 2«w><01
001 001 00

D
1
1

and the regular module does not decompose.



Example (G = Dg). Here we have three different notions of “atoms”.

Classical representation theory. The simples from before.

Miag | Mia | Mps | Mag | Mia
atom sign rotation trivial
rank 1 1 2 1 1
Group element basis. Subgroups and ranks of N-modules.
subgroup | 1 (st) (W) | (wo,s) | (wo,sts) | G
atom regu|ar Ml.le}M—l;l M\/EEBM\/E M1716M1,,1 M1,1@M,171 triVial
rank 8 2 4 2 2 1
KL basis. ADE diagrams and ranks of N-modules.
bottom cell | ——v¥ —— top cell
atom sign Mi @M 5 | Mai®M ;5 | trivial
rank 1 3 3 1
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Miag | Mia | Mps | Mag | Mia
atom sign rotation trivial
Fun fact.

Choose your favorite field and perform the Jordan decomposition.

Group ele Then you will see all simples appearing!
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Example (G = Dg). Here we have three different notions of “atoms”.

Classical representation theory. The simples from before.

Miag | Mia | Mps | Mag | Mia
atom sign rotation trivial
Fun fact.

Choose your favorite field and perform the Jordan decomposition.

Group ele Then you will see all simples appearing!
subgroup | 1 (st) (o) | (woys) | (woysts) | G
atom regu|ar Ml.le}M—l;l M\/EEBM\/E M1716M1,,1 Ml,l@M—l,l triVial
rank 8 “Knowing the transitive N-modules 2 1
A
. . |knowing the simples for all primes p > 0."
KL basis. ADE diagrams amna ranks or IN-moauTes.
bottom cell | ——v¥ —— top cell
atom sign Mi @M 5 | Mai®M ;5 | trivial
rank 1 3 3 1




Example (SAGE). The Weyl group of type Bg. Number of elements: 46080.
Number of cells: 26, named 0 (trivial) to 25 (top).

Cell order:
Do 7 e 10 == 13 == 15 =18 =— 21

7 7/
0—1—2—4—6—8—9—12—16—17 — 19 — 22 — 23 — 24 —25
7 N\ 7/ N 7

Size of the cells:

[cenoJx[2]3J]a] 5 [ 6] 7 [ 8] 9 [10] 1] 12 [13] 14 [15] 16 | 17 | 18 |19 [ 20 | 21 | 22 | 23 [24] 25 |
[[size T 1 ] 62 [ 342 ] 576 ] 650 | 3150 | 350 | 1600 | 2432 | 3402 | 900 | 2025 | 14500 [ 600 | 2025 | 900 | 3402 | 2432 [ 1600 | 350 [ 576 [ 3150 [ 650 [ 342 [ 62 1 |




Example (G = Z/2xZ/2).
Subgroups, Schur multipliers and 2-simples.

L)27 < 1|27

AN

7/27. 7.)27 1)2Z

ANVZ

1

In particular, there are two categorifications of the trivial module, and the rank
sequences read
decat: 1,2,2,2,4, cat: 1,1,2,2,2, 4.



Example (G = Z/2xZ/2).
Subgroups, Schur multipliers and 2-simples.

ZJ27XT)2Z. {+1,-1}

SN SN

7)27 7)27 727  {e}
ANV4 \I/

In particular, there are two categorlflcatlons of the trivial module, and the rank
sequences read
decat: 1,2,2,2,4, cat: 1,1,2,2,2,4.



Example (G = Z/2xZ/2).

Subgroups, Schur multipliers and 2-simples.

Z./27.x7.)27. {+1,-1} Vecit, Vecy !
RN e \ /1N
Z)27 7/2Z 7/2Z @ {e} {e} Vecy oz Vecy, oz Vecy oz,
NN NS

ecg

In particular, there are two categorlflcatlons of the trivial module, and the rank
sequences read
decat: 1,2,2,2,4, cat: 1,1,2,2,2, 4.



Construct a Do,-module V associated to a bipartite graph G:

i 3 24 5
20100 0
02111 0
.M. =| 00000 |, @G ~M=]| 1
00000 0
00000 0

= = = O O

O O N O O
O N O O O
N O O O O



Construct a Do,-module V associated to a bipartite graph G:

9 action Q
S

i 3 24 B
g
20100 0
02111 0
.M. =| 100000 |, @6 ~M=]| 1
00000 0
00000 0

= = = O O

o o NN O o

O N O O O

N O O O O



Construct a Do,-module V associated to a bipartite graph G:

action

O——

i 3 24 B
g
2(0]1 00 0
0/2/1 11 0
h.~M.=| 00000 |, 6 M =] 1
00000 0
00000 0

= = = O O

o o NN O o

O N O O O

N O O O O



Construct a Do,-module V associated to a bipartite graph G:

action

O——

i 3 24 &5
AN
2 0(1l0 0 0
02|11 1 0
h.~M.=| 00000 |, 6 M =] 1
00000 0
00000 0

= = = O O

o o NN O o

O N O O O

N O O O O



Construct a Do,-module V associated to a bipartite graph G:

action

O——

i 3 24 5
)
2 0 1[0]0 0
02111 0
0. ~M.=| 00000 |. 6 M =] 1
00000 0
00000 0

= = = O O
O O N O O
O N O O O
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Construct a Do,-module V associated to a bipartite graph G:

action

O——

i 3 24 5
A/
20100 0
02111 0
0. ~M.=| 00000/ |, 6 M =] 1
00000 0
00000 0

= = = O O

o o NN O o
O N O O O
N O O O O



Construct a Do,-module V associated to a bipartite graph G:

i 3 24 b5
N
20100 0
02111 0
h.~M.=| 00000 |, 6 M =] 1
00000 0
00000 0

= = = O O

O O NN O O
O N O O O

N O O O O



Construct a Do,-module V associated to a bipartite graph G:

i 3 24 5

NS A
20100
02111

.~M.=| 00000 |, 6 ~M =
00000
00000

o O = O O

= = = O O

o O N O O

O N O O O

N O O O O



Construct a Do,-module V associated to a bipartite graph G:

i 3 24 5
J
20100 0
02111 0
.M. =| 00000 |, @G ~M=]| 1
00000 0
00000 0

= = = O O

O O NN O O
O N O O O
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Construct a Do,-module V associated to a bipartite graph G:

g

i 3 24
Jg
20100 0
02111 0
h.~M.=| 00000 |, 6 M =] 1
00000 0
00000 0

= = = O O
O O N O O
O N O O O

N O O O O



Construct a Do,-module V associated to a bipartite graph G:

Qo

i 3 214
20100 0
02111 0
h.~M.=| 00000 |, 6 M =] 1
00000 0
00000 0

= = = O O

o o NN O o

O N O O O

N O O O O



Construct a Do,-module V associated to a bipartite graph G:

V= <la 27 §7 @7 E>C

|Lemma. For certain values of n these are N-valued C[D2,]-modules. |

|Lemma. All N-valued C[Dg,,]—module‘arise in this way. |

|Lemma. All 2-modules decategorify to such N-valued C[D2n]-module. |
1 3 2 4 5

20100 0000O
02111 000O0O
0s ~ Mg = 00000 |, 0. ~ M, = 11200
00000 01020
000O0O 01002



Construct a Do,-module V associated to a bipartite graph G:

V:<1527 s >(C

Categorification.

Category ~» V = Z-Mod,
Z quiver algebra with underlying graph G.

Endofunctors ~~ tensoring with Z-bimodules.

Lemma. These satisfy the relations of C[D2s].

20100 0
02111 0
.M. =| 00000 |, @G ~M=]| 1
00000 0
00000 0

= = = O O
O O NN O O
O N O O O
N O O O O



Construct a Do,-module V associated to a bipartite graph G:

V:<la25 s >(C

Theorem ~2016.
Fixing the Hecke category, there is a one-to-one correspondence
{ 2-simples D2,-modules} /2-iso
1:1

{bicolored ADE Dynkin diagrams with Coxeter number n}.

Same as on the decategorified level.

U U

GSWMS: s QWM:

O O O ON

21
00
00
00

O O O
o O O+
O O~ O d
= = = O d
O O NN O d
O NN O O d

N O O O O
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