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Let A(Γ) be the adjacency matrix of a finite, connected, loopless graph Γ. Let
Ue+1(X) be the Chebyshev polynomial .

Classification problem (CP). Classify all Γ such that Ue+1(A(Γ)) = 0.

for e = 2

for e = 4

Smith ∼1969. The graphs solutions to (CP) are precisely
ADE graphs for e + 2 being (at most) the Coxeter number.

Type Am: • • • · · · • • • for e = m − 1

Type Dm: • • · · · • •

•

•

for e = 2m − 4

Type E6:
• • • • •

•
for e = 10

Type E7:
• • • • • •

•
for e = 16

Type E8:
• • • • • • •

•
for e = 28
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1 Dihedral representation theory
The classical representation theory
The N0-representation theory
Dihedral N0-representation theory

2 Non-semisimple fusion rings
The asymptotic limit
Cell modules
The dihedral example

3 Beyond
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The dihedral groups are of Coxeter type I2(e + 2):

We+2 = 〈s, t | s2 = t2 = 1, se+2 = . . . sts︸ ︷︷ ︸
e+2

= w0 = . . . tst︸ ︷︷ ︸
e+2

= te+2〉,

e.g. : W4 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2
the Coxeter complex is:

• H

H

H

H

FF

FF

1

I will sneak in the Hecke case,
later on.

I will explain in a few minutes
what cells are.

For the moment: Never mind!

Lowest cell.

Biggest cell.

s-cell.

t-cell.
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Dihedral representation theory on one slide.

One-dimensional modules. Mλs,λt
, λs, λt ∈ C, θs 7→ λs, θt 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M0,0, M2,0, M0,2, M2,2 M0,0, M2,2

Two-dimensional modules. Mz , z ∈ C, θs 7→ ( 2 z
0 0 ), θt 7→ ( 0 0

z 2 ).

e ≡ 0 mod 2 e 6≡ 0 mod 2

Mz , z ∈ V±e −{0} Mz , z ∈ V±e

Ve = roots(Ue+1(X)) and V±e the Z/2Z-orbits under z 7→ −z .

The Bott–Samelson (BS) generators θs = s + 1, θt = t + 1.
There is also a Kazhdan–Lusztig (KL) bases. Explicit formulas do not matter today.

Proposition (Lusztig?).

The list of one- and two-dimensional We+2-modules
is a complete, irredundant list of simple modules.

I learned this construction from Mackaay in 2017.
Example.

M0,0 is the sign representation and M2,2 is the trivial representation.

In case e is odd, Ue+1(X) has a constant term, so M2,0, M0,2 are not representations.

Example.

Mz for z being a root of the Chebyshev polynomial is a
representation because the braid relation in terms of BS generators

involves the coefficients of the Chebyshev polynomial.

Example.

These representations are indexed by Z/2Z-orbits of the Chebyshev roots:
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An algebra P with a fixed basis BP is called a (multi) N0-algebra if

xy ∈ N0B
P (x, y ∈ BP).

A P-module M with a fixed basis BM is called a N0-module if

xm ∈ N0B
M (x ∈ BP,m ∈ BM).

These are N0-equivalent if there is a N0-valued change of basis matrix.

Example. N0-algebras and N0-modules arise naturally as the decategorification of
2-categories and 2-modules, and N0-equivalence comes from 2-equivalence.

Example.

Group algebras of finite groups with basis given by group elements are N0-algebras.

The regular module is a N0-module.

Example.

Fusion rings are with basis given by classes of simples elements are N0-algebras.

Key example: K0(Rep(G)) (easy N0-representation theory).

Key example: K0(Repss
q (Uq(g)) = Gq) (intricate N0-representation theory).

Example.

Hecke algebras of (finite) Coxeter groups with
their KL basis are N0-algebras.

Their N0-representation theory is mostly widely open.
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Clifford, Munn, Ponizovskĭı ∼1942++, Kazhdan–Lusztig ∼1979. x ≤L y if y
appears in zx with non-zero coefficient for z ∈ BP. x ∼L y if x ≤L y and y ≤L x.
∼L partitions P into left cells L. Similarly for right R, two-sided cells LR or
N0-modules.

A N0-module M is transitive if all basis elements belong to the same ∼L

equivalence class. An apex of M is a maximal two-sided cell not killing it.

Fact. Each transitive N0-module has a unique apex.

Hence, one can study them cell-wise.

Example. Transitive N0-modules arise naturally as the decategorification of
simple 2-modules.

Philosophy.

Imagine a graph whose vertices are the x’s or the m’s.
v1 → v2 if v1 appears in zv2.

cells = connected components
transitive = one connected component

“The atoms of N0-representation theory”.

Question (N0-representation theory). Classify them!

Example.

Group algebras with the group element basis have only one cell, G itself.

Transitive N0-modules are C[G/H] for H ⊂ G subgroup/conjugacy. The apex is G .

Example.

Fusion rings in general have only one cell
since each basis element [Vi ] has a dual [V ∗i ]
such that [Vi ][V

∗
i ] contains 1 as a summand.

Cell theory is useless for them!

Example (Lusztig ≤2003).

Hecke algebras for the dihedral group with KL basis have the following cells:

1

s ts sts tsts ststs

t st tst stst tstst

w0

We will see the transitive N0-modules in a second.

Left cells. Right cells.

Two-sided cells.

Morally.

The further away an N0-algebra is from being semisimple,
the more useful and interesting is its cell structure.
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N0-modules via graphs.

Construct a W∞-module M associated to a bipartite graph Γ:

M = C〈1, 2, 3, 4, 5〉

1 3 2 4 5

H F H

F

F

θs  Ms =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, θt  Mt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







The adjacency matrix A(Γ) of Γ is

A(Γ) =

0 0 1 0 0
0 0 1 1 1
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0







These are We+2-modules for some e
only if A(Γ) is killed by the Chebyshev polynomial Ue+1(X).

Morally speaking: These are constructed as the simples
but with integral matrices having the Chebyshev-roots as eigenvalues.

It is not hard to see that the Chebyshev–braid-like relation can not hold otherwise.

Hence, by Smith’s (CP) and Lusztig: We get a representation of We+2

if Γ is a ADE Dynkin diagram for e + 2 being the Coxeter number.

That these are N0-modules follows from categorification.

‘Smaller solutions’ are never N0-modules.

Classification.

Complete , irredundant list of transitive N0-modules of We+2:

apex 1 cell s – t cell w0 cell

N0-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

I learned this from/with Kildetoft–Mackaay–Mazorchuk–Zimmermann ∼2016.
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Example (e = 2).

The Weyl group of type B2. Number of elements: 8. Number of cells: 3, named 0
(trivial) to 2 (top).

Cell order:
0 1 2

Size of the cells:
cell 0 1 2

size 1 6 1

Cell structure:

s, sts ts

st t, tst

1

w0

number of elements−−−−−−−−−−−→ 2 1

1 2

1

1

Example (SAGE).

1 · 1 = v01.
(v is the Hecke parameter deforming the reflection equations s2 = t2 = 1.)

Example (SAGE).

θs · θs = (v1+lower powers)θs.
θsts · θs = (v1+lower powers)θsts.

θsts · θsts = (v1+lower powers)θs+higher cell elements.
θsts · θtst = (lower powers)θst + higher cell elements.

Example (SAGE).

θw0 · θw0 = (v4 + lower powers)θw0 .

Fact (Lusztig ∼1984++).

For any Coxeter group W
there is a well-defined function

a : W→ N0

which is constant on two-sided cells.

Big example

Idea (Lusztig ∼1984).

Ignore everything except the leading coefficient
a(two-sided cell).

Why isn’t that stupid?
Because a is also turns up as the leading coefficients

of traces of standard generators acting on simple modules.

Upshot. One can associate an apex to simples,
and the simples should be uniquely determent by the leading coefficients.
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s, sts ts
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1
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number of elements−−−−−−−−−−−→ 2 1

1 2

1

1

Example (SAGE).

1 · 1 = v01.
(v is the Hecke parameter deforming the reflection equations s2 = t2 = 1.)

Example (SAGE).
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Let Hv(W) be the Hecke algebra associated to W. The asymptotic limit J∞(W)
of Hv(W) is defined as follows.

As a free Z-module:

J∞(W) =
⊕

LR Z{tw | w ∈ LR}. Compare: Hv(W) = Z[v, v−1]{θw |W}.

Multiplication.

tx ty =
∑

z∈LR γ
z
x,y tz . Compare: θxθy =

∑
z∈LR hzx,yθz + bigger friends.

where γzx,y ∈ N0 is the leading coefficient of hzx,y ∈ N0[v, v−1].

Example (e = 2).

The multiplication tables (empty entries are 0 and [2] = v + v−1) in 1:
ts tsts tst tt ttst tts

ts ts tsts tst

tsts tsts ts tst

tts tts tts tt + ttst

tt tt ttst tts

ttst ttst tt tts

tst tst tst ts + tsts

θs θsts θst θt θtst θts

θs [2]θs [2]θsts [2]θst θst θst + θw0 θs + θsts

θsts [2]θsts [2]θs + [2]2θw0 [2]θst + [2]θw0 θs + θsts θs + [2]2θw0 θs + θsts + [2]θw0

θts [2]θts [2]θts + [2]θw0 [2]θt + [2]θtst θt + θtst θt + θtst + [2]θw0 2θts + θw0

θt θts θts + θw0 θt + θtst [2]θt [2]θtst [2]θts

θtst θt + θtst θt + [2]2θw0 θt + θtst + [2]θw0 [2]θtst [2]θt + [2]2θw0 [2]θts + [2]θw0

θst θs + θsts θs + θsts + [2]θw0 2θst + θw0 [2]θst [2]θst + [2]θw0 [2]θs + [2]θsts

(Note the “subalgebras”.)

The asymptotic algebra is much simpler!

Big example

Fact (Lusztig ∼1984++).

J∞(W) =
⊕

LR JLR
∞(W) with the tw basis

and all its summands JLR
∞(W) = Z{tw | w ∈ LR}

are multifusion algebras.

(Meaning semisimple N0-algebras with a certain nice trace form.)

Surprising fact 1 (Lusztig ∼1984++).
It seems one throws almost away everything, but:

There is an explicit embedding

Hv(W) ↪→ J∞(W)⊗Z Z[v, v−1]

which is an isomorphism after scalar extension to Q(v).

Surprising fact 2 (Lusztig ∼1984++).

There is an explicit 1:1 correspondence

{simples of Hv(W) with apex LR} 1:1←→ {simples of JLR
v (W)}.
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“Induced” transitive N0-algebras and -modules.

Fix a left cell L. Let M(≥L), respectively M(>L), be the N0-modules spanned by
all x ∈ BP in the union L′ ≥L L, respectively L′ >L L. Similarly for right R,
two-sided LR and diagonal H = L ∩ R cells.

Left cell module CL = M(≥L)/M(>L). (Left N0-module.)

Right cell module CR = M(≥R)/M(>R). (Right N0-module.)

Two-sided cell module CLR = M(≥LR)/M(>LR). (N0-bimodule.)

The diagonal cell CH = JH
∞(W) = (M(≥LR)/M(>LR)) ∩KBP(H).

(N0-subalgebra.)

Analogy: “Hierarchy of structures”.

CL

CH CLR

CR

⊂⊂
⊂ ⊂

!
left induced

subalgebras biinduced

right induced

⊂⊂
⊂ ⊂

Example.

C[G ] with the group element basis has only one cell module, the regular module.

Similarly for any fusion algebra.

Example (Kazhdan–Lusztig ∼1979, Lusztig ∼1983++).

For Hecke algebras of the symmetric group with KL basis
the cell modules are Lusztig’s

cell modules studied in connection with reductive groups in characteristic p.

Example (dihedral case).

Cells:

cell 0 1 2

size 1 2n−2 1

a 0 1 n

1 for n even:
n
2

n−2
2

n−2
2

n
2

1 for n odd:
n−1

2
n−1

2
n−1

2
n−1

2

n even. Two left cell modules ! Two bicolorings of the type A graph.
n odd. One left cell module ! One bicoloring of the type A graph.

Big example
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For Hecke algebras of the symmetric group with KL basis
the cell modules are Lusztig’s

cell modules studied in connection with reductive groups in characteristic p.

Example (dihedral case).

Cells:

cell 0 1 2

size 1 2n−2 1

a 0 1 n

1 for n even:
n
2

n−2
2

n−2
2

n
2

1 for n odd:
n−1

2
n−1

2
n−1

2
n−1

2

n even. Two left cell modules ! Two bicolorings of the type A graph.
n odd. One left cell module ! One bicoloring of the type A graph.

Big example
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Example (e = 2).

The fusion ring K0(SL(2)q) for q2e = 1 has simple objects [L0], [L1], [L2]. The
fusion ring JLR

∞ (W) has simple objects ts, tsts, tst, tt, ttst, tts.

Comparison of multiplication tables:

[L0] [L2] [L1]

[L0] [L0] [L2] [L1]

[L2] [L2] [L0] [L1]

[L1] [L1] [L1] [L0] + [L2]

&

ts tsts tst tt ttst tts

ts ts tsts tst

tsts tsts ts tst

tts tts tts tt + ttst

tt tt ttst tts

ttst ttst tt tts

tst tst tst ts + tsts

JLR
∞ (W) is a bicolored version of K0(SL(2)q):

ts&tt! [L0], tsts&ttst! [L2], tst&tts! [L1].

This is the slightly nicer statement.

Fact.

Both connections are always true (i.e. for any e).

H-cell-theorem.

There are 1:1 correspondences

{transitives of Hv(W) with apex LR} 1:1←→ {transitives of JLR
v (W)} 1:1←→ {transitives of JH

v (W)},

{transitives of Hv(W) with apex LR} 1:1←→ {transitives of K0(SL(2)s,tq )} 1:1←→ {transitives of K0(SO(3)q)}.

Example

Upshot.

Hv(W) is a non-semisimple version of K0(SL(2)q),

HH
v (W) is a non-semisimple version of K0(SO(3)q).

In particular, the Hecke algebras have a v parameter.

Fact.

With a bit more care (with the H-cell-theorem)
all the above generalizes to any Coxeter group W.

Thus, Hecke algebras are non-semisimple fusion rings.

In general J∞(W) is not understood,
but for W being a finite Weyl group

JH
∞(W) is very nice .
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Beyond?

I Categorification?

. Non-semisimple: Replace Hecke algebra by Soergel bimodules.

. Non-semisimple: Categorical N0-modules for dihedral groups. Zigzag algebras
appear.

. Fusion: Replace asymptotic Hecke algebra by asymptotic Soergel bimodules.

. Fusion: Categorical N0-modules for SL(2)q . Algebras are trivial.

. H: Asymptotic Soergel bimodules are very nice, just remove K0 everywhere.

. H-cell-theorem ? . Work in progress! Click

I SL(n)q?

. Non-semisimple: Nhedral; leaves the realm of groups.

. Non-semisimple: Categorical N0-modules for Nhedral algebras have a Ncolored
ADE-type classification. Generalized zigzag algebras and Chebyshev polynomials
appear.

. Fusion: One gets SL(N)q .

. Fusion: Categorical N0-modules of SL(N)q have an ADE-type classification.

Algebras are trivial. Click
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Let A(Γ) be the adjacency matrix of a finite, connected, loopless graph Γ. Let
Ue+1(X) be the Chebyshev polynomial .

Classification problem (CP). Classify all Γ such that Ue+1(A(Γ)) = 0.

A3 =
1 3 2• • • A(A3) =




0 0 1
0 0 1
1 1 0


 SA3

= {2 cos( π
4 ), 0, 2 cos( 3π

4 )}

D4 =
1

4

2

3

• •

•

•

A(D4) =




0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0


 SD4

= {2 cos( π
6 ), 02, 2 cos( 5π

6 )}

U3(X) = (X− 2 cos( π
4 ))X(X− 2 cos( 3π

4 ))

U5(X) = (X− 2 cos( π
6 ))(X− 2 cos( 2π

6 ))X(X− 2 cos( 4π
6 ))(X− 2 cos( 5π

6 ))

for e = 2

for e = 4

Smith ∼1969. The graphs solutions to (CP) are precisely
ADE graphs for e + 2 being (at most) the Coxeter number.

Type Am: • • • · · · • • • for e = m − 1

Type Dm: • • · · · • •

•

•

for e = 2m − 4

Type E6:
• • • • •

•
for e = 10

Type E7:
• • • • • •

•
for e = 16

Type E8:
• • • • • • •

•
for e = 28
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The dihedral groups are of Coxeter type I2(e + 2):

We+2 = 〈s, t | s2 = t2 = 1, se+2 = . . . sts︸ ︷︷ ︸
e+2

= w0 = . . . tst︸ ︷︷ ︸
e+2

= te+2〉,

e.g. : W4 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2
the Coxeter complex is:

• H

H

H

H

FF

FF

1
t

s

ts

st

tst

sts
w0

I will sneak in the Hecke case,
later on.

I will explain in a few minutes
what cells are.

For the moment: Never mind!

Lowest cell.

Biggest cell.

s-cell.

t-cell.
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Dihedral representation theory on one slide.

One-dimensional modules. Mλs,λt
, λs, λt ∈ C, θs 7→ λs, θt 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M0,0, M2,0, M0,2, M2,2 M0,0, M2,2

Two-dimensional modules. Mz , z ∈ C, θs 7→ ( 2 z
0 0 ), θt 7→ ( 0 0

z 2 ).

e ≡ 0 mod 2 e 6≡ 0 mod 2

Mz , z ∈ V±e −{0} Mz , z ∈ V±e

Ve = roots(Ue+1(X)) and V±e the Z/2Z-orbits under z 7→ −z .

The Bott–Samelson (BS) generators θs = s + 1, θt = t + 1.
There is also a Kazhdan–Lusztig (KL) bases. Explicit formulas do not matter today.

Proposition (Lusztig?).

The list of one- and two-dimensional We+2-modules
is a complete, irredundant list of simple modules.

I learned this construction from Mackaay in 2017.

Example.

M0,0 is the sign representation and M2,2 is the trivial representation.

In case e is odd, Ue+1(X) has a constant term, so M2,0, M0,2 are not representations.

Example.

Mz for z being a root of the Chebyshev polynomial is a
representation because the braid relation in terms of BS generators

involves the coefficients of the Chebyshev polynomial.

Example.

These representations are indexed by Z/2Z-orbits of the Chebyshev roots:
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N0-modules via graphs.

Construct a W∞-module M associated to a bipartite graph Γ:

M = C〈1, 2, 3, 4, 5〉

1 3 2 4 5

θs
action

H F H

F

F

θs  Ms =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, θt  Mt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







The adjacency matrix A(Γ) of Γ is

A(Γ) =

0 0 1 0 0
0 0 1 1 1
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0







These are We+2-modules for some e
only if A(Γ) is killed by the Chebyshev polynomial Ue+1(X).

Morally speaking: These are constructed as the simples
but with integral matrices having the Chebyshev-roots as eigenvalues.

It is not hard to see that the Chebyshev–braid-like relation can not hold otherwise.

Hence, by Smith’s (CP) and Lusztig: We get a representation of We+2

if Γ is a ADE Dynkin diagram for e + 2 being the Coxeter number.

That these are N0-modules follows from categorification.

‘Smaller solutions’ are never N0-modules.

Classification.

Complete , irredundant list of transitive N0-modules of We+2:

apex 1 cell s – t cell w0 cell

N0-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

I learned this from/with Kildetoft–Mackaay–Mazorchuk–Zimmermann ∼2016.
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The type A family
e = 0

H

F

e = 1

H F

e = 2

H F H

F H F

e = 3

H F H F

e = 4

H F H F H

F H F H F

. . .

The type D family
e = 4

H F
H

H

F H
F

F

e = 6

F H F
H

H

H F H
F

F

e = 8

H F H F
H

H

F H F H
F

F

e = 10

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
e = 10

H F H F H

F

F H F H F

H

e = 16

H F H F H F

F

F H F H F H

H

e = 28

H F H F H F H

F

F H F H F H F

H

Back

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the classical representations.

Example (e = 2). Here we have three different notions of “atoms”.

Classical representation theory. The simples from before.

M0,0 M2,0 M√2 M0,2 M2,2

atom sign rotation trivial
rank 1 1 2 1 1

apex(KL) 1 s – t s – t s – t w0

Group element basis. Subgroups and ranks of transitive N0-modules.

subgroup 1 〈st〉 〈w0〉 〈w0, s〉 〈w0, sts〉 G
atom regular M0,0⊕M2,2 M√2⊕M√2 M2,0⊕M2,2 M0,2⊕M2,2 trivial
rank 8 2 4 2 2 1
apex G G G G G G

KL basis. ADE diagrams and ranks of transitive N0-modules.

bottom cell H F H F H F top cell

atom sign M2,0⊕M√2 M0,2⊕M√2 trivial
rank 1 3 3 1

apex 1 s – t s – t w0

Back

Let Hv(W) be the Hecke algebra associated to W. The asymptotic limit J∞(W)
of Hv(W) is defined as follows.

As a free Z-module:

J∞(W) =
⊕

LR Z{tw | w ∈ LR}. Compare: Hv(W) = Z[v, v−1]{θw |W}.

Multiplication.

tx ty =
∑

z∈LR γ
z
x,y tz . Compare: θxθy =

∑
z∈LR hzx,yθz + bigger friends.

where γzx,y ∈ N0 is the leading coefficient of hzx,y ∈ N0[v, v−1].

Example (e = 2).

The multiplication tables (empty entries are 0 and [2] = v + v−1) in 1:
ts tsts tst tt ttst tts

ts ts tsts tst

tsts tsts ts tst

tts tts tts tt + ttst

tt tt ttst tts

ttst ttst tt tts

tst tst tst ts + tsts

θs θsts θst θt θtst θts

θs [2]θs [2]θsts [2]θst θst θst + θw0 θs + θsts

θsts [2]θsts [2]θs + [2]2θw0 [2]θst + [2]θw0 θs + θsts θs + [2]2θw0 θs + θsts + [2]θw0

θts [2]θts [2]θts + [2]θw0 [2]θt + [2]θtst θt + θtst θt + θtst + [2]θw0 2θts + θw0

θt θts θts + θw0 θt + θtst [2]θt [2]θtst [2]θts

θtst θt + θtst θt + [2]2θw0 θt + θtst + [2]θw0 [2]θtst [2]θt + [2]2θw0 [2]θts + [2]θw0

θst θs + θsts θs + θsts + [2]θw0 2θst + θw0 [2]θst [2]θst + [2]θw0 [2]θs + [2]θsts

(Note the “subalgebras”.)

The asymptotic algebra is much simpler!

Big example

Fact (Lusztig ∼1984++).

J∞(W) =
⊕

LR JLR
∞(W) with the tw basis

and all its summands JLR
∞(W) = Z{tw | w ∈ LR}

are multifusion algebras.

(Meaning semisimple N0-algebras with a certain nice trace form.)

Surprising fact 1 (Lusztig ∼1984++).
It seems one throws almost away everything, but:

There is an explicit embedding

Hv(W) ↪→ J∞(W)⊗Z Z[v, v−1]

which is an isomorphism after scalar extension to Q(v).

Surprising fact 2 (Lusztig ∼1984++).

There is an explicit 1:1 correspondence

{simples of Hv(W) with apex LR} 1:1←→ {simples of JLR
v (W)}.
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Example (e = 2).

The fusion ring K0(SL(2)q) for q2e = 1 has simple objects [L0], [L1], [L2]. The
fusion ring JLR

∞ (W) has simple objects ts, tsts, tst, tt, ttst, tts.

Comparison of multiplication tables:

[L0] [L2] [L1]

[L0] [L0] [L2] [L1]

[L2] [L2] [L0] [L1]

[L1] [L1] [L1] [L0] + [L2]

&

ts tsts tst tt ttst tts

ts ts tsts tst

tsts tsts ts tst

tts tts tts tt + ttst

tt tt ttst tts

ttst ttst tt tts

tst tst tst ts + tsts

JLR
∞ (W) is a bicolored version of K0(SL(2)q):

ts&tt! [L0], tsts&ttst! [L2], tst&tts! [L1].

This is the slightly nicer statement.

Fact.

Both connections are always true (i.e. for any e).

H-cell-theorem.

There are 1:1 correspondences

{transitives of Hv(W) with apex LR} 1:1←→ {transitives of JLR
v (W)} 1:1←→ {transitives of JH

v (W)},

{transitives of Hv(W) with apex LR} 1:1←→ {transitives of K0(SL(2)s,tq )} 1:1←→ {transitives of K0(SO(3)q)}.

Example

Upshot.

Hv(W) is a non-semisimple version of K0(SL(2)q),

HH
v (W) is a non-semisimple version of K0(SO(3)q).

In particular, the Hecke algebras have a v parameter.

Fact.

With a bit more care (with the H-cell-theorem)
all the above generalizes to any Coxeter group W.

Thus, Hecke algebras are non-semisimple fusion rings.

In general J∞(W) is not understood,
but for W being a finite Weyl group

JH
∞(W) is very nice .
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Figure: “Subgroups” of SU(3)q.

(Picture from “The classification of subgroups of quantum SU(N)”, Ocneanu ∼2000.)

Back
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There is still much to do...

Thanks for your attention!
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Let A(Γ) be the adjacency matrix of a finite, connected, loopless graph Γ. Let
Ue+1(X) be the Chebyshev polynomial .

Classification problem (CP). Classify all Γ such that Ue+1(A(Γ)) = 0.

A3 =
1 3 2• • • A(A3) =




0 0 1
0 0 1
1 1 0


 SA3

= {2 cos( π
4 ), 0, 2 cos( 3π

4 )}

D4 =
1

4

2

3

• •

•

•

A(D4) =




0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 0


 SD4

= {2 cos( π
6 ), 02, 2 cos( 5π

6 )}

U3(X) = (X− 2 cos( π
4 ))X(X− 2 cos( 3π

4 ))

U5(X) = (X− 2 cos( π
6 ))(X− 2 cos( 2π

6 ))X(X− 2 cos( 4π
6 ))(X− 2 cos( 5π

6 ))

for e = 2

for e = 4

Smith ∼1969. The graphs solutions to (CP) are precisely
ADE graphs for e + 2 being (at most) the Coxeter number.

Type Am: • • • · · · • • • for e = m − 1

Type Dm: • • · · · • •

•

•

for e = 2m − 4

Type E6:
• • • • •

•
for e = 10

Type E7:
• • • • • •

•
for e = 16

Type E8:
• • • • • • •

•
for e = 28
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The dihedral groups are of Coxeter type I2(e + 2):

We+2 = 〈s, t | s2 = t2 = 1, se+2 = . . . sts︸ ︷︷ ︸
e+2

= w0 = . . . tst︸ ︷︷ ︸
e+2

= te+2〉,

e.g. : W4 = 〈s, t | s2 = t2 = 1, tsts = w0 = stst〉

Example. These are the symmetry groups of regular e + 2-gons, e.g. for e = 2
the Coxeter complex is:

• H

H

H

H

FF

FF

1
t

s

ts

st

tst

sts
w0

I will sneak in the Hecke case,
later on.

I will explain in a few minutes
what cells are.

For the moment: Never mind!

Lowest cell.

Biggest cell.

s-cell.

t-cell.
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Dihedral representation theory on one slide.

One-dimensional modules. Mλs,λt
, λs, λt ∈ C, θs 7→ λs, θt 7→ λt.

e ≡ 0 mod 2 e 6≡ 0 mod 2

M0,0, M2,0, M0,2, M2,2 M0,0, M2,2

Two-dimensional modules. Mz , z ∈ C, θs 7→ ( 2 z
0 0 ), θt 7→ ( 0 0

z 2 ).

e ≡ 0 mod 2 e 6≡ 0 mod 2

Mz , z ∈ V±e −{0} Mz , z ∈ V±e

Ve = roots(Ue+1(X)) and V±e the Z/2Z-orbits under z 7→ −z .

The Bott–Samelson (BS) generators θs = s + 1, θt = t + 1.
There is also a Kazhdan–Lusztig (KL) bases. Explicit formulas do not matter today.

Proposition (Lusztig?).

The list of one- and two-dimensional We+2-modules
is a complete, irredundant list of simple modules.

I learned this construction from Mackaay in 2017.

Example.

M0,0 is the sign representation and M2,2 is the trivial representation.

In case e is odd, Ue+1(X) has a constant term, so M2,0, M0,2 are not representations.

Example.

Mz for z being a root of the Chebyshev polynomial is a
representation because the braid relation in terms of BS generators

involves the coefficients of the Chebyshev polynomial.

Example.

These representations are indexed by Z/2Z-orbits of the Chebyshev roots:
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N0-modules via graphs.

Construct a W∞-module M associated to a bipartite graph Γ:

M = C〈1, 2, 3, 4, 5〉

1 3 2 4 5

θs
action

H F H

F

F

θs  Ms =

2 0 1 0 0

0 2 1 1 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0






, θt  Mt =

0 0 0 0 0

0 0 0 0 0

1 1 2 0 0

0 1 0 2 0

0 1 0 0 2







The adjacency matrix A(Γ) of Γ is

A(Γ) =

0 0 1 0 0
0 0 1 1 1
1 1 0 0 0
0 1 0 0 0
0 1 0 0 0







These are We+2-modules for some e
only if A(Γ) is killed by the Chebyshev polynomial Ue+1(X).

Morally speaking: These are constructed as the simples
but with integral matrices having the Chebyshev-roots as eigenvalues.

It is not hard to see that the Chebyshev–braid-like relation can not hold otherwise.

Hence, by Smith’s (CP) and Lusztig: We get a representation of We+2

if Γ is a ADE Dynkin diagram for e + 2 being the Coxeter number.

That these are N0-modules follows from categorification.

‘Smaller solutions’ are never N0-modules.

Classification.

Complete , irredundant list of transitive N0-modules of We+2:

apex 1 cell s – t cell w0 cell

N0-reps. M0,0 MADE+bicolering for e + 2 = Cox. num. M2,2

I learned this from/with Kildetoft–Mackaay–Mazorchuk–Zimmermann ∼2016.
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The type A family
e = 0

H

F

e = 1

H F

e = 2

H F H

F H F

e = 3

H F H F

e = 4

H F H F H

F H F H F

. . .

The type D family
e = 4

H F
H

H

F H
F

F

e = 6

F H F
H

H

H F H
F

F

e = 8

H F H F
H

H

F H F H
F

F

e = 10

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
e = 10

H F H F H

F

F H F H F

H

e = 16

H F H F H F

F

F H F H F H

H

e = 28

H F H F H F H

F

F H F H F H F

H

Back

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the classical representations.

Example (e = 2). Here we have three different notions of “atoms”.

Classical representation theory. The simples from before.

M0,0 M2,0 M√2 M0,2 M2,2

atom sign rotation trivial
rank 1 1 2 1 1

apex(KL) 1 s – t s – t s – t w0

Group element basis. Subgroups and ranks of transitive N0-modules.

subgroup 1 〈st〉 〈w0〉 〈w0, s〉 〈w0, sts〉 G
atom regular M0,0⊕M2,2 M√2⊕M√2 M2,0⊕M2,2 M0,2⊕M2,2 trivial
rank 8 2 4 2 2 1
apex G G G G G G

KL basis. ADE diagrams and ranks of transitive N0-modules.

bottom cell H F H F H F top cell

atom sign M2,0⊕M√2 M0,2⊕M√2 trivial
rank 1 3 3 1

apex 1 s – t s – t w0

Back

Let Hv(W) be the Hecke algebra associated to W. The asymptotic limit J∞(W)
of Hv(W) is defined as follows.

As a free Z-module:

J∞(W) =
⊕

LR Z{tw | w ∈ LR}. Compare: Hv(W) = Z[v, v−1]{θw |W}.

Multiplication.

tx ty =
∑

z∈LR γ
z
x,y tz . Compare: θxθy =

∑
z∈LR hzx,yθz + bigger friends.

where γzx,y ∈ N0 is the leading coefficient of hzx,y ∈ N0[v, v−1].

Example (e = 2).

The multiplication tables (empty entries are 0 and [2] = v + v−1) in 1:
ts tsts tst tt ttst tts

ts ts tsts tst

tsts tsts ts tst

tts tts tts tt + ttst

tt tt ttst tts

ttst ttst tt tts

tst tst tst ts + tsts

θs θsts θst θt θtst θts

θs [2]θs [2]θsts [2]θst θst θst + θw0 θs + θsts

θsts [2]θsts [2]θs + [2]2θw0 [2]θst + [2]θw0 θs + θsts θs + [2]2θw0 θs + θsts + [2]θw0

θts [2]θts [2]θts + [2]θw0 [2]θt + [2]θtst θt + θtst θt + θtst + [2]θw0 2θts + θw0

θt θts θts + θw0 θt + θtst [2]θt [2]θtst [2]θts

θtst θt + θtst θt + [2]2θw0 θt + θtst + [2]θw0 [2]θtst [2]θt + [2]2θw0 [2]θts + [2]θw0

θst θs + θsts θs + θsts + [2]θw0 2θst + θw0 [2]θst [2]θst + [2]θw0 [2]θs + [2]θsts

(Note the “subalgebras”.)

The asymptotic algebra is much simpler!

Big example

Fact (Lusztig ∼1984++).

J∞(W) =
⊕

LR JLR
∞(W) with the tw basis

and all its summands JLR
∞(W) = Z{tw | w ∈ LR}

are multifusion algebras.

(Meaning semisimple N0-algebras with a certain nice trace form.)

Surprising fact 1 (Lusztig ∼1984++).
It seems one throws almost away everything, but:

There is an explicit embedding

Hv(W) ↪→ J∞(W)⊗Z Z[v, v−1]

which is an isomorphism after scalar extension to Q(v).

Surprising fact 2 (Lusztig ∼1984++).

There is an explicit 1:1 correspondence

{simples of Hv(W) with apex LR} 1:1←→ {simples of JLR
v (W)}.

Daniel Tubbenhauer A tale of dihedral groups, SL(2)q , and beyond February 2019 10 / 14

Example (e = 2).

The fusion ring K0(SL(2)q) for q2e = 1 has simple objects [L0], [L1], [L2]. The
fusion ring JLR

∞ (W) has simple objects ts, tsts, tst, tt, ttst, tts.

Comparison of multiplication tables:

[L0] [L2] [L1]

[L0] [L0] [L2] [L1]

[L2] [L2] [L0] [L1]

[L1] [L1] [L1] [L0] + [L2]

&

ts tsts tst tt ttst tts

ts ts tsts tst

tsts tsts ts tst

tts tts tts tt + ttst

tt tt ttst tts

ttst ttst tt tts

tst tst tst ts + tsts

JLR
∞ (W) is a bicolored version of K0(SL(2)q):

ts&tt! [L0], tsts&ttst! [L2], tst&tts! [L1].

This is the slightly nicer statement.

Fact.

Both connections are always true (i.e. for any e).

H-cell-theorem.

There are 1:1 correspondences

{transitives of Hv(W) with apex LR} 1:1←→ {transitives of JLR
v (W)} 1:1←→ {transitives of JH

v (W)},

{transitives of Hv(W) with apex LR} 1:1←→ {transitives of K0(SL(2)s,tq )} 1:1←→ {transitives of K0(SO(3)q)}.

Example

Upshot.

Hv(W) is a non-semisimple version of K0(SL(2)q),

HH
v (W) is a non-semisimple version of K0(SO(3)q).

In particular, the Hecke algebras have a v parameter.

Fact.

With a bit more care (with the H-cell-theorem)
all the above generalizes to any Coxeter group W.

Thus, Hecke algebras are non-semisimple fusion rings.

In general J∞(W) is not understood,
but for W being a finite Weyl group

JH
∞(W) is very nice .
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Figure: “Subgroups” of SU(3)q.

(Picture from “The classification of subgroups of quantum SU(N)”, Ocneanu ∼2000.)

Back
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There is still much to do...

Thanks for your attention!
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U0(X) = 1, U1(X) = X, XUe+1(X) = Ue+2(X) + Ue(X)
U0(X) = 1, U1(X) = 2X, 2XUe+1(X) = Ue+2(X) + Ue(X)

Kronecker ∼1857. Any complete set of conjugate algebraic integers in ]− 2, 2[ is
a subset of roots(Ue+1(X)) for some e.

Figure: The roots of the Chebyshev polynomials (of the second kind).

Back



In case you are wondering why this is supposed to be true, here is the main
observation of Smith ∼1969:

Ue+1(X, Y) = ±det(XId− A(Ae+1))

Chebyshev poly. = char. poly. of the type Ae+1 graph

and

XTn−1(X) = ±det(XId− A(Dn))± (−1)n mod 4

first kind Chebyshev poly. ‘=’ char. poly. of the type Dn graph (n = e+4
2 ).

Back



The type A family
e = 0

H

F

e = 1

H F

e = 2

H F H

F H F

e = 3

H F H F

e = 4

H F H F H

F H F H F

. . .

The type D family
e = 4

H F
H

H

F H
F

F

e = 6

F H F
H

H

H F H
F

F

e = 8

H F H F
H

H

F H F H
F

F

e = 10

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
e = 10

H F H F H

F

F H F H F

H

e = 16

H F H F H F

F

F H F H F H

H

e = 28

H F H F H F H

F

F H F H F H F

H

Back

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the classical representations.



The type A family
e = 0

H

F

e = 1

H F

e = 2

H F H

F H F

e = 3

H F H F

e = 4

H F H F H

F H F H F

. . .

The type D family
e = 4

H F
H

H

F H
F

F

e = 6

F H F
H

H

H F H
F

F

e = 8

H F H F
H

H

F H F H
F

F

e = 10

F H F H F
H

H

H F H F H
F

F

. . .

The type E exceptions
e = 10

H F H F H

F

F H F H F

H

e = 16

H F H F H F

F

F H F H F H

H

e = 28

H F H F H F H

F

F H F H F H F

H

Back

Note: Almost none of these are simple since they grow in rank with growing e.

This is the opposite from the classical representations.



Example (SAGE). The Weyl group of type B6. Number of elements: 46080.
Number of cells: 26, named 0 (trivial) to 25 (top).

Cell order:

5 7 10 13 15 18 21

0 1 2 4 6 8 9 12 16 17 19 22 23 24 25

3 11 14 20

Size of the cells and a-value:

cell 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

size 1 62 342 576 650 3150 350 1600 2432 3402 900 2025 14500 600 2025 900 3402 2432 1600 350 576 3150 650 342 62 1

a 0 1 2 3 3 4 4 5 5 6 6 6 7 9 10 10 10 15 11 16 17 12 15 25 25 36

Back

Example (cell 12).

Cell 12 is a bit scary:

45,5 15,5 15,20 25,25 25,25

15,5 45,5 15,20 25,25 25,25

120,5 120,5 420,20 220,25 220,25

225,5 225,5 225,20 425,25 125,25

225,5 225,5 225,20 125,25 425,25



Example (SAGE). The Weyl group of type B6. Number of elements: 46080.
Number of cells: 26, named 0 (trivial) to 25 (top).

Cell order:

5 7 10 13 15 18 21

0 1 2 4 6 8 9 12 16 17 19 22 23 24 25

3 11 14 20

Size of the cells and a-value:

cell 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

size 1 62 342 576 650 3150 350 1600 2432 3402 900 2025 14500 600 2025 900 3402 2432 1600 350 576 3150 650 342 62 1

a 0 1 2 3 3 4 4 5 5 6 6 6 7 9 10 10 10 15 11 16 17 12 15 25 25 36
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Example (cell 12).

Cell 12 is a bit scary:

45,5 15,5 15,20 25,25 25,25

15,5 45,5 15,20 25,25 25,25

120,5 120,5 420,20 220,25 220,25

225,5 225,5 225,20 425,25 125,25

225,5 225,5 225,20 125,25 425,25



Example (e = 2). Here we have three different notions of “atoms”.

Classical representation theory. The simples from before.

M0,0 M2,0 M√2 M0,2 M2,2

atom sign rotation trivial
rank 1 1 2 1 1

apex(KL) 1 s – t s – t s – t w0

Group element basis. Subgroups and ranks of transitive N0-modules.

subgroup 1 〈st〉 〈w0〉 〈w0, s〉 〈w0, sts〉 G
atom regular M0,0⊕M2,2 M√2⊕M√2 M2,0⊕M2,2 M0,2⊕M2,2 trivial
rank 8 2 4 2 2 1
apex G G G G G G

KL basis. ADE diagrams and ranks of transitive N0-modules.

bottom cell H F H F H F top cell

atom sign M2,0⊕M√2 M0,2⊕M√2 trivial
rank 1 3 3 1

apex 1 s – t s – t w0

Back



Example (SAGE). Here is a random calculation in the cell 12 for type B6.

Graph:
1 2 3 4 5 6

4

Elements (shorthand si = i):

d = d−1 = 132123565, u = u−1 = 12132123565.

Back

Bigger friends.Killed in the limit v→∞.Looks much simpler.



Example (SAGE). Here is a random calculation in the cell 12 for type B6.

θdθd =

(v7 + 5v5 + 12v3 + 18v + 18v−1 + 12v−3 + 5v−5 + v−7)θd

+(v5 + 4v3 + 7v + 7v−1 + 4v−3 + v−5)θu

+(v6 + 5v4 + 11v2 + 14 + 11v−2 + 5v−4 + v−6)θ121232123565

Graph:
1 2 3 4 5 6

4
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Back
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Example (SAGE). Here is a random calculation in the cell 12 for type B6.
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td

Graph:
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Example (SAGE; Type B6).

Up to N0-equivalence: five left cell modules, five right cell modules, one two-sided
cell bimodule, three H subalgebras:

L =

45,5 15,5 15,20 25,25 25,25

15,5 45,5 15,20 25,25 25,25

120,5 120,5 420,20 220,25 220,25

225,5 225,5 225,20 425,25 125,25

225,5 225,5 225,20 125,25 425,25

R =

45,5 15,5 15,20 25,25 25,25

15,5 45,5 15,20 25,25 25,25

120,5 120,5 420,20 220,25 220,25

225,5 225,5 225,20 425,25 125,25

225,5 225,5 225,20 125,25 425,25

LR =

45,5 15,5 15,20 25,25 25,25

15,5 45,5 15,20 25,25 25,25

120,5 120,5 420,20 220,25 220,25

225,5 225,5 225,20 425,25 125,25

225,5 225,5 225,20 125,25 425,25

H =

45,5 15,5 15,20 25,25 25,25

15,5 45,5 15,20 25,25 25,25

120,5 120,5 420,20 220,25 220,25

225,5 225,5 225,20 425,25 125,25

225,5 225,5 225,20 125,25 425,25

Fact. The three N0-algebras JH
∞(W) are all “categorical Morita equivalent”.

(They have the same number of transitive N0-modules.)

Back



Example (e = 2).

M = C〈1, 2, 3〉

1 3 2

H F H

θs ;



v+v−1 0 1

0 v+v−1 1
0 0 0


 θt ;




0 0 0
0 0 0
1 1 v+v−1




θsts ;




0 v+v−1 1
v+v−1 0 1

0 0 0


 θtst ;




0 0 0
0 0 0
1 1 v+v−1




θts ;




0 0 0
0 0 0

v+v−1 v+v−1 1


 θst ;




1 1 v+v−1

1 1 v+v−1

0 0 0




Back

Example.

tsttts = ts + tsts
!

[L1][L1] = [L0] + [L2]
!


0 0 1
0 0 1
0 0 0







0 0 0
0 0 0
1 1 0


 =




1 1 0
1 1 0
0 0 0


 =




1 0 0
0 1 0
0 0 0


 +




0 1 0
1 0 0
0 0 0


.

This works in general and recovers the transitive N0-modules
of K0(SL(2)q) found by

Etingof–Khovanov ∼1995 and Kirillov–Ostrik ∼2001,
which are also ADE classified.

(For the experts: the bicoloring kills the tadpole solutions.)
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Example (e = 2).
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Figure: The connected Coxeter diagrams of finite type. The finite Weyl groups are of
type A, B = C, D, E, F and G.

Example: Hecke algebras as non-semisimple fusion rings (Lusztig ∼1984).

type A B = C D E6

worst case JH
∞ ∼= 1 JH

∞ ∼= K0(Vec(Z/2Z)d ) JH
∞ ∼= K0(Vec(Z/2Z)d ) JH

∞ ∼= K0(Rep(S3))

type E7 E8 F4 G2

worst case JH
∞ ∼= K0(Rep(S3)) JH

∞ ∼= K0(Rep(S5)) JH
∞ ∼= K0(Rep(S4)) JH

∞ ∼= K0(Rep(S2))

Back

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

https://en.wikipedia.org/wiki/Coxeter_group


Example (G = Z/2×Z/2).

Subgroups, Schur multipliers and 2-simples.

Z/2Z×Z/2Z

〈(1, 0)〉 〈(1, 1)〉 〈(0, 1)〉

{e}
In particular, there are two categorifications of the trivial module, and the rank
sequences read

decat: 1, 2, 2, 2, 4, cat: 1, 1, 2, 2, 2, 4.



Example (G = Z/2×Z/2).

Subgroups, Schur multipliers and 2-simples.

Z/2Z×Z/2Z

〈(1, 0)〉 〈(1, 1)〉 〈(0, 1)〉

{e}

{+1,−1}

{e} {e} {e}

{e}
In particular, there are two categorifications of the trivial module, and the rank
sequences read

decat: 1, 2, 2, 2, 4, cat: 1, 1, 2, 2, 2, 4.



Example (G = Z/2×Z/2).

Subgroups, Schur multipliers and 2-simples.

Z/2Z×Z/2Z

〈(1, 0)〉 〈(1, 1)〉 〈(0, 1)〉

{e}

{+1,−1}

{e} {e} {e}

{e}

Vec+1
1 ,Vec−1

1

VecZ/2Z VecZ/2Z VecZ/2Z

VecG
In particular, there are two categorifications of the trivial module, and the rank
sequences read

decat: 1, 2, 2, 2, 4, cat: 1, 1, 2, 2, 2, 4.



Example (SAGE; Type B6).

Reducing from 46080 to 14500 to 4:

LR =

45,5 15,5 15,20 25,25 25,25

15,5 45,5 15,20 25,25 25,25

120,5 120,5 420,20 220,25 220,25

225,5 225,5 225,20 425,25 125,25

225,5 225,5 225,20 125,25 425,25

 H =

45,5 15,5 15,20 25,25 25,25

15,5 45,5 15,20 25,25 25,25

120,5 120,5 420,20 220,25 220,25

225,5 225,5 225,20 425,25 125,25

225,5 225,5 225,20 125,25 425,25

J H
∞=VecZ/2Z×Z/2Z, rank sequence: 1, 1, 2, 2, 2, 4.

In particular, there is one non-cell 2-simple: one 2 is missing.

Back
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Figure: “Subgroups” of SU(3)q.

(Picture from “The classification of subgroups of quantum SU(N)”, Ocneanu ∼2000.)
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