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This is well-understood, neat and has many applications and connections.
So: How does this generalize?
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o Tangle diagrams of orbifold tangles
@ Diagrams
@ Tangles in orbifolds

e Topology of Artin braid groups
@ The Artin braid groups: algebra
@ Hyperplanes vs. configuration spaces

© Invariants
@ Reshetikhin—Turaev-like theory for some coideals
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Tangle diagrams with cone strands

Let cTan be the monoidal category as follows.

Generators. Object generators {+, —,c | ¢ € Z>2> U {oo}}, morphism generators

KR T an ARRH

usual crossings usual cups and caps cone crossings
Relations. , and the %/.z-relations, e.g.
4 4
3 3 N
2 2 A 4
N
) = R or 2 = or = etc.
\ ' 4 ) &
2 2 N\
3 3 \
4 4
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Examples.
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Essential unknot

‘77

c Hopf link
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RRH
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-
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Tangle diagrams with cone strands

Let cTan be the monoidal category as follows.
i Example. i
Generators. Object generator U {oco}}, morphism generators
+ + o+ o+ -+ o+ A A + < c + ¢+ o+ <
N/ ’ ’ 8 8 NN NS
+ + + + c + + c + c c +
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Relations. , 2 2 , e.g.
. , 4 4 ~
e 4 OO0
A ( S
é\: Q or 2 = S or = etc.
N\ I g ) & )
2 2 \ ' 4 K
3 3 : \ .
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Tangle diagrams with cone strands

Let cTan be the monoidal category as follows.
i Example i
Generators. Object generator U {oco}}, morphism generators
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Tangle diagrams with cone strands

Let cTan be the monoidal category as follows.
i Example. i

Generators. Object generator U {oco}}, morphism generators
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Tangle diagrams with cone strands

Let cTan be the monoidal category as follows.

Generators. Object generator

usual crossings us

U {oco}}, morphism generators
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Tangle diagrams with cone strands

Let cTan be the monoidal category as follows.

Generators. Object generator

+ o+ o+ o+ -+ o+
't/A \7‘ N A
Y b ?
ANe
usual crossings us

Relations.

U {oco}}, morphism generators

cone crossings

| s000

, e.g.
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Two-dimensional orbifolds

“Definition”. An is locally modeled on the standard Euclidean space
modulo an action of some finite group.

Main example. %/.; acts on R? by rotation around a fixed point c, e.g.:

R2
5 o 4
Drb:R Z/ZZ ? ~

“/2z, action cone point

Philosophy. The c's are in between regular points and punctures:

regular order two order three
R2 R2 r2 R2
- 2 x 3

puncture

o0 *
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Two-dimensional orbifolds

“Definition”. An is locally modeled on the standard Euclidean space

modulo an action of some finite group.

Main example. %/.; acts on R? by rotation around a fixed point c, e.g.:

2 R2
R? e —2

v g i ~
o> X R e

2
orb =R Ziyy

“/2z, action cone point

Philosophy. The c's are in between regular points and punctures:

regular order two order three puncture
[R2y __trivial R2 R2 R2
!
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Two-dimensional orbifolds
is locally modeled on the standard Euclidean space

“Definition”. An
modulo an action of some finite group.

Main example. %/.; acts on R? by rotation around a fixed point c, e.g.:

2 R2
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Two-dimensional orbifolds

“Definition”. An

modulo an action of some finite group.

Main example. %/ acts on

Orb = R?

If we draw tangles in 20rb, then:

—
il

Philosophy. The

regular

R2; trivial

Orb
70 =

1 1 kg
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R2, _trivial

order two
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is locally modeled on the standard Euclidean space

fixed point c, e.g.:
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c
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Pioneers of algebra

Let [ be a

Artin ~1925, Tits ~1961-+. The Artin braid groups and its Coxeter group
quotients are given by generators-relations:

Aarr = <5,. | - bbb = ...5j5i5j>
J mj; factors mj; factors

_ 2 _ _
Wr=(si| st =1,---sisjsi = - - 5jsisj)
———  ~—
mj; factors mj; factors

Artin braid groups generalize classical braid groups, Coxeter groups Weyl groups.

We want to understand these better.
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Let [ be a

Artin ~1925, Tits ~1961-+. The Artin braid groups and its Coxeter group
quotients are given by generators-relations:

Only algebra: are = (6| --- bibjb; = - - - BB 6;)
No “interpretation” yet.J — =
mj; factors mj; factors

_ 2 _ _
Wr=(si| st =1,---sisjsi = - - 5jsisj)
———  ~—
mj; factors mj; factors

Artin braid groups generalize classical braid groups, Coxeter groups Weyl groups.

We want to understand these better.

Daniel Tubbenhauer Link invariants and orbifolds April 2018 6/15



| follow hyperplanes

W,, = (s, 1) acts faithfully on R? by reflecting in hyperplanes (for each reflection):

W,, acts freely on M, = R?\ hyperplanes. Set N, =M, /W, .
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| follow hyperplanes

W,, = (s, 1) acts faithfully on R? by reflecting in hyperplanes (for each reflection):

Coxeter ~1934, Tits ~1961. This works in ridiculous generality.

(Up to some minor technicalities in the infinite case.)

W,, acts freely on M, = R?\ hyperplanes. Set N, =M, /W, .

Daniel Tubbenhauer Link invariants and orbifolds April 2018 7/15



| follow hyperplanes

W,, = (s, 1) acts faithfully on R? by reflecting in hyperplanes (for each reflection):

W,, acts freely on M, = R?\ hyperplanes. Set N, =M, /W, .

. L TR2 2 C C :
Complexifying the action: R* ~» C*, My, ~ MAz’ Ny, ~ NA2' Then:

m(Ny ) = Ary, = (6.6, | 6.6,6. = b,6.6,)
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| follow hyperplanes

W,, = (s, 1) acts faithfully on R? by reflecting in hyperplanes (for each reflection):

b
Brieskorn ~1971, van der Lek ~1983. This works in ridiculous generality.

(Up to some minor technicalities in the infinite case.)

W,, acts freely on M, = R?\ hyperplanes. Set N, =M, /W, .

. L TR2 2 C C :
Complexifying the action: R* ~» C*, My, ~ MAz’ Ny, ~ NAz' Then:

m(Ny ) = Ary, = (6.6, | 6.6,6. = b,6.6,)
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Configuration spaces

Artin ~1925. There is a topological model of Ar, via configuration spaces.
Example. Take Conf, = (R?)*\ fat diagonal/s. . Then m(Confy ) = Ar, .

Philosophy. Having a configuration spaces is the same as having braid diagrams:

R2 Y1 Y2 y3

o=(13) /w

iy

time

a usual braid

Crucial. Note that, by explicitly calculating the , one can
directly check that:

“Hyperplane picture equals configuration space picture.”
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Configuration spaces

Artin ~1925. There is a topological model of Ar, via configuration spaces.

Tl AN L (®2)3\ fat+ dinannal/ L\ o
Exampl Lambropoulou ~1993. tom Dieck ~1098, Allcock 2003, FA,:
Type Il A | A|B=c| B | € |D| D
. Orbifold feature H none (“1") { 00 { 00 { 0, 2 { 00, 00 { 2 { 2,2 |
PhllOSOp Additional inside: Works for tangles as well. ilagrams:
In those cases one can compute the hyperplanes!
This is very special for (affine) types ABCD.
2 T 7
yi Y2 3
a usual braid
Crucial. Note that, by explicitly calculating the , one can

directly check that:

“Hyperplane picture equals configuration space picture.”
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Configuration spaces

H 102 ol } : . 1 . 1 1.1 L o : L i
Artin ~ Hope. res.

The same works for Coxeter diagrams I which are “locally ABCD-like graphs”, e.g.:

o o .
/75 A2

1,7 7,2
Exampl o7 o) e -

u lagrams:
+ + 47+ 42 4 + 400 + + 47+
anr % %z X Yz X 7 X “h) = orbifold braids

Philosoj

c

x 4 S
b K b ﬁ 5 FI\ 1€z é\

c

LI L K

o

|But we can’t compute the hyperplanes... |
Crucial. Note that, by explicitly calculating the
directly check that:
“Hyperplane picture equals configuration space picture.”

, one can

Daniel Tubbenhauer Link invariants and orbifolds April 2018 8/15



Configuration spaces

1 1ol . C - Lo o

Les.

H 102 ol } : . 1 .
Artin ~ Hope.

Exampl

Philosoj

The same works for Coxeter diagrams I which are “locally ABCD-like graphs”, e.g.:

0,7
oo
5 o1l

3 W ¥s Vs ® 11
+ +OAT o+ 2+ + oo + + 4T+
Z Z 4 > : :
Arr X (Phz X Phz, X L X %fz) — orbifold braids

c

x 4 S
b K b ﬁ 5 FI\ 1€z é\

c

ocm|n|mo

Ay’

lagrams:

In words: The Z/.z-orbifolds provide the

Crucial. framework to study Artin braid groups of classical (affine) typene can

directly ¢

Daniel Tubbenhauer

and their “glued-generalizations”.

“Hyperplane picture equals configuration space picture.”
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Configuration spaces

Artin ~1925. There is a topological model of Ar, via configuration spaces.

Example. Take Conf, = (R?)*\ fat diagonal/s. . Then m(Confy ) = Ar, .

PhiIG. I L H £ I e dly N H bhenie A

Example. prams:
2 2
v o
~
66 = b 6, if - I ) (- )
o FQ\ ?
Crucial. Note that, by explicitly calculating the , one can

directly check that:

“Hyperplane picture equals configuration space picture.”
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Configuration spaces

Artin ~1925. There is a topological model of Ar, via configuration spaces.

Example. Take Conf, = (R?)*\ fat diagonal/s. . Then m(Conf, )= Ar, .

PhiIG. I L H £ I e dly N H bhenie A

Example. prams:
2 2 2
v LANAE o
- ~—
66, = b6, I (b (- )
® b ~ =
r 2 2
Crucial. Note that, by explicitly calculating the , one can

directly check that:

“Hyperplane picture equals configuration space picture.”
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Configuration spaces

Artin ~1925. There is a topological model of Ar, via configuration spaces.

Example. Take Conf, = (R?)*\ fat diagonal/s. . Then m(Confy ) = Ar, .

PhiIG. I L H £ I e dly N H bhenie A

Example. prams:
2 2
o A~ : Aol o
H HE ~
biby = by b;, if o I ) R (-
FQN 5 - I?
Crucial. Note that, by explicitly calculating the , one can

directly check that:

“Hyperplane picture equals configuration space picture.”
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Configuration spaces

Artin ~1925. There is a topological model of Ar, via configuration spaces.
Example. Take Conf, = (R?)*\ fat diagonal/s. . Then m(Conf, )= Ar, .

Philogastas—tlawd £ =

Example = frams:
2 2 2 2 2
oy T2 gL g g N 9 O
bibyr = by b, if o I ’ = (D = /U ( ()
N N T N [T
2 2 2 2 2
Crucial. Note that, by explicitly calculating the , one can

directly check that:

“Hyperplane picture equals configuration space picture.”
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Configuration spaces

Artin ~1925. There is a topological model of Ar, via configuration spaces.

Example. Take Conf, = (R?)*\ fat diagonal/s. . Then m(Confy ) = Ar, .

PhiIG. I L H £ I e dly N H bhenie A

Example. prams:
2
e b/ T :
E;ﬁi/ = 5,-/ 5,’, if Raadd }
o F ~
2
Crucial. Note that, by explicitly calculating the , one can

directly check that:

“Hyperplane picture equals configuration space picture.”

Daniel Tubbenhauer Link invariants and orbifolds April 2018 8/15



Configuration spaces

Artin ~1925. There is a topological model of Ar, via configuration spaces.
Example. Take Conf, = (R?)*\ fat diagonal/s. . Then m(Conf, )= Ar, .

Philogastas—tlawd £ =

£l L - . - .
Example grams:
2 2 2 2 2
(1 T : T L iy k _\ _j\
~ \
biby = by b, if I ) = I - (
D - -
o F ~ AN - ==
2 2 2 2 2
Crucial. Note that, by explicitly calculating the , one can

directly check that:

“Hyperplane picture equals configuration space picture.”
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?

U

Daniel Tubbenhauer Link invariants and orbifolds April 2018 9/15
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?

C(v)
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?

C(v)

C(v) = ground field,
C2 = vector representation
of U, = U(slr).

2 o 2
F TR
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?

C(v)

UAR ec
2
u CV
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?

C(v)

?7: €2 — C2 should be non-trivial.
But (Cs is irreducible for ,...?

2 2 o 02 @ 02
K Cv ® Cv ® Cy ® Cy
?? 177 ®id ® id ® id
c2gc2®c?@c?
Tid ® id ® ev*
2 2
Cv ® Cy
Pev*
. C(v)
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?

C(v)
2 2 2 2
\ C; ®Cy®Cy ®Cy
Tid ® R ® id
2 2 2 2
C;®CIQCE®Cs
77 , ,lreideideid
c2eciec2gc?
Tid ® id ® ev*
2 2
Cy; ® Cy
Tev*
. C(v)
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?

C(v)

2 o2 o2 o2
1§ CreCec 0
Tid ® R ® id
2 2 o 2 @ 2
c2ec2ec2gc?
Tid ® R ® id
2 o222
v @GOG ®C
?? 177 ®id ® id ® id
s 2 2 o2 @
c2ec2gc2ec?
Tid ® id ® ev*
2
v

2
Fer
C(v)

C:
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?

C(v)

Same issue...

2 002 @02 @ 2
2ec2®c2ec?
77 X 2T772®id2®id®id
2@c2®c2ec?
id ® R ® id
2 o2 o2 o 2
2@c2®c2ec?
Tid ® R ® id
2eciecZgc?
7 P77 ®id @ id @ id
2gciec2gc?
Tid ® id ® ev*
2
v

2
Fer
C(v)

C:

Daniel Tubbenhauer Link invariants and orbifolds April 2018 9/15



Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?

C(v)

2 @2
“’v®“’v
Tid ® id ® ev
c2gc2®c2@c?
77 X 2?72@ id ®id ® id
2gc2®c2®c?
id®R ® id

c2®czgc2®c2

v @GOG G
Tid ® R ® id

2

2 2 2 &
C;, ®Cy®Cy ®Cy

177 ®id ® id ® id
2gciec2gc?
Tid ® id ® ev*
2 o 2
N e
Tt

C(v)

7

2
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?

C(v)
TEV
Tid ® id ® ev
2 02 @2 @2
2ec2eclec
VO OCG R
77? 17 ®id®id ® id
2eciec2gc?
id®R ® id

c2®czgc2®c2

v @GOG G
Tid ® R ® id

2

2 2 2 &
C;, ®Cy®Cy ®Cy

77 . 7‘772® id @ id @ id
2gciec2gc?
Tid ® id ® ev*
S coc
ot

C(v)

2
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Reshetikhin—Turaev theory half-way in between

Reshetikhin—Turaev ~1991. Construct link and tangle invariants as functors
uRT : uTan — well-behaved target category.
Today: Target categories = R ep(U(sl2)) and friends.

Question. What could the %4z-analog be?
Orbifold-philosophy. We need something half-way in between C(v) and .

C(v)
TEV

Tid ® id ® ev
R o222
v v \‘/V v
7 17 ®id ®id ® id
s 2 02 o2 e C
. CreCec 0
id ® R ® id

C2®ngcz®cz

v v v v
Tid ® R ® id

2

2 2 2 e
Zecegec

177 ®id ® id ® id
c2gc2®c?@c?
Tid ® id ® ev*
2 o 2
N e
Pev*

C(v)

7

2
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Half-way in between trivial C ?? C U, — part |

Kulish—Reshetikhin ~1981. ¥, is the associative, unital C(v)-algebra generated

by E,F,K*! subject to the usual relations.
Not really important...

c2 Evy =0, Fvy=v_, Kvy=vvy, Kw(\\fl K~ov
: _ F
V' Ev_=vy, Fv.=0, Kv.=v lv_. Vo s v

Define U,-intertwiners:
ViC(v) 2 C2eC?, 1= vy —v v, ®v,

'C2®C2%C(v) vy ® vy — 0, Vi ®@v_ 1,
oo ! 7 Vo ®vy = —v, vo®ve =0,
ViC2eC2—C2eC2 % =v||+v?%.
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Half-way in between trivial C ?? C U, — part |

Kulish—Reshetikhin ~1981. ¥, is the associative, unital C(v)-algebra generated

by E,F,K*! subject to the usual relations.

2 Evy =0, Fvpy =v_, Kvy=vvy, K~y ! K«(fiv
: _ F
V' Ev_=vy, Fv.=0, Kv.=v lv_. Vo s v

Fact. U, is a Hopf algebra = We can tensor representations.
Define U,-intertwiners:

ViC(v) 2 C2eC?, 1= vy —v v, ®v,

'C2®C2%C(v) vy ® vy — 0, Vi ®@v_ 1,
Ay v ’ Ve @ vy = =V, V7®V,I—>O,
LC2eC2—C2C2, U =v||+v?X.
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Half-way in between trivial C ?? C U, — part |

Kulish—Reshetikhin ~1981. ¥, is the associative, unital C(v)-algebra generated

by E,F,K*! subject to the usual relations.

> Evy =0, Fvpy =v_, Kvy=vvy, Kw(\\fl K~sv
Cs: Ey — B I o
v_ =vy, Fv_ =0, Kv_ =v ‘v_. Vo S5 vy
Defl..,\ AT b adiaiion A

Example. (Ao ¥ )(1)= A(v-®vy)—v i aA(vy®@v.)=—-v—v L
ViCv) =2 CiCs 1=vo@vy—v vy ®v.,

'C2®C2%C(v) vy ® vy — 0, Vi ®@v_ 1,
Ay v ’ Ve @ vy = =V, V7®V,I—>O,
K CRCI-C2oC2, K =v||+vK
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Half-way in between trivial C ?? C U, — part |

Kulish—Reshetikhin ~1981. ¥, is the associative, unital C(v)-algebra generated

by E,F,K*! §

C2:

Define ,-in{

Example. We can not see the cone strands.

2
2

2
<

2eciec2ec?

v v v

2 2 2 2
C,®Cy®Cy ®Cy

K~~v

Vi

1,
5 0,

TR, 5 e,

Daniel Tubbenhauer

A=VII+FV R
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Half-way in between trivial C ?? C U, — part |

Kulish—Reshetikhin ~1981. ¥, is the associative, unital C(v)-algebra generated

by E,F,K*! §

C2:

Up to scalars
. . no choice for
Define ,-ii

2
2

C(v)

mZT«‘Z

................... ‘“‘v%ei“'\l
c2ecleciec?

T

2gc2gc?gc?
2 ZT 2 2
C;®C; ®C; ®Cy
2 ZT 2 2
C;®C;Q®C; ®Cy
2 ZT 2 2
C;®C;QC; ®Cy

Foct

Q
N3

Example. We can not see the cone strands.

K~~v

Vi

1,
5 0,

TR, 5 e,

Daniel Tubbenhauer

A=VII+FV R

Link invariants and orbifolds

April 2018
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Half-way in between trivial C ?? C U, — part Il

Let c, be the subalgebra of I, generated by B = v !EK~! 4 F.

2. _ _ (B
Cs: Bvy =v_, Bv_ =v;. vo S vy

Define c,-intertwiners:
$:C2 =5 C% vy v, Vo vy,

YoC(v) 2 C2eC2, 1= v,®v, —v iv.®v.,

A C2®C2— C(v), {V+®V+H_V’ vy @ v =0,

Ve @ vy — 0, Ve Q@ v — 1,
Z=+=X and K =|=X.
Aside. This drops out of a of Schur-Weyl duality.
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Half-way in between trivial C ?? C U, — part Il

Let c, be the subalgebra of I, generated by B = v !EK~! 4 F.

2. _ _ (B
Cs: Bvy =v_, Bv_ =v;. vo S vy

Define cUy-intertv Qbservation. These are not 7l-equivariant,
but ~ and .~ are c,-equivariant.

YoC(v) 2 C2eC2, 1= v,®v, —v iv.®v.,

AC%@C?[—)C(V% {V+®V+’—>—V7 V+®V,l—>0,

Ve @ vy — 0, Ve Q@ v — 1,
Z=+=X and K =|=X.
Aside. This drops out of a of Schur-Weyl duality.
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Half-way in between trivial C ?? C U, — part Il

Let c, be the subalgebra of I, generated by B = v !EK~! 4 F.
B
C2: Bvy =v_, Bv. =v,. vo S5 vy

Define ciExample. (4o ¥ )(1) = a(v-®@vy)—v ia(vi®@v.)=0

tot =] but4#].

YoUV) 2GRl L vi®ve —v Ve Qv

AC%@C?[—)C(V% {V+®V+’—>—V7 V+®V,l—>0,

Ve @ vy — 0, Ve Q@ v — 1,
Z=+=X and K =|=X.
Aside. This drops out of a of Schur-Weyl duality.
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Half-way in between trivial C ?? C U, — part Il

Let cU, be the

Define cU,-i

Aside. This drops out of a

Daniel Tubbenhauer

subalgebra of I, generated by B = v !EK~! 4 F.

()
c?,je:cg
C\%@c‘%gc‘%@cg
C\Z,@cggcg@cg
d@%gﬁ®d
c‘%@csgc%@cg
c‘%@c\%gc%@c%
c%%c%

2
<

Example. We can see the cone strands.

n

(NN

111
| A1
| A1
1

||\J

v

|

Link invariants and orbifolds

of Schur-Weyl duality.
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Half-way in between trivial C ?? C U, — part Il

Let cU, be the

Define cU,-i

Aside. This drops out of a

subalgebra of I, generated by B = v !EK~! 4 F.

Example. We can see the cone strands.

()

c‘%gcg ~
c\z,@c‘%gcg@cg I A
C\Z,@cggcg@cg L1
c‘%@c‘%gc%@cg | A
c‘%@csgc%@cg | A
c‘%@c\%gc%@c% +||U|

c%%c% |U|

2
<

|

Daniel Tubbenhauer

of Schur-Weyl duality.
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Half-way in between trivial C ?? C U, — part Il

Let c, be the subalgebra of I, generated by B = v !EK~! 4 F.

2 B

Hope.

The same works for

Define c

+ + 4T+ 2+ + +oo + + 47+

But what is the replacement of c¥U, outside of classical or affine classical type?
k = - - - 7

I N V) ad % 1\
|(Aff|ne) ABCD are again very special. |

Aside. This drops out of a of Schur-Weyl duality.
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Back to diagrams

Let TLy[q+1 be the monoidal category defined as follows.

Generators. Object generator {o}, morphism generators

U
N

o cups and caps

Relations. Temperley—-Lieb relations, i.e.
A technicality: q = —v.

SRERAARY

o circle removal isotopies

Daniel Tubbenhauer Link invariants and orbifolds April 2018
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And to left-handed diagrams

Let <mArcyq+1) be the TLzjq+1)-Category defined as follows.

Generators. No object generators, morphism generators

o o o
o o o

marked identity marked cups and caps

Relations. Coideal relations, i.e.

m circle removal marker removal marked isotopies
Daniel Tubbenhauer Link invariants and orbifolds April 2018
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And to left-handed diagrams

Examples.
Let <mArcyq+1) be the s follows.

Generators. No object gg =(a+a )

U0

But in contrast:

Relations. Coideal relatio| =0

O=. 77 U U™

m circle removal marker removal marked isotopies

U0
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A polynomial invariant a la Jones & Kauffman

A left-handed version of cTan.

We define a functor (_)__ :<cof Tan — «mArcyq+1) intertwining the right actions as
follows. On objects,

<+>’x, =0 Y <7>’XJ =0 ) <C>’x, = @
and on morphisms by
The skein relations.

() sl e X (%) =X |

o0
0-reso. 1-reso. 0-reso. 1-reso.

) = and & =
A

>~ 00 >~ 00
Daniel Tubbenhauer Link invariants and orbifolds

April 2018 14/15



A polynomial invariant a la Jones & Kauffman

We define a functor (_)__ :

follows. On objects,

()
and on morphisms by

(R =l 1%

0-reso.
5
2

oo

(

Daniel Tubbenhauer

<cof Tan — «mArcyq+1 intertwining the right actions as

=0 , {(Fe=0, () =9
The skein relations.
’\7\ g2 \J q! | |
N ~"

1-reso. 0-reso.

<

1-reso.

The %/y;-skein relations.

- (3

oo

; ;
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A polynomial invariant a la Jones & Kauffman

We define a
follows. On

and on mor

95

functor (_)__ :<ocof Tan — <mArcypq+1) intertwining the right actions as

Theorem. Up to rescaling: This is a co-tangle invariant.

Up to framing: This is a Zhz-tangle invariant.

Proof. Check relations, e.g.:

Daniel Tubbenhauer Link invariants and orbifolds
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A polynomial invariant a la Jones & Kauffman

We define a functor (_)__

:<00f Tan — «mArcyq+1) intertwining the right actions as

Example. Here the

8

cube

8

(A oo =

Hopf link.

11

U0

:
¥—>

1)2

2 ~ 3 1 4 ~ 12
a“(a+aq” - 29°(q+q7 ") +  q(a+q )

Daniel Tubbenhauer
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A polynomial invariant a la Jones & Kauffman

We define a functor (_)__ :<cof Tan — «mArcyq+1) intertwining the right actions as

Example. Here the essential Hopf link.

525
=6 !

\',
(eh) oo = ?(q+q 1?2 - 23(q+q7 1)
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A polynomial invariant a la Jones & Kauffman

We define a functor (_)__ :<cof Tan — «mArcyq+1) intertwining the right actions as

Example. Here the essential Hopf link.

> —
I . :
/ cube -11
j Hence, they are different. -

01

%

(eh) oo = a®(a+q71)? - 2¢3(a+q7 1) + 0
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A polynomial invariant a la Jones & Kauffman

We defi

follows.

and on

<«

A homological invariant a la Khovanov & Bar-Natan.
Works mutatis mutandis. Here is the picture:

O P ~( )
ZXl y2y, if m is even
z _ (X2)» )
! <®> {O, if mis odd.

rtions as

-reso.

Daniel Tubbenhauer Link invariants and orbifolds
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A polynomial invariant a la Jones & Kauffman

Wi fi x PR 3 - o P rtion
¢ lelde A homological invariant a la Khovanov & Bar-Natan. tions as
oflows Works mutatis mutandis. Here is the picture:
and on cone crossings
’§ W,
In case of type ABCD \ :
A thls comes from a categorification of the v
Schur-Weyl-coideal duality.
(“Web and arc algebras of type D".) S tq2 SN g
\./ 2 A T TS —— - ’\ -reso.
o usual crossings
Z X . .
oz @ _ X ixz), !f m !s even,
0, if mis odd.
Daniel Tubbenhauer Link invariants and orbifolds

April 2018 14/15



A polynomial invariant a la Jones & Kauffman

We define a functor (_)__ :<cof Tan — «mArcyq+1) intertwining the right actions as
follows. On objects,

<+>’x, =0 Y <7>’><,:O ) <C>x :@
and on morphisms by

\ - - la a\ -
y A homological invariant a la Khovanov & Rozansky. q? | |
A\ Everything generalizes to higher ranks.
/
(“Webs”, “foams”, etc.) prese:
(¥ (S
g) -C () €
\ I g
Daniel Tubbenhauer Link invariants and orbifolds

April 2018 14 /15



Question 1
What s ot the questions marks?

Question 2

Question 3
Connections o oter fdkds e, o represanatin theory?

Configuration spaces

Atin ~1925. Ther i  topcsogial medel of 1, i confgrston spaces.

Example Take Conf, (%7 \ ot Ggonals, Then m(conf, ) = 1,

Philosophy. Having 3 configuraton spaces s the same 5 havingbrsid isgams:

Tangle diagrams with cone strands

Let 7 an b the moncdsl ctegory GEEED a1 follons

] oo morpvsm ganestrs

AKRXK

2 g

Exercise, The relsions v sctualy st

v 8899
PR BE B8

Configuration spaces

Artin

Exam 3
—

Phiosof
IS

s s ]

cil, Nt tht, by expictly clclting the EESTESIIETIED, one can
ety check tat
Hyparptane picture cqulsconfuration spc pictre

A version o Schur'sremarable duaity.

whlat) 29 %0

cu(ol) A

a
ENvig-Stroppel, Bao-Wang ~2013. The aetions of <04(at) 3nd 5(D) ¥

on (€274 commute and geerte eachothr's contralizer

Daniel Tubbenhauer

Crucia, Nots tht, by expl
ety check tat
Hyparptane picture cqulsconfuration spce pictre

ariant a la Jones & Kauffman

A polynom

1 follow hyperplanes

Wy, = [11)scs Fitflly n R by reecting in yperplancs(foresch refection):

Wy sctsfely on W, = R\ yperlanes. Se 1

Complesifying the sction: B2 — G 1, 45, 1, ¥, Thers

) Ary = (6,61666,— 565)

Half-way in between trivial C ?? C @, — part Il
Let ct, b the QD subalet o t, geerted by 8 = v 1K 1+

Eampte, We a1 e e cone sand

Detine et

j
E|

il

Aside. Thisdrop ou of 2 GRS of Schur-Wep dulty

invariant  la Jones & Kauffman

B —

e Tan sy

«
fllvs. On ajecs,

and o morphisms by

)

13T R

(39 <=3 <
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bod '*@B o

There is still much to do...
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Question 1
What s ot the questions marks?

Question 2

Question 3
Connections o oter fdkds e, o represanatin theory?

Configuration spaces

Atin ~1925. Ther i  topcsogial medel of 1, i confgrston spaces.

Example Take Conf, (%7 \ ot Ggonals, Then m(conf, ) = 1,

Philosophy. Having 3 configuraton spaces s the same 5 havingbrsid isgams:

Tangle diagrams with cone strands

Let 7 an b the moncdsl ctegory GEEED a1 follons

] oo morpvsm ganestrs

AKRXK
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ety check tat
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Wy, = [11)scs Fitflly n R by reecting in yperplancs(foresch refection):

0y, scts ey on Wy, = R\ byperplanes Set =, /)

Complesifying the sction: B2 — G 1, 45, 1, ¥, Thers

) Ary = (6,61666,— 565)
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Detine et

j
E|

il

Aside. Thisdrop ou of 2 GRS of Schur-Wep dulty

invariant  la Jones & Kauffman

B —

e Tan sy

«
fllvs. On ajecs,

and o morphisms by

E TR %

(39 <=3 <

Link invariants and orbifolds

— —
: [

Thanks for your attention!

April 2018

15/15



Slogan. (Monoidally) generated = building with Lego pieces.

Lego ® Lego = new Lego,
eg ——++®c—=——++c—

Legoo Lego = new Lego or Lego® Lego = new Lego




Examples of usual relations.

P-T-d 8118 FK

Examples of mixed relations.

Examples of planar isotopies.

W I (B[R] Ui -1



Examples of usual relations.

P-T-d 8118 K

Examples of mixed relations.

Z_T1-N 7S Y

In the spirit of Turaev ~1989. Generators & relations in the monoidal setting.

Examples of planar isotopies.

W I (B[R] Ui -1



Satake ~1956 (“V-manifold”), Thurston ~1978, Haefliger ~1990
(“orbihedron”), etc. A triple Orb = (Xg,s,U;Uj, G;) of a Hausdorff space Xgp, a
covering U;U; of it (closed under finite intersections) and a collection of finite
groups G; is called an orbifold (of dimension m) if for each U; there exists a open
subset V; C R™ carrying an action of G;, and some compatibility conditions.

Fact. A two-dimensional (“smooth”) orbifold is locally modeled on:
> Cone points «w rotation action of /.
> Reflector corners «~ reflection action of the dihedral group.

> Mirror points «~ reflection action of Z/x.



Satake ~1956 (“V-manifold”), Thurston ~1978, Haefliger ~1990

“or Not super important. Only one thing to stress: 5, @
cove Topologically an orbifold is sometimes the same as its underlying space.:
grou  So all notions concerning orbifolds have to take this into account.  pen
subset V; C R™ carrying an action of G;, and some compatibility conditions.

Fact. A two-dimensional (“smooth”) orbifold is locally modeled on:
> Cone points «w rotation action of /.
> Reflector corners «~ reflection action of the dihedral group.

> Mirror points «~ reflection action of Z/x.



Satake ~1956 (“V-manifold”), Thurston ~1978, Haefliger ~1990

“or Not super important. Only one thing to stress: 5, @
cove Topologically an orbifold is sometimes the same as its underlying space.:
grou So all notions concernlng orbifolds have to take this into account pen

'
¢

Quote by Thurston about the name orbifold:

“This terminology should not be blamed on me. It was obtained by
l a democratic process in my course of 1976-77. An orbifold is something
with many folds; unfortunately, the word ‘manifold’ already has
a different definition. | tried ‘foldamani’, which was quickly
displaced by the suggestion of ‘manifolded’. After two months of patiently
saying ‘no, not a manifold, a manifoldead,” we held a vote, and ‘orbifold” won.”



Satake ~1956 (“V-manifold”), Thurston ~1978, Haefliger ~1990
(“orbihedron”), etc. A triple Orb = (Xg,s,U;Uj, G;) of a Hausdorff space Xgp, a
covering U;U; of it (closed under finite intersections) and a collection of finite
groups G; is called an orbifold (of dimension m) if for each U; there exists a open
subset V; C R™ carrying an action of G;, and some compatibility conditions.

Fact. A two-dimensional (“smooth”) orbifold is locally modeled on:
> Cone points «w rotation action of /.
> Reflector corners «~ reflection action of the dihedral group.

> Mirror points «~ reflection action of Z/x.



Satake ~1956 (‘
(“orbihedron”), ¢
covering U;U; of it
groups G; is called
subset V; C R™ c3

Fact. A two-dime

> Cone points ¢

2

A Zjpz-orbifold tangle

Examples.

30000,

3 3
A Zfsz-orbifold tangle

“Puncture = lim._, oo c-cone point”.

r ~1990

orff space Xgp, a
ection of finite
here exists a open
y conditions.

l on:

> Reflector corners «~ reflection action of the dihedral group.

> Mirror points «~ reflection action of Z/x.
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Figure: The Coxeter graphs of finite type.

Example. The type A family is given by the symmetric groups using the simple
transpositions as generators.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)


https://en.wikipedia.org/wiki/Coxeter_group

AG -4
._.‘.?![.E H,
by ] f3 by b5 b6
D)6 =660 ne e bibib = b;b;6;, if 6 &——e 5 'HLJ'_’
—e it
ﬂrA6 is the classical braid group in six+1 strands — o
‘WA6 is the symmetric group on six+1 letters

Figure: The Coxeter graphs of finite type.

Example. The type A family is given by the symmetric groups using the simple

transpositions as generators.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)


https://en.wikipedia.org/wiki/Coxeter_group

by,
Dy
] ) by b5
by
“Far commutativity” “Reidemeister” “Zp-relation”  ®%
b6 = 66, if ;0  f 666 = 6,65, if 6 o—e 5 biby = by b, if
° 5
ﬂlr]qﬁ is 777
‘WD6 is the Weyl group of type Dg

Example. The type A family is given by the symmetric groups using the simple
transpositions as generators.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)


https://en.wikipedia.org/wiki/Coxeter_group

b8,
Dy
b 3 b4 b5
by
b/
bibj = bib;, if 6 e ® bibjb; = bbb, if b5 &——eF; bibyy = by b;, if
° 5
ﬂlr]qﬁ is 777
‘WD6 is the Weyl group of type Dg

Example. The type A family is given by the symmetric groups using the simple
transpositions ¢l want to answer ??? in this case, and partially in general.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)


https://en.wikipedia.org/wiki/Coxeter_group

Figure: The Coxeter graphs of affine type.

Example. The type A, corresponds to the affine Weyl group for sl,,.

(Pktum from https://en.wikipedia.org/wiki/Coxeter_group.)

Daniel Tubbenhauer Link invariants and orbifolds
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https://en.wikipedia.org/wiki/Coxeter_group

@ o
@1 @2
positive root a3 =(1,-1,0) | ap =(0,1,-1) | ag+ap =(1,0,—1)
reflection action X1 < Xo Xo <> X3 X1 <> X3
L -hyperplane {(x,x,0)} {(0,y,y)} {(z,0,2)}

Hyperplane equations: {(x,y,z) € (R?®)* |[x =y ory =z or x = z}
This is gl-notation.



@ o
@1 @2
positive root a3 =(1,-1,0) | ap =(0,1,-1) | ag+ap =(1,0,—1)
reflection action X1 < Xo Xo <> X3 X1 <> X3
L -hyperplane {(x,x,0)} {(0,y,y)} {(z,0,2)}

Hyperplane equations: {(x,y,z) € (R?®)* |[x =y ory =z or x = z}

Observe that this matches the diagonal of the configuration space picture.



@ o
@1 @2
positive root a3 =(1,-1,0) | ap =(0,1,-1) | ag+ap =(1,0,—1)
reflection action X1 < Xo Xo <> X3 X1 <> X3
L -hyperplane {(x,x,0)} {(0,y,y)} {(z,0,2)}

Hyperplane equations: {(x,y,z) € (R?®)* |[x =y ory =z or x = z}

positive root

“1’{. Dy
e °
@y a3
e
ay =(1,1,0) | a1 =(1,-1,0)

more “type A-like"

reflection action

X1/, X1 £ —X1/, —X1

X1 < X2

more “type A-like"

1 -hyperplane

{(x,—x,0,0)}

{(x,x,0,0)}

more “type A-like"

Hyperplane equations: {(x,y,z, w) € C*| x = +y etc.}



@ o
@1 @2
positive root a3 =(1,-1,0) | ap =(0,1,-1) | ag+ap =(1,0,—1)
reflection action X1 < Xo Xo <> X3 X1 <> X3
L -hyperplane {(x,x,0)} {(0,y,y)} {(z,0,2)}

Hyperplane equations: {(x,y,z) € (R?®)* |[x =y ory =z or x = z}

/@ D,
Observe that this matches the diagonal of the configuration space picture
up to a 2-fold covering (x,y, z, w) — (x2,y?, 2%, w?).

c1@

positive root ar = (1,1,0) a1 = (1,—1,0) | more “type A-like"
reflection action || xy/,x1 <> —x17, —x1 X1 & Xo more “type A-like"
1 -hyperplane {(x,—x,0,0)} {(x,x,0,0)} more “type A-like"

Hyperplane equations: {(x,y,z, w) € C*| x = +y etc.}



@ o
@1 @2
positive root a3 =(1,-1,0) | ap =(0,1,-1) | ag+ap =(1,0,—1)
reflection action X1 < Xo Xo <> X3 X1 <> X3
L -hyperplane {(x,x,0)} {(0,y,y)} {(z,0,2)}

Hyperplane equations: {(x,y,z) € (R?®)* |[x =y ory =z or x = z}

|Simi|ar|y in (affine) types ABCD. |

@2 a3
1@
positive root ar = (1,1,0) a1 = (1,—1,0) | more “type A-like"
reflection action || xy/,x1 <> —x17, —x1 X1 & Xo more “type A-like"
1 -hyperplane {(x,—x,0,0)} {(x,x,0,0)} more “type A-like"

Hyperplane equations: {(x,y,z, w) € C*| x = +y etc.}



Noumi—Sugitani ~1994, Letzter ~1999. Quantum groups have few Hopf
subalgebras, but plenty of coideal subalgebras.

clUy, is not a Hopf algebra, but rather a right coideal (subalgebra) of «,:
AB)=BR®K ' +1®B€ cly ® Uy,
ZcUy

which gives ® ep(c,) the structure of a right ® ep( U, )-category = right
handedness of diagrams, e.g.:

2

2
Gk from this picture Not ok from this picture



Noumi—Sugitani ~1994, Letzter ~1999. Quantum groups have few Hopf
subalgebras, but plenty of coideal subalgebras.

clUy, is not a Hopf algebra, but rather a right coideal (subalgebra) of «,:

Example. The vector representations of gl,,, so, and sp,, all agree, and indeed
so, — gl, and sp, — gl,.

W But the quantum vector representations do not agree, i.e.

h Uy(50,) A Us(gl,) and Uy(sp,) # Us(gl,).

This is bad. Idea Invent new quantizations such that
) and U (sp,) — U (gl,).

Uy (s0n) =
\// \/
I/\ f\

Gk from this picture Not ok from this picture



Noumi—Sugitani ~1994, Letzter ~1999. Quantum groups have few Hopf
subalgebras, but plenty of coideal subalgebras.

clUy, is not a Hopf algebra, but rather a right coideal (subalgebra) of «,:

Example. The vector representations of gl,,, so, and sp,, all agree, and indeed
so, — gl, and sp, — gl,.

W But the quantum vector representations do not agree, i.e.
h Uy(50,) A Us(gl,) and Uy(sp,) # Us(gl,).

This is bad. Idea: Invent new quantizations such that
W (s0,) = U (gl,) and T(sp,) — U (al,).
b~ vl
Observation. This happens repeatedly.
\I_/ ;II

2
Gk from this picture Not ok from this picture



Noumi—Sugitani ~1994, Letzter ~1999. Quantum groups have few Hopf
subalgebras, but plenty of coideal subalgebras.

clUy, is not a Hopf algebra, but rather a right coideal (subalgebra) of «,:
AB)=BR®K ' +1®B€ cly ® Uy,
ZcUy
H H P A Y T U ol S EERDS Y A2 2R W N H
which gives “This happens really often. In our case we have basicallyrlght
handedness «
0 t
gly < sl (t) — (t O)

which does not quantize properly...
| VAR AV W |
Observation. This happens repeatedly.

\I_/ ;II

2
Gk from this picture Not ok from this picture



A version of Schur's remarkable duality.

Plain old sl5: The symmetric group:
Acts by matrices. Acts by permutation.
2 2
W(sh)CC2®-- @ CIO 74(A)
—_———

d times

Schur ~1901. The natural actions of ¢ (sl2) and 7 (A)

on (C2)®9 = (C?)®9 commute and generate each other’s centralizer.



A version of Schur's remarkable duality.

Il
Ci®- - @Ci
N————

d times



L C .l 1 | .}

A versior le duality.

Weyl group of type D:
. type D

/(\ /V
%typeA

U(sh) CCI®@ - @CTO #(A)

Il N
2 2
Ci® - ®Cy (D)%
——
d times Ignore the component

group “/z.



A version of Schur's remarkable duality.

Il N
C?@-- @ CIO 7 (D)x%y
————

Acts by signed

d times L
permutations.



A version of Schur's remarkable duality.

U (sh) CCi®--- ®C2O 34 (A)
U I N
7?7 CCI® - ®CIO H(D)x%y
N———

d times



A version of Schur's remarkable duality.

The antidiagonal embedding: ﬂ1(5[2) C (C% & ® (C% O .’7‘[1(A)
) U Il N
U(gh) CCI@ - @ CIO 94(D)x %y,
N

Acts by restriction.

0 t
gly <= slp, (t)»—>(t 0

d times

Regev ~1983. The actions of ¢ (gl;) and #(D)x%kz

on (C2)®9 commute and generate each other's centralizer.



A version of Schur's remarkable duality.

Uy(sh) CC2® - ® C2D 3,(A)
Jimbo ~1985. The natural actions of U (sl2) and 74(A)

on (C2)®9 = (C(v)?)®? commute and generate each other’s centralizer.



A version of Schur's remarkable duality.

Uy(sh) CC2® - ® C2D 3,(A)
[
Clw-- -®C2
N—————

d times



A version of Schur's remarkable duality.

Uy(sh) CC2® - ® C2D 3,(A)
[ N
C2---@C2  #H(D)x%y
N———

d times



A version of Schur's remarkable duality.

Uy(sh) CC2® - ® C2D 3,(A)

Il N
C2® - @ C2O H (D)%
d times Quantizes

nicely.



A version of Schur's remarkable duality.

Uy(sh) CC2® - ® C2D 3,(A)
U I N
7?7 CCI®-®C2O H(D)x%y
N———

d times



A version of Schur's remarkable duality.

Uy(sh) CC2® - ® C2D 3,(A)
U I N
Uy(gl) CCZ@ - @ C2O 9, (D)x %y,
N—————

d times



A version of Schur's remarkable duality.

Uy (sh) CC2® - ® C2D g,(A)
Does not | Il N
embed.

Uy(gl) CCZ@ -+ @ C2O 9, (D)x %y,
N———

d times



A version of Schur's remarkable duality.

Uy(sh) CCI@--- @C2O 2, (A)
Sl Il N
U(gl) = Cl - @ Cs O #H,(D)x%y,
S

No commuting 4 times
action.



A version of Schur’s remarkable duality.

Uy(sl) CC2®--- @ C2O 7,(A)

™oL Il N
W) SC2®--- @ C2O 34(D)x%hs
———
d times



A version of Schur's remarkable duality.

U(sh) CCI®--- @ C3O 7, (A)
I N
cty(gly) C2®---®C2O 7,(D)x%hy
N———

d times



A version of Schur's remarkable duality.

Uy (sh) CCI@--- @C2O 2, (A)
I
subalsg:bra. U I N

cly(gly) C2®---®C2O 7,(D)x%hy
——

d times



A version of Schur's remarkable duality.

Uy(sh) CC2® - ® C2D 3,(A)

U Il N
clly(glh) CC2® - ®C2O H,(D)x%hy,
N——’
Act by d times

restriction.



A version of Schur's remarkable duality.

Uy(sh) CC2® - ® C2D 3,(A)

U I N
clly(glh) CC2® - ®C2O H,(D)x%hy,
N———
d times

Ehrig—Stroppel, Bao—Wang ~2013. The actions of c,(gl;) and 74 (D)x%hy

on (C2)®9 commute and generate each other’s centralizer.



A version of Schur's remarkable duality.

Uy(sh) CC2® - ® C2D 3,(A)
U [ N

Hope. Z/2Z

The same works for the Coxeter diagrams

00,7
;B

’

7 7,2 oo
o7 ot

2 TS S A

But, again, only in the special case of type ABCD this is known.




A version of Schur's remarkable duality.

Uy(sh) CC2® - ® C2D 3,(A)

U I N
clly(glh) CC2® - ®C2O H,(D)x%hy,
N———
d times

Message to take away. Coideal naturally appear in Schur-Weyl-like games.

And these pull the strings from the background for tangle and link invariants.



Slogan. Right generated = building with left- and right-Lego pieces.

left-Lego ® right-Lego = new left-Lego,
eg. P®o=o0

any-Lego o any-Lego = new any-Lego but
left-Lego ® right-Lego = new left-Lego

v ®|:\|J but J)/

e.g.
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