# Cellular structures using $U_q$ -tilting modules

Or: centralizer algebras are fun!

Daniel Tubbenhauer



Joint work with Henning Haahr Andersen and Catharina Stroppel

April 2015

Daniel Tubbenhauer April 2015

#### The main theorem

#### **Theorem**

Let T be a  $\mathbf{U}_q = \mathbf{U}_q(\mathfrak{g})$ -tilting module. Then  $\mathrm{End}_{\mathbf{U}_q}(T)$  is a cellular algebra.

I have to explain the words in red. But let us start with an example.

#### Example(Schur 1901)

Let  $\mathbb{K}[S_d]$  be the symmetric group in d letters and let  $\Delta_1(\omega_1)$  be the vector representation of  $\mathbf{U}_1 = \mathbf{U}_1(\mathfrak{gl}_n)$ . Take  $T = \Delta_1(\omega_1)^{\otimes d}$ , then

$$\Phi_{\mathrm{SW}} \colon \mathbb{K}[S_d] \twoheadrightarrow \mathrm{End}_{U_1}(T) \quad \text{and} \quad \Phi_{\mathrm{SW}} \colon \mathbb{K}[S_d] \xrightarrow{\cong} \mathrm{End}_{U_1}(T), \text{ if } n \geq d.$$

Since T is a  $\mathbf{U}_1$ -tilting module,  $\mathbb{K}[S_d]$  is cellular.

Daniel Tubbenhauer April 2015

- $\mathbf{U}_q$ -tilting modules
  - ullet  $oldsymbol{\mathsf{U}}_q$  and its representation theory
  - ullet The category of  $oldsymbol{\mathsf{U}}_q$ -tilting modules
- 2 Cellularity of  $End_{U_q}(T)$ 
  - Cellular algebras
  - Cellularity and  $\mathbf{U}_{q}$ -tilting modules
- 3 The representation theory of  $End_{U_q}(T)$ 
  - Consequences of cellularity  $\mathbf{U}_q$ -tilting view
  - Examples that fit into the picture

Daniel Tubbenhauer April 2015

# Quantum groups at roots of unity

Fix an arbitrary element  $q \in \mathbb{K} - \{0\}$ . Define

$$\mathbf{U}_q = \mathbf{U}_q(\mathfrak{g}) = \mathbf{U}_{\mathcal{A}} \otimes_{\mathcal{A}} \mathbb{K}.$$

Here  $\mathbf{U}_{\mathcal{A}} = \mathbf{U}_{\mathcal{A}}(\mathfrak{g})$  is Lusztig's  $\mathcal{A}$ -form: the  $\mathcal{A}$ -subalgebra of  $\mathbf{U}_{v} = \mathbf{U}_{v}(\mathfrak{g})$  generated by  $K_{i}^{\pm 1}$ ,  $E_{i}^{(j)}$  and  $F_{i}^{(j)}$  for  $i = 1, \ldots, n-1$  and  $j \in \mathbb{N}$ .

#### Example

In the  $\mathfrak{sl}_2$  case, the  $\mathbb{Q}(v)$ -algebra  $\mathbf{U}_v(\mathfrak{sl}_2)$  is generated by  $K, K^{-1}$  and E, F subject to some relations.

Let q be a complex, primitive third root of unity.  $\mathbf{U}_q(\mathfrak{sl}_2)$  is generated by  $K, K^{-1}, E, F, E^{(3)}$  and  $F^{(3)}$  subject to some relations. Here  $E^{(3)}, F^{(3)}$  are extra generators, since  $E^3 = [3]!E^{(3)} = 0$  because of [3] = 0.

# Weyl modules as building blocks

For each dominant  $\mathbf{U}_{v}$ -weight  $\lambda \in X^{+}$  there is a simple  $\mathbf{U}_{v}$ -module  $\Delta_{v}(\lambda)$  called Weyl module. Fact: the set  $\{\Delta_{v}(\lambda) \mid \lambda \in X^{+}\}$  is a complete set of pairwise non-isomorphic, simple  $\mathbf{U}_{v}$ -modules (of type 1).

#### Example

For  $\mathfrak{sl}_2$  we have  $X^+=\mathbb{Z}_{\geq 0}.$  The Weyl module  $\Delta_{\nu}(3)$  is

$$\stackrel{\stackrel{\scriptstyle (V^{-3})}{\longrightarrow}}{m_3} \stackrel{[1]}{\longleftarrow} \stackrel{\stackrel{\scriptstyle (V^{-1})}{\longrightarrow}}{m_2} \stackrel{[2]}{\longleftarrow} \stackrel{\stackrel{\scriptstyle (V^{+1})}{\longrightarrow}}{m_1} \stackrel{[3]}{\longleftarrow} \stackrel{\stackrel{\scriptstyle (V^{+3})}{\longrightarrow}}{m_0},$$

where E "acts to the right", F "acts to the left" and K "acts as a loop".

The category of finite dimensional  $\mathbf{U}_{v}$ -modules is semi-simple.

## Weyl modules as building blocks?

Fact: the  $\Delta_q(\lambda)$ 's are no longer (semi-)simple in general. But they have unique simple heads  $L_q(\lambda)$ . Fact: the set  $\{L_q(\lambda) \mid \lambda \in X^+\}$  is a complete set of pairwise non-isomorphic, simple  $\mathbf{U}_q$ -modules (of type 1).

#### Example

Let  $\mathfrak{g} = \mathfrak{sl}_2$  and q be a complex, primitive third root of unity.  $\Delta_q(3)$  is

The  $\mathbb{C}$ -span of  $\{m_1, m_2\}$  is now stable under the action of  $\mathbf{U}_q(\mathfrak{sl}_2)$ : this is  $L_q(1)$ . The simple head is  $L_q(3) \cong \Delta_q(3)/L_q(1)$  and is spanned by  $\{m_0, m_3\}$ .

The category of finite dimensional  $\mathbf{U}_q$ -modules is not semi-simple in general.

# $\mathbf{U}_q$ -tilting modules as building blocks?

Let  $\Delta_q(\lambda)$  be a Weyl module and  $\nabla_q(\lambda)$  its dual.

A  $\mathbf{U}_q$ -tilting module T is a  $\mathbf{U}_q$ -module with a  $\Delta_q$ -filtration and a  $\nabla_q$ -filtration:

$$T = M_0 \supset M_1 \supset \cdots \supset M_{k'} \supset \cdots \supset M_{k-1} \supset M_k = 0,$$
  
$$0 = N_0 \subset N_1 \subset \cdots \subset N_{k'} \subset \cdots \subset N_{k-1} \subset N_k = T,$$

such that  $M_{k'}/M_{k'+1}$  is some  $\Delta_q(\lambda)$  and  $N_{k'+1}/N_{k'}$  is some  $\nabla_q(\lambda)$ .

### Example

All  $\mathbf{U}_{\nu}$ -modules are  $\mathbf{U}_{\nu}$ -tilting modules.

For our favorite example  $q^3=1\in\mathbb{C}$  and  $\mathfrak{g}=\mathfrak{sl}_2$ :  $\Delta_q(i)$  is a  $\mathbf{U}_q$ -tilting module iff i=0,1 or  $i\equiv -1$  mod 3.

# $\mathbf{U}_q$ -tilting modules as building blocks.

The category of  $\mathbf{U}_q$ -tilting modules  $\mathcal{T}$  has some nice properties:

- $oldsymbol{\circ}$   ${\mathcal T}$  is closed under finite tensor products.
- The indecomposables  $T_q(\lambda)$  of  $\mathcal{T}$  are parametrized by  $\lambda \in X^+$ . They have  $\lambda$  as their maximal weight and contain  $\Delta_q(\lambda)$  with multiplicity 1. We have

$$\Delta_q(\lambda) \xrightarrow{\iota^{\lambda}} T_q(\lambda) \xrightarrow{\pi^{\lambda}} \nabla_q(\lambda).$$

#### Example

The vector representation  $\Delta_q(1)$  is a  $\mathbf{U}_q(\mathfrak{sl}_2)$ -tilting module. Thus,  $T=\Delta_q(1)^{\otimes d}$  is. Then  $T_q(d)$  is the indecomposable summand of T containing  $\Delta_q(d)$ .

### Example

 $\Delta_q(\lambda)$  is a  $\mathbf{U}_q$ -tilting module for minuscule  $\lambda$ . Thus, tensor products of these are.

# The Ext-vanishing

We have for all  $\lambda, \mu \in X^+$  that

$$\operatorname{Ext}_{\mathbf{U}_q}^i(\Delta_q(\lambda), \nabla_q(\mu)) \cong egin{cases} \mathbb{K}c^\lambda, & \text{if } i=0 \text{ and } \lambda=\mu, \\ 0, & \text{else}, \end{cases}$$

where  $c^\lambda\colon \Delta_q(\lambda) o 
abla_q(\lambda)$  is the  ${f U}_q$ -homomorphisms that sends head to socle.

Assume that M has a  $\Delta_q$ -filtration and N has a  $\nabla_q$ -filtration.

- We have  $\dim(\operatorname{Hom}_{\mathbf{U}_q}(M,\nabla_q(\lambda)))=(M:\Delta_q(\lambda)).$
- We have  $\dim(\operatorname{Hom}_{\mathbf{U}_q}(\Delta_q(\lambda), N)) = (N : \nabla_q(\lambda)).$

# $\mathbf{U}_q$ -tilting modules as building blocks!

$$T\in \boldsymbol{\mathcal{T}}\quad \text{iff}\quad \operatorname{Ext}^1_{\boldsymbol{U}_q}(T,\nabla_q(\lambda))=0=\operatorname{Ext}^1_{\boldsymbol{U}_q}(\Delta_q(\lambda),T)\quad \text{for all }\lambda\in X^+.$$

In particular, if M has a  $\Delta_{q^-}$  and N has a  $\nabla_{q^-}$ filtration:



In words: any  $\mathbf{U}_q$ -homomorphism  $g:\Delta_q(\lambda)\to N$  extends to an  $\mathbf{U}_q$ -homomorphism  $\overline{g}:T_q(\lambda)\to N$  whereas any  $\mathbf{U}_q$ -homomorphism  $f:M\to\nabla_q(\lambda)$  factors through  $T_q(\lambda)$  via  $\overline{f}:M\to T_q(\lambda)$ .

## Exempli gratia

Consequence of the discussion before:

$$\text{dim}(\operatorname{End}_{\textbf{U}_q}(\mathcal{T})) = \sum_{\lambda \in X^+} (\mathcal{T} : \Delta_q(\lambda))^2 = \sum_{\lambda \in X^+} (\mathcal{T} : \nabla_q(\lambda))^2.$$

Take  $T=\Delta_q(\lambda)^{\otimes d}$ . If  $\lambda\in X^+$  is minuscule as a  $\mathbf{U}_q$ -weight, then  $\Delta_q(\lambda)$  is always  $\mathbf{U}_q$ -tilting and  $\dim(\mathrm{End}_{\mathbf{U}_q}(T))$  is independent of  $\mathbb K$  and q, since  $\Delta_q(\lambda)$  has a character independent of  $\mathbb K$  and of q.

#### Example

By quantum Schur-Weyl, we see that

$$\Phi_{q\mathrm{SW}} \colon \mathcal{H}_d(q) \twoheadrightarrow \mathrm{End}_{\mathbf{U}_q}(T) \quad \text{and} \quad \Phi_{q\mathrm{SW}} \colon \mathcal{H}_d(q) \xrightarrow{\cong} \mathrm{End}_{\mathbf{U}_q}(T), \text{ if } n \geq d.$$

Thus,  $\dim(\mathcal{H}_d(q))$  independent of  $\mathbb{K}$  and q.

# Exempli gratia (Temperley-Lieb without diagrams)

Let us consider our favorite case again. From the construction of  $T_q(3)$ :

$$\Delta_q(3) \longrightarrow T_q(3) \longrightarrow \Delta_q(1).$$

We compute:

$$\mathcal{T}_{\nu} = \Delta_{\nu}(1) \otimes \Delta_{\nu}(1) \otimes \Delta_{\nu}(1) \cong \Delta_{\nu}(3) \oplus \Delta_{\nu}(1) \oplus \Delta_{\nu}(1),$$

whereas

$$T_q = \Delta_q(1) \otimes \Delta_q(1) \otimes \Delta_q(1) \cong T_q(3) \oplus T_q(1).$$

In particular,  $\dim(\operatorname{End}_{\mathbf{U}_{\nu}(\mathfrak{sl}_2)}(T_{\nu})) = \dim(\operatorname{End}_{\mathbf{U}_q(\mathfrak{sl}_2)}(T_q)) = 1^2 + 2^2 = 5.$ 

Note that  $\operatorname{End}_{\mathbf{U}_q(\mathfrak{sl}_2)}(\Delta_q(1)^{\otimes d})$  is the Temperley-Lieb algebra  $\mathcal{TL}_d(\delta)$ .

# Cellular algebras

### Definition(Graham-Lehrer 1996)

A  $\mathbb{K}$ -algebra A is cellular if it has a basis

$$\{c_{ij}^{\lambda} \mid \lambda \in \mathcal{P}, i, j \in \mathcal{I}\},\$$

where  $(\mathcal{P}, \leq)$  is a finite poset and  $\mathcal{I}^{\lambda}$  is a finite set, such that

- The map i:  $A \to A$ ,  $c_{ij}^{\lambda} \to c_{ji}^{\lambda}$  is an anti-isomorphism.
- We have (for friend of higher order)

$$ac_{ij}^{\lambda} = \sum_{k \in \mathcal{I}^{\lambda}} r_{ik}(a)c_{kj}^{\lambda} + \text{friends.}$$

Note that the scalars  $r_{ik}(a)$  do not depend on j. Thus, we think of the basis elements as having "independent bottom and top parts".

Daniel Tubbenhauer Cellular algebras April 2015

13 / 26

# Prototype of a cellular basis

### Example(Specht 1935, Murphy 1995)

 $\mathcal{P} = \text{Young diagrams } \lambda, \, \mathcal{I}^{\lambda} = \text{standard tableaux } i, j.$ 



Form  $S^{\lambda} = \{c_i^{\lambda}\}$  with formal  $c_i^{\lambda}$  and action given by the  $r_{ik}(a)$ . The set

$$\{D^{\lambda} = S^{\lambda}/\mathrm{Rad}(S^{\lambda}) \mid \lambda \in \mathcal{P}_0\}$$

forms a complete set of pairwise non-isomorphic, simple  $\mathbb{K}[S_d]$ -modules.

## Theorem(Graham-Lehrer 1996)

This works in general for cellular algebras.

14 / 26

# And for End<sub> $\mathbf{U}_a$ </sub>(T)?

Let M have a  $\Delta_q$ - and N have  $\nabla_q$ -filtration. Consider  $\mathcal{I}^{\lambda}=\{1,\ldots,(N:\nabla_q(\lambda))\}$  and  $\mathcal{J}^{\lambda}=\{1,\ldots,(M:\Delta_q(\lambda))\}$ . By Ext-vanishing, we have diagrams



Take any bases  $F^{\lambda} = \{f_j^{\lambda} \colon M \to \nabla_q(\lambda) \mid j \in \mathcal{J}^{\lambda}\}$  of  $\operatorname{Hom}_{\mathbf{U}_q}(M, \nabla_q(\lambda))$  and  $G^{\lambda} = \{g_i^{\lambda} \colon \Delta_q(\lambda) \to N \mid i \in \mathcal{I}^{\lambda}\}$  of  $\operatorname{Hom}_{\mathbf{U}_q}(\Delta_q(\lambda), N)$ . Set

$$c_{ij}^{\lambda} = \overline{g}_{i}^{\lambda} \circ \overline{f}_{j}^{\lambda} \in \mathrm{Hom}_{\mathbf{U}_{q}}(M, N)$$

 $\text{ for each } \lambda \in X^+ \text{ and all } i \in \mathcal{I}^\lambda, j \in \mathcal{J}^\lambda.$ 

# $\operatorname{End}_{\mathbf{U}_a}(T)$ is prototypical cellular

#### Cell datum:

- $\bullet \ (\mathcal{P}, \leq) = (\{\lambda \in X^+ \mid (T : \nabla_q(\lambda)) = (T : \Delta_q(\lambda)) \neq 0\}, \leq_X).$
- $\bullet \ \mathcal{I}^{\lambda} = \{1, \ldots, (\mathcal{T} : \nabla_q(\lambda))\} = \{1, \ldots, (\mathcal{T} : \Delta_q(\lambda))\} = \mathcal{J}^{\lambda} \ \text{for each} \ \lambda \in \mathcal{P}.$
- K-linear anti-involution i:  $\operatorname{End}_{\mathbf{U}_a}(T) \to \operatorname{End}_{\mathbf{U}_a}(T), \phi \mapsto \mathcal{D}(\phi)$ .
- Note that  $\mathcal{D}(\Delta_q(\lambda)) \cong \nabla_q(\lambda)$  and  $\mathcal{D}(\nabla_q(\lambda)) \cong \Delta_q(\lambda)$ .
- Cellular basis  $\{c_{ij}^{\lambda} \mid \lambda \in \mathcal{P}, i, j \in \mathcal{I}^{\lambda}\}.$

#### **Theorem**

This gives a cellular datum on  $\operatorname{End}_{\mathbf{U}_q}(T)$  for any  $\mathbf{U}_q$ -tilting module T.



# Exempli gratia (generic Temperley-Lieb)

Take  $\mathbb{K}=\mathbb{C}$  and  $T=\Delta_{\nu}(1)^{\otimes 3}\cong \Delta_{\nu}(3)\oplus \Delta_{\nu}^{\prime}(1)\oplus \Delta_{\nu}^{\prime}(1)$ . Then  $\mathcal{P}=\{1,3\}$ .

We have  $\mathcal{I}^1=\{1,2\}$  and  $\mathcal{I}^3=\{1\}$ . Thus, we have a basis



## Exempli gratia (roots of unity Temperley-Lieb)

Take  $T = \Delta_q(1)^{\otimes 3} \cong T_q(3) \oplus T_q(1)$ . Then  $\mathcal{P} = \{1,3\}$ .

We have  $\mathcal{I}^1=\{1,2\}$  and  $\mathcal{I}^3=\{1\}$ . Consider  $1\in\mathcal{I}^1$  as indexing the factor  $\Delta_q(1)$  of  $T_q(1)$  and  $2\in\mathcal{I}^1$  the factor  $\Delta_q(1)$  of  $T_q(3)$ . Thus, we have a basis







# Cellular pairing and simple $\operatorname{End}_{\mathbf{U}_q}(T)$ -modules

Let T be a  $\mathbf{U}_q$ -tilting module. For  $\lambda \in \mathcal{P}$  define  $\vartheta^\lambda$  via

$$i(h) \circ g = \vartheta^{\lambda}(g,h)c^{\lambda}, \quad g,h \in C(\lambda) = \operatorname{Hom}_{U_q}(\Delta_q(\lambda),T).$$

Define  $\mathcal{P}_0 = \{\lambda \in \mathcal{P} \mid \vartheta^\lambda \neq 0\}$  and  $\mathrm{Rad}(\lambda) = \{g \in \mathcal{C}(\lambda) \mid \vartheta^\lambda(g, \mathcal{C}(\lambda)) = 0\}.$ 

### Theorem(Graham-Lehrer reinterpreted)

The set

$$\{L(\lambda) = C(\lambda)/\operatorname{Rad}(\lambda) \mid \lambda \in \mathcal{P}_0\}$$

is a complete set of pairwise non-isomorphic, simple  $\operatorname{End}_{\mathbf{U}_q}(T)$ -modules.

 $\lambda \in \mathcal{P}_0$  iff  $T_q(\lambda)$  is a summand of T. Moreover,

$$\dim(L(\lambda)) = m_{\lambda}, \quad T \cong \bigoplus_{\lambda \in X^{+}} T_{q}(\lambda)^{\oplus m_{\lambda}}.$$

# Exempli gratia (Temperley-Lieb again)

Because  $T_{\nu}\cong \Delta_{\nu}(3)\oplus \Delta_{\nu}(1)\oplus \Delta_{\nu}(1)$  and  $T_{q}\cong T_{q}(3)\oplus T_{q}(1)$  we see that  $\mathcal{P}_{0}=\{1,3\}$  in both cases.

In the generic case:

$$\begin{split} C(3) = L(3) = \{g_1^3 \colon \Delta_{\nu}(3) \to \mathcal{T}_{\nu}\} \;,\; C(1) = L(1) = \{g_j^1 \colon \Delta_{\nu}(1) \to \mathcal{T}_{\nu} \mid j = 1, 2\}, \\ \dim(L(3)) = 1 \quad \text{and} \quad \dim(L(1)) = 2. \end{split}$$

In the non-semisimple case:

$$\begin{split} C(3) = \mathit{L}(3) = \{g_1^3 \colon \Delta_q(3) \to \mathit{T}_q\} \quad , \quad C(1) = \{g_j^1 \colon \Delta_q(1) \to \mathit{T}_q \mid j = 1, 2\}, \\ \dim(\mathit{L}(3)) = 1 \quad \text{and} \quad \dim(\mathit{L}(1)) = 1. \end{split}$$

# An alternative semi-simplicity criterion

### Theorem(Graham-Lehrer 1996)

Let A be a cellular algebra with cell modules  $C(\lambda)$  and simple modules  $L(\lambda)$ .

A is semi-simple 
$$\Leftrightarrow C(\lambda) = L(\lambda)$$
 for all  $\lambda \in \mathcal{P}_0$ .

We can prove an alternative statement in our framework.

#### Theorem

The algebra  $\operatorname{End}_{\mathbf{U}_q}(T)$  is semi-simple iff T is a semi-simple  $\mathbf{U}_q$ -module.

### Corollary

The algebra  $\operatorname{End}_{\mathbf{U}_q}(T)$  is semi-simple iff T has only simple Weyl factors.

# Exempli gratia (Temperley-Lieb yet again)

Because  $T_{\nu} \cong \Delta_{\nu}(3) \oplus \Delta_{\nu}(1) \oplus \Delta_{\nu}(1)$ , and  $\Delta_{\nu}(3)$  and  $\Delta_{\nu}(1)$  are simple Weyl factors, we see that  $\operatorname{End}_{\mathbf{U}_{\nu}(\mathfrak{sl}_2)}(T_{\nu})$  is semi-simple.

 $T_q$  has a Weyl factor of the form  $\Delta_q(3)$ . This is a non-simple Weyl factor and thus,  $\operatorname{End}_{\mathbf{U}_q(\mathfrak{sl}_2)}(T_q)$  is non semi-simple.

Similarly:  $\mathcal{TL}_d(\delta) \cong \operatorname{End}_{\mathbf{U}_q(\mathfrak{sl}_2)}(\Delta_q(1)^{\otimes d})$  with  $\delta \neq 0$  is semi-simple iff q is not a root of unity in  $\mathbb{K}$  or  $d < \operatorname{ord}(q^2)$ .

## A unified approach to cellularity - part 1

Note that our approach generalizes, for example to the infinite dimensional world: the following list is just the tip of the iceberg.

The following algebras fit in our set-up as well:

• The Iwahori-Hecke algebra of type A, by Schur-Weyl duality:

$$\Phi_{q\mathrm{SW}} \colon \mathcal{H}_d(q) \twoheadrightarrow \mathrm{End}_{\textbf{U}_q}(\textit{T}) \quad \text{and} \quad \Phi_{q\mathrm{SW}} \colon \mathcal{H}_d(q) \xrightarrow{\cong} \mathrm{End}_{\textbf{U}_q}(\textit{T}), \text{ if } n \geq d.$$

This includes  $\mathbb{K}[S_d]$  for  $\operatorname{char}(\mathbb{K}) = p > 0$ .

- $\mathfrak{sl}_2$ -related algebras like Temperley-Lieb  $\mathcal{TL}_d(\delta)$ .
- Spider algebras  $\operatorname{End}_{\mathsf{U}_q(\mathfrak{sl}_n)}(\Delta_q(\omega_{i_1})\otimes\cdots\otimes\Delta_q(\omega_{i_d})).$

## A unified approach to cellularity - part 2

• Take  $\mathfrak{g} = \mathfrak{gl}_{m_1} \oplus \cdots \oplus \mathfrak{gl}_{m_r}$  with  $m_1 + \cdots + m_r = m$  and let V be the vector representation of  $\mathbf{U}_1(\mathfrak{gl}_m)$  restricted to  $\mathbf{U}_1 = \mathbf{U}_1(\mathfrak{g})$ . Use  $T = V^{\otimes d}$  and

$$\Phi_{\mathrm{cl}} \colon \mathbb{C}[\mathbb{Z}/r\mathbb{Z} \wr S_d] \twoheadrightarrow \mathrm{End}_{\mathbf{U}_1}(T) \text{ and } \Phi_{\mathrm{cl}} \colon \mathbb{C}[\mathbb{Z}/r\mathbb{Z} \wr S_d] \xrightarrow{\cong} \mathrm{End}_{\mathbf{U}_1}(T), \text{ if } m \geq d.$$

This gives the cyclotomic analogon of the first point above.

ullet Let  $oldsymbol{\mathsf{U}}_q = oldsymbol{\mathsf{U}}_q(\mathfrak{g}).$  We get in the quantized case

$$\Phi_{q\mathrm{cl}} \colon \mathcal{H}_{d,r}(q) \twoheadrightarrow \mathrm{End}_{\mathbf{U}_q}(\mathcal{T}) \quad \text{and} \quad \Phi_{q\mathrm{cl}} \colon \mathcal{H}_{d,r}(q) \xrightarrow{\cong} \mathrm{End}_{\mathbf{U}_q}(\mathcal{T}), \text{ if } m \geq d,$$

where  $\mathcal{H}_{d,r}(q)$  is the Ariki-Koike algebra.

# A unified approach to cellularity - part 3

• Let  $T = \Delta_q(\omega_1)^{\otimes d}$ . Let  $g = \mathfrak{o}_{2n}$ ,  $g = \mathfrak{o}_{2n+1}$  or  $g = \mathfrak{sp}_{2n}$  (depending on  $\delta$ ).

$$\Phi_{\operatorname{Br}} \colon \mathcal{B}_d(\delta) \twoheadrightarrow \operatorname{End}_{\textbf{U}_1}(\mathcal{T}) \quad \text{and} \quad \Phi_{\operatorname{Br}} \colon \mathcal{B}_d(\delta) \xrightarrow{\cong} \operatorname{End}_{\textbf{U}_1}(\mathcal{T}), \text{ if } 2n > d,$$

where  $\mathcal{B}_d(\delta)$  is the Brauer algebra in d strands.

• Let  $\mathbf{U}_q = \mathbf{U}_q(\mathfrak{gl}_n)$  and  $T = \Delta_q(\omega_1)^{\otimes r} \otimes (\Delta_q(\omega_1)^{\otimes s})^*$ :

$$\Phi_{\operatorname{wBr}} \colon \mathcal{B}^n_{r,s}([n]) \twoheadrightarrow \operatorname{End}_{\mathbf{U}_q}(\mathcal{T}) \text{ and } \Phi_{\operatorname{wBr}} \colon \mathcal{B}^n_{r,s}([n]) \xrightarrow{\cong} \operatorname{End}_{\mathbf{U}_q}(\mathcal{T}), \text{ if } n \geq r + s,$$

where  $\mathcal{B}^n_{r,s}([n])$  the so-called quantized walled Brauer algebra.

• Quantizing the Brauer case: taking  $q \in \mathbb{K} - \{0, \pm 1\}$ ,  $\mathfrak{g}$ , and T as above: the algebra  $\operatorname{End}_{\mathbf{U}_q}(T)$  is a quotient of the Birman-Murakami-Wenzl algebra  $\mathcal{BMW}_d(\delta)$  and taking  $n \geq d$  recovers  $\mathcal{BMW}_d(\delta)$ .

There is still much to do...

Thanks for your attention!