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Symmetric
group

This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?

Daniel Tubbenhauer Link invariants and orbifolds April 2018 2 / 15



Symmetric
group

Coxeter
presentation

generators

relations

This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?

Daniel Tubbenhauer Link invariants and orbifolds April 2018 2 / 15



Symmetric
group

Coxeter
presentation

generators

relations

Artin’s
presentation

quotient

This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?

Daniel Tubbenhauer Link invariants and orbifolds April 2018 2 / 15



Symmetric
group

Coxeter
presentation

generators

relations

Artin’s
presentation

quotient

Braids in R3

quotient

generators

relations

This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?

Daniel Tubbenhauer Link invariants and orbifolds April 2018 2 / 15



Symmetric
group

Coxeter
presentation

generators

relations

Artin’s
presentation

quotient

Braids in R3

quotient

generators

relations

Tangles
in R3

embeds

This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?

Daniel Tubbenhauer Link invariants and orbifolds April 2018 2 / 15



Symmetric
group

Coxeter
presentation

generators

relations

Artin’s
presentation

quotient

Braids in R3

quotient

generators

relations

Tangles
in R3

embeds

Monoidal
presentation

embeds

generators

relations

This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?

Daniel Tubbenhauer Link invariants and orbifolds April 2018 2 / 15



Symmetric
group

Coxeter
presentation

generators

relations

Artin’s
presentation

quotient

Braids in R3

quotient

generators

relations

Tangles
in R3

embeds

Monoidal
presentation

embeds

generators

relations

topology algebra

This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?

Daniel Tubbenhauer Link invariants and orbifolds April 2018 2 / 15



Symmetric
group

Coxeter
presentation

generators

relations

Artin’s
presentation

quotient

Braids in R3

quotient

generators

relations

Tangles
in R3

embeds

Monoidal
presentation

embeds

generators

relations

topology algebra

This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?

Daniel Tubbenhauer Link invariants and orbifolds April 2018 2 / 15



Symmetric
group

Coxeter
presentation

generators

relations

Artin’s
presentation

quotient

Braids in R3

quotient

generators

relations

Tangles
in R3

embeds

Monoidal
presentation

embeds

generators

relations

Coxeter
groups

generalize

This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?

Daniel Tubbenhauer Link invariants and orbifolds April 2018 2 / 15



Symmetric
group

Coxeter
presentation

generators

relations

Artin’s
presentation

quotient

Braids in R3

quotient

generators

relations

Tangles
in R3

embeds

Monoidal
presentation

embeds

generators

relations

Coxeter
groups

generalize

Coxeter type A

This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?

Daniel Tubbenhauer Link invariants and orbifolds April 2018 2 / 15



Symmetric
group

Coxeter
presentation

generators

relations

Artin’s
presentation

quotient

Braids in R3

quotient

generators

relations

Tangles
in R3

embeds

Monoidal
presentation

embeds

generators

relations

Coxeter
groups

generalizeCoxeter’s
presentation

generators

relations

This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?

Daniel Tubbenhauer Link invariants and orbifolds April 2018 2 / 15



Symmetric
group

Coxeter
presentation

generators

relations

Artin’s
presentation

quotient

Braids in R3

quotient

generators

relations

Tangles
in R3

embeds

Monoidal
presentation

embeds

generators

relations

Coxeter
groups

generalizeCoxeter’s
presentation

generators

relations

Tits’
presentation

quotient

This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?

Daniel Tubbenhauer Link invariants and orbifolds April 2018 2 / 15



Symmetric
group

Coxeter
presentation

generators

relations

Artin’s
presentation

quotient

Braids in R3

quotient

generators

relations

Tangles
in R3

embeds

Monoidal
presentation

embeds

generators

relations

Coxeter
groups

generalizeCoxeter’s
presentation

generators

relations

Tits’
presentation

quotient

Braids in ??

quotient

generators

relations

Tangles
in ??

embeds

Some pre-
sentation ??

embeds

generators

relations

This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?

Daniel Tubbenhauer Link invariants and orbifolds April 2018 2 / 15



Symmetric
group

Coxeter
presentation

generators

relations

Artin’s
presentation

quotient

Braids in R3

quotient

generators

relations

Tangles
in R3

embeds

Monoidal
presentation

embeds

generators

relations

Coxeter
groups

generalizeCoxeter’s
presentation

generators

relations

Tits’
presentation

quotient

Braids in ??

quotient

generators

relations

Tangles
in ??

embeds

Some pre-
sentation ??

embeds

generators

relations

generalize

generalize

This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?

Daniel Tubbenhauer Link invariants and orbifolds April 2018 2 / 15



Symmetric
group

Coxeter
presentation

generators

relations

Artin’s
presentation

quotient

Braids in R3

quotient

generators

relations

Tangles
in R3

embeds

Monoidal
presentation

embeds

generators

relations

Coxeter
groups

generalizeCoxeter’s
presentation

generators

relations

Tits’
presentation

quotient

Braids in ??

quotient

generators

relations

Tangles
in ??

embeds

Some pre-
sentation ??

embeds

generators

relations

generalize

generalize

This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?

Daniel Tubbenhauer Link invariants and orbifolds April 2018 2 / 15



Symmetric
group

Coxeter
presentation

generators

relations

Artin’s
presentation

quotient

Braids in R3

quotient

generators

relations

Tangles
in R3

embeds

Monoidal
presentation

embeds

generators

relations

Coxeter
groups

generalizeCoxeter’s
presentation

generators

relations

Tits’
presentation

quotient

Braids in ??

quotient

generators

relations

Tangles
in ??

embeds

Some pre-
sentation ??

embeds

generators

relations

generalize

generalize

This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?

Daniel Tubbenhauer Link invariants and orbifolds April 2018 2 / 15



Symmetric
group

Coxeter
presentation

generators

relations

Artin’s
presentation

quotient

Braids in R3

quotient

generators

relations

Tangles
in R3

embeds

Monoidal
presentation

embeds

generators

relations

Coxeter
groups

generalizeCoxeter’s
presentation

generators

relations

Tits’
presentation

quotient

Braids in ??

quotient

generators

relations

Tangles
in ??

embeds

Some pre-
sentation ??

embeds

generators

relations

generalize

generalize

This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?

Daniel Tubbenhauer Link invariants and orbifolds April 2018 2 / 15



1 Tangle diagrams of orbifold tangles
Diagrams
Tangles in orbifolds

2 Topology of Artin braid groups
The Artin braid groups: algebra
Hyperplanes vs. configuration spaces

3 Invariants
Reshetikhin–Turaev-like theory for some coideals
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Tangle diagrams with cone strands

Let cT an be the monoidal category defined as follows.

Generators. Object generators {+,−, c | c ∈ Z≥2 ∪ {∞}}, morphism generators
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cone crossings

Relations. Reidemeister type relations , and the Z/cZ-relations, e.g.

2

2

=

2

2

or

3

3

=

3

3

or

4

4

=

4

4

etc.

Examples.

c

c

=

c
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=
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Unknot

,

c

c

Essential unknot

c

c

Hopf link

,
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Essential Hopf link

Example.
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=

Exercise. The relations are actually equivalent.
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Two-dimensional orbifolds

“Definition”. An orbifold is locally modeled on the standard Euclidean space
modulo an action of some finite group.

Main example. Z/cZ acts on R2 by rotation around a fixed point c, e.g.:

Orb = R2
/

Z/2Z •
c
⇀↽

Z/2Z action

R2

 XOrb ≈ •
c

cone point

R2
/z=−z

↽⇀

Philosophy. The c’s are in between regular points and punctures:

R2

∗·

regular

R2

∗2

order two

R2

∗3

order three

R2

∗∞

puncture

If we draw tangles in 2Orb, then:

=

2

2

2

2
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Pioneers of algebra

Let Γ be a Coxeter graph .

Artin ∼1925, Tits ∼1961++. The Artin braid groups and its Coxeter group
quotients are given by generators-relations:

ArΓ = 〈bi | · · · bibjbi︸ ︷︷ ︸
mij factors

= · · · bjbibj︸ ︷︷ ︸
mij factors

〉

WΓ = 〈si | s2
i = 1, · · · si sj si︸ ︷︷ ︸

mij factors

= · · · sj si sj︸ ︷︷ ︸
mij factors

〉

Artin braid groups generalize classical braid groups, Coxeter groups Weyl groups.

We want to understand these better.

Only algebra:
No “interpretation” yet.
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I follow hyperplanes

WA2
= 〈s , t〉 acts faithfully on R2 by reflecting in hyperplanes (for each reflection):

••

••

• •

1•

WA2
acts freely on MA2

= R2 \ hyperplanes. Set NA2
= MA2

/WA2
.

Complexifying the action: R2  C2, MA2
 MC

A2
, NA2

 NC
A2

. Then:

π1(NC
A2

) ∼= ArA2
= 〈bs , bt | bs bt bs = bt bs bt 〉

Coxeter ∼1934, Tits ∼1961. This works in ridiculous generality.

(Up to some minor technicalities in the infinite case.)

Brieskorn ∼1971, van der Lek ∼1983. This works in ridiculous generality.

(Up to some minor technicalities in the infinite case.)
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Configuration spaces

Artin ∼1925. There is a topological model of ArA via configuration spaces.

Example. Take ConfA2
= (R2)3 \ fat diagonal

/
S3 . Then π1(ConfA2

) ∼= ArA2
.

Philosophy. Having a configuration spaces is the same as having braid diagrams:

y1 y2 y3

y1 y2 y3

σ=(13)

a usual braid

R2

R2

time

Crucial. Note that, by explicitly calculating the equations defining the hyperplanes , one can
directly check that:

“Hyperplane picture equals configuration space picture.”

Lambropoulou ∼1993, tom Dieck ∼1998, Allcock ∼2002.

Type A Ã B=C B̃ C̃ D D̃
Orbifold feature none (“1”) ∞ ∞ ∞, 2 ∞,∞ 2 2, 2

Additional inside: Works for tangles as well.

In those cases one can compute the hyperplanes!

This is very special for (affine) types ABCD.

Hope.

The same works for Coxeter diagrams Γ which are “locally ABCD-like graphs”, e.g.:

7 2 ∞ 7•

•

•

• •

•

•

• •

•

•

• •

•

•
1 2 4 6 7 9 10

3

3′

5

5′

8

8′

11

11′

+7 +2 +∞ +7+ + + + + + + +

D
1,7
4

D
7,2
4

D
2,∞
5

D
∞,7
5

ArΓ o (Z/7Z × Z/2Z × Z× Z/7Z)
∼=−→ orbifold braids

bj 7→ bi 7→
c

c

bi′ 7→
c

c

1 ∈ Z/cZ 7→

c

c

But we can’t compute the hyperplanes...In words: The Z/cZ-orbifolds provide the
framework to study Artin braid groups of classical (affine) type

and their “glued-generalizations”.

Example.

bi bi′ = bi′ bi , if

•

•

bi

bi′

!

2

2

2

2
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y1 y2 y3

y1 y2 y3

σ=(13)

a usual braid

R2

R2

time

Crucial. Note that, by explicitly calculating the equations defining the hyperplanes , one can
directly check that:

“Hyperplane picture equals configuration space picture.”

Lambropoulou ∼1993, tom Dieck ∼1998, Allcock ∼2002.

Type A Ã B=C B̃ C̃ D D̃
Orbifold feature none (“1”) ∞ ∞ ∞, 2 ∞,∞ 2 2, 2

Additional inside: Works for tangles as well.

In those cases one can compute the hyperplanes!

This is very special for (affine) types ABCD.

Hope.

The same works for Coxeter diagrams Γ which are “locally ABCD-like graphs”, e.g.:

7 2 ∞ 7•
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• •

•
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• •

•

•

• •

•
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1 2 4 6 7 9 10
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11′

+7 +2 +∞ +7+ + + + + + + +

D
1,7
4

D
7,2
4

D
2,∞
5

D
∞,7
5

ArΓ o (Z/7Z × Z/2Z × Z× Z/7Z)
∼=−→ orbifold braids

bj 7→ bi 7→
c

c

bi′ 7→
c

c

1 ∈ Z/cZ 7→

c

c

But we can’t compute the hyperplanes...

In words: The Z/cZ-orbifolds provide the
framework to study Artin braid groups of classical (affine) type

and their “glued-generalizations”.

Example.

bi bi′ = bi′ bi , if
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•

bi
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Reshetikhin–Turaev theory half-way in between

Reshetikhin–Turaev ∼1991. Construct link and tangle invariants as functors

uRT : uT an→ well-behaved target category.

Today: Target categories = R ep(Uv(sl2)) and friends.

Question. What could the Z/2Z-analog be?

2

2

C(v) = ground field,

C2
v = vector representation

of Uv = Uv(sl2).?? : C2
v → C2

v should be non-trivial.

But C2
v is irreducible for Uv...?

Same issue...

Orbifold-philosophy. We need something half-way in between C(v) and Uv.
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Half-way in between trivial ⊂ ?? ⊂ Uv – part I

Kulish–Reshetikhin ∼1981. Uv is the associative, unital C(v)-algebra generated
by E, F, K±1 subject to the usual relations.

C2
v :

Ev+ = 0,

Ev− = v+,

Fv+ = v−,

Fv− = 0,

Kv+ = vv+,

Kv− = v−1v−. v− v+

K v−1

F

E

K v

Define Uv-intertwiners:

: C(v)→ C2
v ⊗ C2

v, 1 7→ v− ⊗ v+ − v−1v+ ⊗ v−,

: C2
v ⊗ C2

v → C(v),

{
v+ ⊗ v+ 7→ 0, v+ ⊗ v− 7→ 1,

v− ⊗ v+ 7→ −v, v− ⊗ v− 7→ 0,

: C2
v ⊗ C2

v → C2
v ⊗ C2

v, = v + v2 .

Not really important...

Fact. Uv is a Hopf algebra ⇒ We can tensor representations.

Example. ( ◦ )(1) = (v− ⊗ v+)− v−1 (v+ ⊗ v−) = −v− v−1.

Example. We can not see the cone strands.

2

2

C(v)

C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v

C(v)

Up to scalars
no choice for

Daniel Tubbenhauer Link invariants and orbifolds April 2018 10 / 15



Half-way in between trivial ⊂ ?? ⊂ Uv – part I

Kulish–Reshetikhin ∼1981. Uv is the associative, unital C(v)-algebra generated
by E, F, K±1 subject to the usual relations.

C2
v :

Ev+ = 0,

Ev− = v+,

Fv+ = v−,

Fv− = 0,

Kv+ = vv+,

Kv− = v−1v−. v− v+

K v−1

F

E

K v

Define Uv-intertwiners:

: C(v)→ C2
v ⊗ C2

v, 1 7→ v− ⊗ v+ − v−1v+ ⊗ v−,

: C2
v ⊗ C2

v → C(v),

{
v+ ⊗ v+ 7→ 0, v+ ⊗ v− 7→ 1,

v− ⊗ v+ 7→ −v, v− ⊗ v− 7→ 0,

: C2
v ⊗ C2

v → C2
v ⊗ C2

v, = v + v2 .

Not really important...

Fact. Uv is a Hopf algebra ⇒ We can tensor representations.

Example. ( ◦ )(1) = (v− ⊗ v+)− v−1 (v+ ⊗ v−) = −v− v−1.

Example. We can not see the cone strands.

2

2

C(v)

C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v

C(v)

Up to scalars
no choice for

Daniel Tubbenhauer Link invariants and orbifolds April 2018 10 / 15



Half-way in between trivial ⊂ ?? ⊂ Uv – part I

Kulish–Reshetikhin ∼1981. Uv is the associative, unital C(v)-algebra generated
by E, F, K±1 subject to the usual relations.

C2
v :

Ev+ = 0,

Ev− = v+,

Fv+ = v−,

Fv− = 0,

Kv+ = vv+,

Kv− = v−1v−. v− v+

K v−1

F

E

K v

Define Uv-intertwiners:

: C(v)→ C2
v ⊗ C2

v, 1 7→ v− ⊗ v+ − v−1v+ ⊗ v−,

: C2
v ⊗ C2

v → C(v),

{
v+ ⊗ v+ 7→ 0, v+ ⊗ v− 7→ 1,

v− ⊗ v+ 7→ −v, v− ⊗ v− 7→ 0,

: C2
v ⊗ C2

v → C2
v ⊗ C2

v, = v + v2 .

Not really important...

Fact. Uv is a Hopf algebra ⇒ We can tensor representations.

Example. ( ◦ )(1) = (v− ⊗ v+)− v−1 (v+ ⊗ v−) = −v− v−1.

Example. We can not see the cone strands.

2

2

C(v)

C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v

C(v)

Up to scalars
no choice for

Daniel Tubbenhauer Link invariants and orbifolds April 2018 10 / 15



Half-way in between trivial ⊂ ?? ⊂ Uv – part I

Kulish–Reshetikhin ∼1981. Uv is the associative, unital C(v)-algebra generated
by E, F, K±1 subject to the usual relations.

C2
v :

Ev+ = 0,

Ev− = v+,

Fv+ = v−,

Fv− = 0,

Kv+ = vv+,

Kv− = v−1v−. v− v+

K v−1

F

E

K v

Define Uv-intertwiners:

: C(v)→ C2
v ⊗ C2

v, 1 7→ v− ⊗ v+ − v−1v+ ⊗ v−,

: C2
v ⊗ C2

v → C(v),

{
v+ ⊗ v+ 7→ 0, v+ ⊗ v− 7→ 1,

v− ⊗ v+ 7→ −v, v− ⊗ v− 7→ 0,

: C2
v ⊗ C2

v → C2
v ⊗ C2

v, = v + v2 .

Not really important...

Fact. Uv is a Hopf algebra ⇒ We can tensor representations.

Example. ( ◦ )(1) = (v− ⊗ v+)− v−1 (v+ ⊗ v−) = −v− v−1.

Example. We can not see the cone strands.

2

2

C(v)

C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v

C(v)

Up to scalars
no choice for

Daniel Tubbenhauer Link invariants and orbifolds April 2018 10 / 15



Half-way in between trivial ⊂ ?? ⊂ Uv – part I

Kulish–Reshetikhin ∼1981. Uv is the associative, unital C(v)-algebra generated
by E, F, K±1 subject to the usual relations.

C2
v :

Ev+ = 0,

Ev− = v+,

Fv+ = v−,

Fv− = 0,

Kv+ = vv+,

Kv− = v−1v−. v− v+

K v−1

F

E

K v

Define Uv-intertwiners:

: C(v)→ C2
v ⊗ C2

v, 1 7→ v− ⊗ v+ − v−1v+ ⊗ v−,

: C2
v ⊗ C2

v → C(v),

{
v+ ⊗ v+ 7→ 0, v+ ⊗ v− 7→ 1,

v− ⊗ v+ 7→ −v, v− ⊗ v− 7→ 0,

: C2
v ⊗ C2

v → C2
v ⊗ C2

v, = v + v2 .

Not really important...

Fact. Uv is a Hopf algebra ⇒ We can tensor representations.

Example. ( ◦ )(1) = (v− ⊗ v+)− v−1 (v+ ⊗ v−) = −v− v−1.

Example. We can not see the cone strands.

2

2

C(v)

C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v

C(v)

Up to scalars
no choice for

Daniel Tubbenhauer Link invariants and orbifolds April 2018 10 / 15



Half-way in between trivial ⊂ ?? ⊂ Uv – part II

Let cUv be the coideal subalgebra of Uv generated by B = v−1EK−1 + F.

C2
v : Bv+ = v−, Bv− = v+. v− v+

B

B

Define cUv-intertwiners:

: C2
v → C2

v, v+ 7→ v−, v− 7→ v+,

: C(v)→ C2
v ⊗ C2

v, 1 7→ v+ ⊗ v+ − v−1v− ⊗ v−,

: C2
v ⊗ C2

v → C(v),

{
v+ ⊗ v+ 7→ −v, v+ ⊗ v− 7→ 0,

v− ⊗ v+ 7→ 0, v− ⊗ v− 7→ 1,

= = and = = .

Aside. This drops out of a coideal version of Schur–Weyl duality.

Observation. These are not Uv-equivariant,
but and are cUv-equivariant.

Example. ( ◦ )(1) = (v− ⊗ v+)− v−1 (v+ ⊗ v−) = 0

◦ = but 6= .

Example. We can see the cone strands.

C(v)

C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v

C(v)

We have now
6= .

Hope.

The same works for

7 2 ∞ 7•

•

•

• •

•

•

• •

•

•

• •

•

•
1 2 4 6 7 9 10

3

3′

5

5′

8

8′

11

11′

+7 +2 +∞ +7+ + + + + + + +

D
1,7
4

D̃
7,2
4

D̃
2,∞
5

D̃
∞,7
5

But what is the replacement of cUv outside of classical or affine classical type?

(Affine) ABCD are again very special.
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v, v+ 7→ v−, v− 7→ v+,

: C(v)→ C2
v ⊗ C2

v, 1 7→ v+ ⊗ v+ − v−1v− ⊗ v−,

: C2
v ⊗ C2

v → C(v),

{
v+ ⊗ v+ 7→ −v, v+ ⊗ v− 7→ 0,

v− ⊗ v+ 7→ 0, v− ⊗ v− 7→ 1,

= = and = = .

Aside. This drops out of a coideal version of Schur–Weyl duality.

Observation. These are not Uv-equivariant,
but and are cUv-equivariant.

Example. ( ◦ )(1) = (v− ⊗ v+)− v−1 (v+ ⊗ v−) = 0

◦ = but 6= .

Example. We can see the cone strands.

C(v)

C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v

C(v)

We have now
6= .

Hope.

The same works for

7 2 ∞ 7•

•

•

• •

•

•

• •

•

•

• •

•

•
1 2 4 6 7 9 10

3

3′

5

5′

8

8′

11

11′

+7 +2 +∞ +7+ + + + + + + +

D
1,7
4

D̃
7,2
4

D̃
2,∞
5

D̃
∞,7
5

But what is the replacement of cUv outside of classical or affine classical type?

(Affine) ABCD are again very special.
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Back to diagrams

Let TLZ[q±1] be the monoidal category defined as follows.

Generators. Object generator {o}, morphism generators

o o

,

o o

o cups and caps

Relations. Temperley–Lieb relations, i.e.

= q + q−1

o circle removal

, = =

isotopies

A technicality: q = −v.
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And to left-handed diagrams

Let mArcZ[q±1] be the right TLZ[q±1]-category defined as follows.

Generators. No object generators, morphism generators

o

o

marked identity

,

o o

,

o o

marked cups and caps

Relations. Coideal relations, i.e.

= 0

m circle removal

, =

marker removal

, = and =

marked isotopies

Examples.

= (q + q−1)2

But in contrast:

= 0
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A polynomial invariant à la Jones & Kauffman

We define a functor 〈−〉∞ : ∞f T an→ mArcZ[q±1] intertwining the right actions as
follows. On objects,

〈+〉∞ = o , 〈−〉∞ = o , 〈c〉∞ = ∅

and on morphisms by

〈 〉

∞
= q

0-reso.

− q2

1-reso.

,

〈 〉

∞
= −q−2

0-reso.

+ q−1

1-reso.

〈

∞

∞ 〉

∞

= and

〈

∞

∞ 〉

∞

=

A left-handed version of cT an.

The skein relations.

The Z/2Z-skein relations.

Theorem. Up to rescaling: This is a ∞-tangle invariant.
Up to framing: This is a Z/2Z-tangle invariant.

Proof. Check relations, e.g.:

〈

∞

∞ 〉

∞

= = =

〈

∞

∞ 〉

∞
〈

2

2 〉

2

= = =

〈

2

2 〉

2

Example. Here the Hopf link.

∞

∞

Its−−→
cube

q3

10

q2

00

+ q4

11

q3

01

q2(q + q−1)2 2q3(q + q−1) q4(q + q−1)2〈 h〉∞ = − +

Example. Here the essential Hopf link.

∞

∞

Its−−→
cube

q3

10

q2

00

+ q4

11

q3

01

q2(q + q−1)2 2q3(q + q−1) 0〈eh〉∞ = − +

Hence, they are different.

A homological invariant à la Khovanov & Bar-Natan.
Works mutatis mutandis. Here is the picture:

∞

∞

∞

∞ cone crossings

usual crossings

q // tq2

mZ
(

m

)
=

{
Z[X ]/(X 2), if m is even,

0, if m is odd.

In case of type ABCD
this comes from a categorification of the

Schur–Weyl-coideal duality.

(“Web and arc algebras of type D”.)

A homological invariant à la Khovanov & Rozansky.
Everything generalizes to higher ranks.

(“Webs”, “foams”, etc.)
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We define a functor 〈−〉∞ : ∞f T an→ mArcZ[q±1] intertwining the right actions as
follows. On objects,

〈+〉∞ = o , 〈−〉∞ = o , 〈c〉∞ = ∅

and on morphisms by

〈 〉

∞
= q

0-reso.

− q2

1-reso.

,

〈 〉

∞
= −q−2

0-reso.

+ q−1

1-reso.

〈

∞

∞ 〉

∞

= and

〈

∞

∞ 〉

∞

=

A left-handed version of cT an.

The skein relations.

The Z/2Z-skein relations.

Theorem. Up to rescaling: This is a ∞-tangle invariant.
Up to framing: This is a Z/2Z-tangle invariant.

Proof. Check relations, e.g.:

〈

∞

∞ 〉

∞

= = =

〈

∞

∞ 〉

∞
〈

2

2 〉

2

= = =

〈

2

2 〉

2

Example. Here the Hopf link.

∞

∞

Its−−→
cube

q3

10

q2

00

+ q4

11

q3

01

q2(q + q−1)2 2q3(q + q−1) q4(q + q−1)2〈 h〉∞ = − +

Example. Here the essential Hopf link.

∞

∞

Its−−→
cube

q3

10

q2

00

+ q4

11

q3

01

q2(q + q−1)2 2q3(q + q−1) 0〈eh〉∞ = − +

Hence, they are different.

A homological invariant à la Khovanov & Bar-Natan.
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This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?
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Tangle diagrams with cone strands

Let cT an be the monoidal category defined as follows.

Generators. Object generators {+,−, c | c ∈ Z≥2 ∪ {∞}}, morphism generators

+

+

+

+

,

+

+

+

+

usual crossings

,

− +

,

+ −

,

− +

,

+ −

usual cups and caps

,

+

c

c

+

,

+

c

c

+

,

+

c

c

+

,

+

c

c

+

cone crossings

Relations. Reidemeister type relations , and the Z/cZ-relations, e.g.

2

2

=

2

2

or

3

3

=

3

3

or

4

4

=

4

4

etc.

Examples.

c

c

=

c

c

=

c

c

Unknot

,

c

c

Essential unknot

c

c

Hopf link

,

c

c

Essential Hopf link

Example.

2

2

2

2

=

Exercise. The relations are actually equivalent.
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I follow hyperplanes

WA2
= 〈s , t〉 acts faithfully on R2 by reflecting in hyperplanes (for each reflection):

∗

bs

bt

•

WA2
acts freely on MA2

= R2 \ hyperplanes. Set NA2
= MA2

/WA2
.

Complexifying the action: R2  C2, MA2
 MC

A2
, NA2

 NC
A2

. Then:

π1(NC
A2

) ∼= ArA2
= 〈bs , bt | bs bt bs = bt bs bt 〉

Coxeter ∼1934, Tits ∼1961. This works in ridiculous generality.

(Up to some minor technicalities in the infinite case.)

Brieskorn ∼1971, van der Lek ∼1983. This works in ridiculous generality.

(Up to some minor technicalities in the infinite case.)
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Configuration spaces

Artin ∼1925. There is a topological model of ArA via configuration spaces.

Example. Take ConfA2
= (R2)3 \ fat diagonal

/
S3 . Then π1(ConfA2

) ∼= ArA2
.

Philosophy. Having a configuration spaces is the same as having braid diagrams:

y1 y2 y3

y1 y2 y3

σ=(13)

a usual braid

R2

R2

time

Crucial. Note that, by explicitly calculating the equations defining the hyperplanes , one can
directly check that:

“Hyperplane picture equals configuration space picture.”

Lambropoulou ∼1993, tom Dieck ∼1998, Allcock ∼2002.

Type A Ã B=C B̃ C̃ D D̃
Orbifold feature none (“1”) ∞ ∞ ∞, 2 ∞,∞ 2 2, 2

Additional inside: Works for tangles as well.

In those cases one can compute the hyperplanes!

This is very special for (affine) types ABCD.

Hope.

The same works for Coxeter diagrams Γ which are “locally ABCD-like graphs”, e.g.:

7 2 ∞ 7•

•

•

• •

•

•

• •

•

•

• •

•

•
1 2 4 6 7 9 10

3

3′

5

5′

8

8′

11

11′

+7 +2 +∞ +7+ + + + + + + +

D
1,7
4

D
7,2
4

D
2,∞
5

D
∞,7
5

ArΓ o (Z/7Z × Z/2Z × Z× Z/7Z)
∼=−→ orbifold braids

bj 7→ bi 7→
c

c

bi′ 7→
c

c

1 ∈ Z/cZ 7→

c

c

But we can’t compute the hyperplanes...In words: The Z/cZ-orbifolds provide the
framework to study Artin braid groups of classical (affine) type

and their “glued-generalizations”.

Example.

bi bi′ = bi′ bi , if

•

•

bi

b
i′

!

2

2

2

2
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Half-way in between trivial ⊂ ?? ⊂ Uv – part II

Let cUv be the coideal subalgebra of Uv generated by B = v−1EK−1 + F.

C2
v : Bv+ = v−, Bv− = v+. v− v+

B

B

Define cUv-intertwiners:

: C2
v → C2

v, v+ 7→ v−, v− 7→ v+,

: C(v)→ C2
v ⊗ C2

v, 1 7→ v+ ⊗ v+ − v−1v− ⊗ v−,

: C2
v ⊗ C2

v → C(v),

{
v+ ⊗ v+ 7→ −v, v+ ⊗ v− 7→ 0,

v− ⊗ v+ 7→ 0, v− ⊗ v− 7→ 1,

= = and = = .

Aside. This drops out of a coideal version of Schur–Weyl duality.

Observation. These are not Uv-equivariant,
but and are cUv-equivariant.

Example. ( ◦ )(1) = (v− ⊗ v+)− v−1 (v+ ⊗ v−) = 0

◦ = but 6= .

Example. We can see the cone strands.

C(v)

C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v ⊗ C2
v ⊗ C2

v

C2
v ⊗ C2

v

C(v)

We have now
6= .

Hope.

The same works for

7 2 ∞ 7•

•

•

• •

•

•

• •

•

•

• •

•

•
1 2 4 6 7 9 10

3

3′

5

5′

8

8′

11

11′

+7 +2 +∞ +7+ + + + + + + +

D
1,7
4

D̃
7,2
4

D̃
2,∞
5

D̃
∞,7
5

But what is the replacement of cUv outside of classical or affine classical type?

(Affine) ABCD are again very special.
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A version of Schur’s remarkable duality.

Uv(sl2) Hv(A)

Hv(D)oZ/2Z

C2
v ⊗ · · · ⊗ C2

v

C2
v ⊗ · · · ⊗ C2

v︸ ︷︷ ︸
d times

⊃=

�

	
	cUv(gl1)

⊂ �

Back

Schur ∼1901. The natural actions of U1(sl2) and H1(A)

on (C2
1)⊗d = (C2)⊗d commute and generate each other’s centralizer.

Plain old sl2:
Acts by matrices.

The symmetric group:
Acts by permutation.

Weyl group of type D:

· · · •••

•

• type D

type A

Ignore the component
group Z/2Z.

Acts by signed
permutations.

Regev ∼1983. The actions of U1(gl1) and H1(D)oZ/2Z

on (C2
1)⊗d commute and generate each other’s centralizer.

Acts by restriction.

The antidiagonal embedding:

gl1 ↪→ sl2, (t) 7→
(

0 t
t 0

)
Jimbo ∼1985. The natural actions of Uv(sl2) and Hv(A)

on (C2
v)⊗d = (C(v)2)⊗d commute and generate each other’s centralizer.Quantizes

nicely.

Does not
embed.

No commuting
action.

Is a
subalgebra.

Act by
restriction.

Ehrig–Stroppel, Bao–Wang ∼2013. The actions of cUv(gl1) and Hv(D)oZ/2Z

on (C2
v)⊗d commute and generate each other’s centralizer.

Hope.

The same works for the Coxeter diagrams

7 2 ∞ 7•

•

•

• •

•

•

• •

•

•

• •

•

•
1 2 4 6 7 9 10

3

3′

5

5′

8

8′

11

11′

+7 +2 +∞ +7+ + + + + + + +

D
1,7
4

D
7,2
4

D
2,∞
5

D
∞,7
5

But, again, only in the special case of type ABCD this is known.

Message to take away. Coideal naturally appear in Schur–Weyl-like games.

And these pull the strings from the background for tangle and link invariants.

A polynomial invariant à la Jones & Kauffman

We define a functor 〈−〉∞ : ∞f T an→ mArcZ[q±1] intertwining the right actions as
follows. On objects,

〈+〉∞ = o , 〈−〉∞ = o , 〈c〉∞ = ∅

and on morphisms by

〈 〉

∞
= q

0-reso.

− q2

1-reso.

,

〈 〉

∞
= −q−2

0-reso.

+ q−1

1-reso.

〈

∞

∞ 〉

∞

= and

〈

∞

∞ 〉

∞

=

A left-handed version of cT an.

The skein relations.

The Z/2Z-skein relations.

Theorem. Up to rescaling: This is a ∞-tangle invariant.
Up to framing: This is a Z/2Z-tangle invariant.

Proof. Check relations, e.g.:

〈

∞

∞ 〉

∞

= = =

〈

∞

∞ 〉

∞
〈

2

2 〉

2

= = =

〈

2

2 〉

2

Example. Here the Hopf link.

∞

∞

Its−−→
cube

q3

10

q2

00

+ q4

11

q3

01

q2(q + q−1)2 2q3(q + q−1) q4(q + q−1)2〈 h〉∞ = − +

Example. Here the essential Hopf link.

∞

∞

Its−−→
cube

q3

10

q2

00

+ q4

11

q3

01

q2(q + q−1)2 2q3(q + q−1) 0〈eh〉∞ = − +

Hence, they are different.

A homological invariant à la Khovanov & Bar-Natan.
Works mutatis mutandis. Here is the picture:

∞

∞

∞

∞ cone crossings

usual crossings

q // tq2

mZ
(

m

)
=

{
Z[X ]/(X 2), if m is even,

0, if m is odd.

In case of type ABCD
this comes from a categorification of the

Schur–Weyl-coideal duality.

(“Web and arc algebras of type D”.)

A homological invariant à la Khovanov & Rozansky.
Everything generalizes to higher ranks.

(“Webs”, “foams”, etc.)
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There is still much to do...

Thanks for your attention!
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This is well-understood, neat and has many applications and connections.
So: How does this generalize?

Question 1:
What fits into the questions marks?

Question 2:
What is the analog of gadgets like Reshetikhin–Turaev or Khovanov theories?

Question 3:
Connections to other fields e.g. to representation theory?
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Tangle diagrams with cone strands

Let cT an be the monoidal category defined as follows.

Generators. Object generators {+,−, c | c ∈ Z≥2 ∪ {∞}}, morphism generators

+

+

+

+

,

+

+

+

+

usual crossings

,

− +

,

+ −

,

− +

,

+ −

usual cups and caps

,

+

c

c

+

,

+

c

c

+

,

+

c

c

+

,

+

c

c

+

cone crossings

Relations. Reidemeister type relations , and the Z/cZ-relations, e.g.

2

2

=

2

2

or

3

3

=

3

3

or

4

4

=

4

4

etc.

Examples.

c

c

=

c

c

=

c

c

Unknot

,

c

c

Essential unknot

c

c

Hopf link

,

c

c

Essential Hopf link

Example.

2

2

2

2

=

Exercise. The relations are actually equivalent.
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I follow hyperplanes

WA2
= 〈s , t〉 acts faithfully on R2 by reflecting in hyperplanes (for each reflection):

∗

bs

bt

•

WA2
acts freely on MA2

= R2 \ hyperplanes. Set NA2
= MA2

/WA2
.

Complexifying the action: R2  C2, MA2
 MC

A2
, NA2

 NC
A2

. Then:

π1(NC
A2

) ∼= ArA2
= 〈bs , bt | bs bt bs = bt bs bt 〉

Coxeter ∼1934, Tits ∼1961. This works in ridiculous generality.

(Up to some minor technicalities in the infinite case.)

Brieskorn ∼1971, van der Lek ∼1983. This works in ridiculous generality.

(Up to some minor technicalities in the infinite case.)
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Configuration spaces

Artin ∼1925. There is a topological model of ArA via configuration spaces.

Example. Take ConfA2
= (R2)3 \ fat diagonal

/
S3 . Then π1(ConfA2

) ∼= ArA2
.

Philosophy. Having a configuration spaces is the same as having braid diagrams:

y1 y2 y3

y1 y2 y3

σ=(13)

a usual braid

R2

R2

time

Crucial. Note that, by explicitly calculating the equations defining the hyperplanes , one can
directly check that:

“Hyperplane picture equals configuration space picture.”

Lambropoulou ∼1993, tom Dieck ∼1998, Allcock ∼2002.

Type A Ã B=C B̃ C̃ D D̃
Orbifold feature none (“1”) ∞ ∞ ∞, 2 ∞,∞ 2 2, 2

Additional inside: Works for tangles as well.

In those cases one can compute the hyperplanes!

This is very special for (affine) types ABCD.

Hope.

The same works for Coxeter diagrams Γ which are “locally ABCD-like graphs”, e.g.:

7 2 ∞ 7•

•

•

• •

•

•

• •

•

•

• •

•

•
1 2 4 6 7 9 10

3

3′

5

5′

8

8′

11

11′

+7 +2 +∞ +7+ + + + + + + +

D
1,7
4

D
7,2
4

D
2,∞
5

D
∞,7
5

ArΓ o (Z/7Z × Z/2Z × Z× Z/7Z)
∼=−→ orbifold braids

bj 7→ bi 7→
c

c

bi′ 7→
c

c

1 ∈ Z/cZ 7→

c

c

But we can’t compute the hyperplanes...In words: The Z/cZ-orbifolds provide the
framework to study Artin braid groups of classical (affine) type

and their “glued-generalizations”.

Example.

bi bi′ = bi′ bi , if

•

•

bi

b
i′

!

2

2

2

2
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But what is the replacement of cUv outside of classical or affine classical type?

(Affine) ABCD are again very special.
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A version of Schur’s remarkable duality.

Uv(sl2) Hv(A)

Hv(D)oZ/2Z

C2
v ⊗ · · · ⊗ C2

v

C2
v ⊗ · · · ⊗ C2

v︸ ︷︷ ︸
d times

⊃=

�

	
	cUv(gl1)

⊂ �

Back

Schur ∼1901. The natural actions of U1(sl2) and H1(A)

on (C2
1)⊗d = (C2)⊗d commute and generate each other’s centralizer.

Plain old sl2:
Acts by matrices.

The symmetric group:
Acts by permutation.

Weyl group of type D:

· · · •••

•

• type D

type A

Ignore the component
group Z/2Z.

Acts by signed
permutations.

Regev ∼1983. The actions of U1(gl1) and H1(D)oZ/2Z

on (C2
1)⊗d commute and generate each other’s centralizer.

Acts by restriction.

The antidiagonal embedding:

gl1 ↪→ sl2, (t) 7→
(

0 t
t 0

)
Jimbo ∼1985. The natural actions of Uv(sl2) and Hv(A)

on (C2
v)⊗d = (C(v)2)⊗d commute and generate each other’s centralizer.Quantizes

nicely.

Does not
embed.

No commuting
action.

Is a
subalgebra.

Act by
restriction.

Ehrig–Stroppel, Bao–Wang ∼2013. The actions of cUv(gl1) and Hv(D)oZ/2Z

on (C2
v)⊗d commute and generate each other’s centralizer.

Hope.

The same works for the Coxeter diagrams

7 2 ∞ 7•

•

•

• •

•

•

• •

•

•

• •

•

•
1 2 4 6 7 9 10

3

3′

5

5′

8

8′

11

11′

+7 +2 +∞ +7+ + + + + + + +

D
1,7
4

D
7,2
4

D
2,∞
5

D
∞,7
5

But, again, only in the special case of type ABCD this is known.

Message to take away. Coideal naturally appear in Schur–Weyl-like games.

And these pull the strings from the background for tangle and link invariants.

A polynomial invariant à la Jones & Kauffman

We define a functor 〈−〉∞ : ∞f T an→ mArcZ[q±1] intertwining the right actions as
follows. On objects,

〈+〉∞ = o , 〈−〉∞ = o , 〈c〉∞ = ∅

and on morphisms by

〈 〉

∞
= q

0-reso.

− q2

1-reso.

,

〈 〉

∞
= −q−2

0-reso.

+ q−1

1-reso.

〈

∞

∞ 〉

∞

= and

〈

∞

∞ 〉

∞

=

A left-handed version of cT an.

The skein relations.

The Z/2Z-skein relations.

Theorem. Up to rescaling: This is a ∞-tangle invariant.
Up to framing: This is a Z/2Z-tangle invariant.

Proof. Check relations, e.g.:

〈

∞

∞ 〉

∞

= = =

〈

∞

∞ 〉

∞
〈

2

2 〉

2

= = =

〈

2

2 〉

2

Example. Here the Hopf link.

∞

∞

Its−−→
cube

q3

10

q2

00

+ q4

11

q3

01

q2(q + q−1)2 2q3(q + q−1) q4(q + q−1)2〈 h〉∞ = − +

Example. Here the essential Hopf link.

∞

∞

Its−−→
cube

q3

10

q2

00

+ q4

11

q3

01

q2(q + q−1)2 2q3(q + q−1) 0〈eh〉∞ = − +

Hence, they are different.

A homological invariant à la Khovanov & Bar-Natan.
Works mutatis mutandis. Here is the picture:

∞

∞

∞

∞ cone crossings

usual crossings

q // tq2

mZ
(

m

)
=

{
Z[X ]/(X 2), if m is even,

0, if m is odd.

In case of type ABCD
this comes from a categorification of the

Schur–Weyl-coideal duality.

(“Web and arc algebras of type D”.)

A homological invariant à la Khovanov & Rozansky.
Everything generalizes to higher ranks.

(“Webs”, “foams”, etc.)
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A homological invariant à la Khovanov & Rozansky.
Everything generalizes to higher ranks.

(“Webs”, “foams”, etc.)

Daniel Tubbenhauer Link invariants and orbifolds April 2018 14 / 15

There is still much to do...

Thanks for your attention!
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Slogan. (Monoidally) generated = building with Lego pieces.

Lego⊗ Lego = new Lego,

e.g. −−+ +⊗ c− = −−+ + c−

Lego ◦ Lego = new Lego or Lego⊗ Lego = new Lego

e.g.

5 ∞

5 ∞
5 ∞

5 ∞

◦ ◦ =

5 ∞

5 ∞

e.g.

3

3

⊗

⊗
8

8

=

3

3

8

8

Back



Examples of usual relations.

= = , = = , =

Examples of mixed relations.

c

c

=

c

c

=

c

c

,

c

c

=

c

c

,

c

c

=

c

c

Examples of planar isotopies.

= = , = ,

+c

c

−

=

− c

c

+

Back

In the spirit of Turaev ∼1989. Generators & relations in the monoidal setting.
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Satake ∼1956 (“V-manifold”), Thurston ∼1978, Haefliger ∼1990
(“orbihedron”), etc. A triple Orb = (XOrb ,∪iUi , Gi ) of a Hausdorff space XOrb , a
covering ∪iUi of it (closed under finite intersections) and a collection of finite
groups Gi is called an orbifold (of dimension m) if for each Ui there exists a open
subset Vi ⊂ Rm carrying an action of Gi , and some compatibility conditions.

Fact. A two-dimensional (“smooth”) orbifold is locally modeled on:

B Cone points ! rotation action of Z/cZ.

B Reflector corners ! reflection action of the dihedral group.

B Mirror points ! reflection action of Z/2Z.

Back

Not super important. Only one thing to stress:
Topologically an orbifold is sometimes the same as its underlying space.

So all notions concerning orbifolds have to take this into account.

Quote by Thurston about the name orbifold:

“This terminology should not be blamed on me. It was obtained by
a democratic process in my course of 1976-77. An orbifold is something

with many folds; unfortunately, the word ‘manifold’ already has
a different definition. I tried ‘foldamani’, which was quickly

displaced by the suggestion of ‘manifolded’. After two months of patiently
saying ‘no, not a manifold, a manifoldead,’ we held a vote, and ‘orbifold’ won.”

Examples.

=

2

2

2

2

A Z/2Z-orbifold tangle

=

3

3

3

3

A Z/3Z-orbifold tangle

etc.

“Puncture = limc→∞ c-cone point”.
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Figure: The Coxeter graphs of finite type.

Example. The type A family is given by the symmetric groups using the simple
transpositions as generators.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Back
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Ar
A6

is the classical braid group in six+1 strands

W
A6

is the symmetric group on six+1 letters

•

•

• • • •

b
1′

b1

b2 b3 b4 b5

D6

bi bj = bj bi , if • •bi bj bi bj bi = bj bi bj , if • •bi bj bi bi′ = bi′ bi , if
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b
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Ar
D6

is ???

W
D6

is the Weyl group of type D6

“Far commutativity” “Reidemeister” “Z/2Z-relation”

I want to answer ??? in this case, and partially in general.

https://en.wikipedia.org/wiki/Coxeter_group
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Figure: The Coxeter graphs of affine type.

Example. The type Ãn corresponds to the affine Weyl group for sln.

(Picture from https://en.wikipedia.org/wiki/Coxeter_group.)

Back
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• •
α1 α2

A2

positive root α1 = (1,−1, 0) α2 = (0, 1,−1) α1+α2 = (1, 0,−1)
reflection action x1 ↔ x2 x2 ↔ x3 x1 ↔ x3

⊥-hyperplane {(x , x , 0)} {(0, y , y)} {(z , 0, z)}

Hyperplane equations: {(x , y , z) ∈ (R2)3 | x = y or y = z or x = z}

•

•
• •

α1′

α1

α2 α3

D4

positive root α1′ = (1, 1, 0) α1 = (1,−1, 0) more A -like”

reflection action x1′ , x1 ↔ −x1′ ,−x1 x1 ↔ x2 more “type A -like”

⊥-hyperplane {(x ,−x , 0, 0)} {(x , x , 0, 0)} more “type A -like”

Hyperplane equations: {(x , y , z ,w) ∈ (R2)4 | x = ±y etc.}

This is gl-notation.

Observe that this matches the diagonal of the configuration space picture.

Observe that this matches the diagonal of the configuration space picture
up to a 2-fold covering (x , y , z ,w) 7→ (x2, y2, z2,w2).

Similarly in (affine) types ABCD.

Back
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Noumi–Sugitani ∼1994, Letzter ∼1999. Quantum groups have few Hopf
subalgebras, but plenty of coideal subalgebras.

cUv is not a Hopf algebra, but rather a right coideal (subalgebra) of Uv:

∆(B) = B⊗ K−1
︸︷︷︸
6∈cUv

+1⊗ B ∈ cUv ⊗ Uv,

which gives R ep(cUv) the structure of a right R ep(Uv)-category ⇒ right
handedness of diagrams, e.g.:

2

2

Ok from this picture
2

2

Not ok from this picture

Back

Example. The vector representations of gln, son and spn all agree, and indeed
son ↪→ gln and spn ↪→ gln.

But the quantum vector representations do not agree, i.e.
Uv(son) 6↪→ Uv(gln) and Uv(spn) 6↪→ Uv(gln).

This is bad. Idea: Invent new quantizations such that
U′v(son) ↪→ Uv(gln) and U′v(spn) ↪→ Uv(gln).

Observation. This happens repeatedly.

This happens really often. In our case we have basically

gl1 ↪→ sl2,
(
t
)
7→
(

0 t
t 0

)

which does not quantize properly...
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A version of Schur’s remarkable duality.

U1(sl2) H1(A)C2
1 ⊗ · · · ⊗ C2

1︸ ︷︷ ︸
d times

�
	

Back

Schur ∼1901. The natural actions of U1(sl2) and H1(A)

on (C2
1)⊗d = (C2)⊗d commute and generate each other’s centralizer.

Plain old sl2:
Acts by matrices.

The symmetric group:
Acts by permutation.

Weyl group of type D:

· · · •••

•

• type D

type A

Ignore the component
group Z/2Z.

Acts by signed
permutations.

Regev ∼1983. The actions of U1(gl1) and H1(D)oZ/2Z

on (C2
1)⊗d commute and generate each other’s centralizer.

Acts by restriction.

The antidiagonal embedding:

gl1 ↪→ sl2, (t) 7→
(

0 t
t 0

)
Jimbo ∼1985. The natural actions of Uv(sl2) and Hv(A)

on (C2
v)⊗d = (C(v)2)⊗d commute and generate each other’s centralizer.Quantizes

nicely.

Does not
embed.

No commuting
action.

Is a
subalgebra.

Act by
restriction.

Ehrig–Stroppel, Bao–Wang ∼2013. The actions of cUv(gl1) and Hv(D)oZ/2Z

on (C2
v)⊗d commute and generate each other’s centralizer.

Hope.

The same works for the Coxeter diagrams

7 2 ∞ 7•

•

•

• •

•

•

• •

•

•

• •

•

•
1 2 4 6 7 9 10

3

3′

5

5′

8

8′

11

11′

+7 +2 +∞ +7+ + + + + + + +

D
1,7
4

D
7,2
4

D
2,∞
5

D
∞,7
5

But, again, only in the special case of type ABCD this is known.

Message to take away. Coideal naturally appear in Schur–Weyl-like games.

And these pull the strings from the background for tangle and link invariants.
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1)⊗d = (C2)⊗d commute and generate each other’s centralizer.

Plain old sl2:
Acts by matrices.

The symmetric group:
Acts by permutation.

Weyl group of type D:

· · · •••

•

• type D

type A

Ignore the component
group Z/2Z.

Acts by signed
permutations.

Regev ∼1983. The actions of U1(gl1) and H1(D)oZ/2Z

on (C2
1)⊗d commute and generate each other’s centralizer.

Acts by restriction.

The antidiagonal embedding:

gl1 ↪→ sl2, (t) 7→
(

0 t
t 0

)
Jimbo ∼1985. The natural actions of Uv(sl2) and Hv(A)

on (C2
v)⊗d = (C(v)2)⊗d commute and generate each other’s centralizer.Quantizes

nicely.

Does not
embed.

No commuting
action.

Is a
subalgebra.

Act by
restriction.

Ehrig–Stroppel, Bao–Wang ∼2013. The actions of cUv(gl1) and Hv(D)oZ/2Z

on (C2
v)⊗d commute and generate each other’s centralizer.

Hope.

The same works for the Coxeter diagrams

7 2 ∞ 7•

•

•

• •

•

•

• •

•

•

• •

•

•
1 2 4 6 7 9 10

3

3′

5

5′

8

8′

11

11′

+7 +2 +∞ +7+ + + + + + + +

D
1,7
4

D
7,2
4

D
2,∞
5

D
∞,7
5

But, again, only in the special case of type ABCD this is known.

Message to take away. Coideal naturally appear in Schur–Weyl-like games.

And these pull the strings from the background for tangle and link invariants.



Slogan. Right generated = building with left- and right-Lego pieces.

left-Lego⊗ right-Lego = new left-Lego,

e.g. ∅ ⊗ o = o

any-Lego ◦ any-Lego = new any-Lego but

left-Lego⊗ right-Lego = new left-Lego

e.g. ⊗ = but

Back
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