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Reflections

Let V be a finite-dimensional R vector space equipped with an inner
product.

A reflection of V is an orthogonal trasformation (i.e a transformation
preserving the inner product) whose fixed subspace is a hyperplane (called
the reflecting hyperplane).

v 7→ v − 2(v , n)n
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Affine reflections

An affine transformation is a linear transformation composed with a
translation.

The set of all affine transformations form a group Aff(V ) under
composition. An affine reflection is a reflection conjugated by a
translation.

v 7→ v − 2(v , n)n + 2γn

So it is the reflection with respect to the hyperplane that is the orthogonal
complement of n shifted by γ in the direction of n.
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Affine reflection groups

W < Aff(V ) is called an affine reflection group if

W is generated by affine reflections

W is proper, i.e for any compact sets K , L ⊂ V the set of w ∈W
such that K ∩ wL 6= ∅ is finite.
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Affine reflection groups

Lemma:Every orbit of W is a discrete subset of V with its natural
topology

This is a consquence of the properness of W
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Examples of affine reflection groups

Let si denote the reflection at i . Then s0, s1 generate the above reflection
group. s1s0 correspond to translation by 2 (Note that this implies its order
is infinite). To get si just translate until i lands at either 1 or 0 then
reflect by whichever i is on and then translate i back to its place.

∞

Therefore the infinite dihedral group is a reflection group.
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Examples of affine reflection groups
2. Consider V = R2 with the standard Euclidean structure. Let W denote
the affine reflection group generated by the following affine arrangement of
hyperplanes
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Examples of affine reflection groups
3. Or the following arrangement
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Some definitions

Φ := {H | H is a reflecting hyperplane for some reflection in W }

Given H ∈ Φ denote the corresponding reflection in W by sH . Choosing a
vector n normal to H, one can write

V \ H = {v ∈ V | (v , n) > 0} ∪ {v ∈ V | (v , n) < 0}

These two subsets are the connected components of V \ H and they are
called the half-spaces defined by H.If v ,w ∈ V belong to the same
half-space of H they are in the same side of H. Otherwise they are on the
opposite sides and they are seperated by H.
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Some definitions

This allows us to define an equivalence relation ∼ on V (relative to Φ) as
follows:

v ∼ w if for every H ∈ Φ either v ,w ∈ H or v ,w lie on the same side of H

The equivalence classes of this relation are called facets For a facet F the
subset

supp F :=
⋂
F⊂H
H∈Φ

H

is an affine subspace, called the support of F.The dimension of F is
defined as the dimension of supp F .
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Some definitions

The properness of W (after a small amount of work) implies that the set
V \

⋃
H∈Φ H is open.

Let

A := connected components of V \
⋃
H∈Φ

H

Ā := {Ā | A ∈ A}

elements of A (resp Ā) are called alcoves (resp. closed alcoves). A face of
an alcove A is a facet contained in the closure of A whose support is a
hyperplane; and a wall of A is a hyperplane that i the support of a face of
A. Note that

V =
⋃
Ā∈Ā

Ā
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Example
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Fundamental alcove

Pick an arbitrary but fixed ∆ ∈ A and call it the fundamental alcove.

Denote by Φ∆ the set of hyperplanes which contain the walls of ∆.
Denote by S , the set of reflections with respect to these hyperplanes.

WS := 〈S〉

Note that W acts naturally on the sets A and Ā.
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Some lemmas

1 WS acts transitively on A and Ā
Idea: Pick ρ ∈ ∆ and v in another alcove. There must a wall H of ∆
seperating them.

Then |sH(v)− ρ| < |v − ρ|. Properness implies
there are finitely many points in the orbit of v close enough to ρ
therefore there will be one where applying any reflections in WS will
not decrease the distance to ρ and that one must be in ∆ and we are
done.

2 W = WS

Idea: Same thing we did in the case of reflections on integral points
of the line. For any reflection, pick an alcove that has the
corresponding hyperplane as a wall. Carry that alcove to the
fundamental alcove using elements of WS (Possible because of
Lemma 1). Then do the reflection there and carry it back.
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Idea: Pick ρ ∈ ∆ and v in another alcove. There must a wall H of ∆
seperating them. Then |sH(v)− ρ| < |v − ρ|.

Properness implies
there are finitely many points in the orbit of v close enough to ρ
therefore there will be one where applying any reflections in WS will
not decrease the distance to ρ and that one must be in ∆ and we are
done.

2 W = WS

Idea: Same thing we did in the case of reflections on integral points
of the line. For any reflection, pick an alcove that has the
corresponding hyperplane as a wall. Carry that alcove to the
fundamental alcove using elements of WS (Possible because of
Lemma 1). Then do the reflection there and carry it back.
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Some lemmas

3 Suppose H,H ′ ∈ Φ∆. If H,H ′ intersect then they do so at an angle
≤ π/2. Moreover the angle is of the form π/m for some m ∈ N.

Idea of the proof of 3:

Properness implies there will be finitely many alcoves having the
intersection point in their closure. Since reflections preserve angles, there

will be 2m alcoves with the same angle meeting there. So the angle will be
2π/2m = π/m.
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Reflection groups are Coxeter groups
For H,H ′ ∈ Φ∆, let s, t denote their corresponding reflections. Define

mst :=

{
m (where π/m is the angle they meet) if H and H ′ meet

∞ if H and H ′ do not meet

Composition of reflections of two parallel hyperplanes is a translation.
Therefore it has infinite order. Meanwhile, the compostion of reflections of
two hyperplanes meeting at angle π/m is a rotation of degree 2π/m
therefore it has order m.
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{
m (where π/m is the angle they meet) if H and H ′ meet

∞ if H and H ′ do not meet

Composition of reflections of two parallel hyperplanes is a translation.
Therefore it has infinite order. Meanwhile, the compostion of two
reflections of two hyperplanes meeting at angle π/m is a rotation of
degree 2π/m therefore it has order m.
Theorem: W admits the following Coxeter presentation:

W =
〈
s ∈ S | s2 = id for all s ∈ S , (st)mst = id for all distinct s, t ∈ S

〉
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Stroll

A stroll is a sequence A := (A0,A1, . . . ,Ak) of alcoves such that A0 = ∆
and Ai−1 and Ai share a face Fi for all 1 ≤ i ≤ k and Ai 6= Ai−1 for any
i ≥ 1.

A stroll can be thought of as a path in V starting at ∆ and only passing
through shared faces of alcoves.
The length of a stroll is the number of times it crosses a hyperplane. A
stroll is reduced if Fi and Fj are never contained in the same hyperplane
for i 6= j , i.e if the stroll never passes through the same hyperplane twice.
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Rızacan Çiloğlu (University of Zürich) Classical Theory II September 28, 2020 18 / 1



How a stroll looks like in R2

The left one is reduced while the right one is not reduced.
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Strolls and expressions

Let x = (s1, s2, . . . , sk) be an expression. Note that ∆ and s1∆ share a
common face (namely, the face that corresponds to s1). Similarly, ∆ and
s2∆ share a common face. Then s1∆ and s1s2∆ also share a face.
Therefore iterating this, to any expression we can associate a stroll

A(x) := A0 = ∆,A1 = s1∆,A2 = s1s2∆, . . . ,Ak = s1s2 . . . sk∆)
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Reduced expressions are reduced strolls
Proposition: An expression x for x ∈W is reduced if and only if the
coressponding stroll A(x) is reduced. Moreover,

`(x) = #{H ∈ Φ | H seperates ∆ and x∆}

Example:

Therefore `(x) = 6
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Proof

`′(x) : #{H ∈ Φ | H seperates ∆ and x∆}

We will show that `(x) = `′(x) and that reduced expressions give reduced
strolls by induction.

x = (s1, . . . , sk)

y = (s1, . . . , sk−1)

By induction `(y) = `′(y) so A(y) crosses k − 1 distinct hyperplanes.Since
x∆ is one step away from y∆, either `(x) = `′(x) or the hyperplane
seperating x∆ from y∆ has been crossed before in A(y).
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Then (s1, . . . , si−1, s
′
i+1, . . . , s

′
k−1) where s ′j are obtained by taking the

reflection of the stroll A(y) after the ith step with respect to H (as
demonstrated in the figure below) is an expression for x shorter than k .
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Matsumoto’s theorem
Any two reduced expressions for x ∈W may be related by braid relations
This is proven by induction on the length `(x). Suppose
x1 = (s1, . . . , s`),x2 = (s ′1, . . . , s

′
`) are two reduced expressions for x . If

s` = s ′` we are done.

Otherwise consider the hyperplanes H,H ′ seperating,
x∆ from xs`∆ and xs ′`∆ respectively.

There is a unique alcove which contains H ∩ H ′ in its closure and lies on
the same side of H and H ′ as the fundamental alcove. It is y∆ for some
y ∈W .
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Matsumoto’s theorem

Pick a fixed reduced stroll from ∆ to y∆. It corresponds to a reduced
expression w = (t1, . . . , tk). Then there is two ways to extend it to x∆:

w1 := (t1, . . . , tk , s
′
`, s`, . . . , s

′
`, s`︸ ︷︷ ︸

m

)

w2 := (t1, . . . , tk , s`, s
′
`, . . . , s`, s

′
`︸ ︷︷ ︸

m

)
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Coxeter complex

Does there exist a similar space with a natural action for an arbitrary
Coxeter group?

The answer is yes: Coxeter Complex.
Let (W ,S) be a Coxeter group of rank n. Take the (n-1) simplex ∆
embedded in affine (n− 1) space and fix a coloring of its n faces by S . For
any s ∈ S we can reflect ∆ along the face colored by any s ∈ S . This is a
way of gluing two copies of ∆ together, called an s − glueing .
Example (|S |=3 and s red):
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Coxeter complex

Coxeter complex of (W ,S) is constructed as follows:

Take a copy of ∆ for each w ∈W and call it ∆w

For all w ∈W and s ∈ S , glue ∆w to ∆ws via an s-glueing

W acts faithfully on the complex by identifying ∆x with ∆wx .
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Coxeter complex of the Dihedral groups

Lets construct the Coxeter complex for:
m

Lets say s is the blue one and t the red one. Clearly, an expression here
will be an alternating sequence of s, t. And the maximum length of a
reduced expression will be m since if it is longer, there will be a sequence
of s, t of length m inside it which we can switch up using the braid
relation and get rid of either 2 s or 2 t resulting in lowering the length of
the expression. Now, lets put this reasoning to pictures.
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For m <∞

id

t

s

st

st . . . s︸ ︷︷ ︸
m

= ts . . . t︸ ︷︷ ︸
m

ts
. . . s

︸ ︷︷ ︸m
−

1
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Rızacan Çiloğlu (University of Zürich) Classical Theory II September 28, 2020 29 / 1



For m <∞

id t

s

st

st . . . s︸ ︷︷ ︸
m

= ts . . . t︸ ︷︷ ︸
m

ts
. . . s

︸ ︷︷ ︸m
−

1
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Modulo my bad drawing abilities, this is a 2m-gon.
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A better drawn example for m=3
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m=∞

idsststs t ts tst

It is an infinite line
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Coxeter complex of a Coxeter group W is either homeomorphic to Sn (if
|W | is finite of rank n + 1) or contractible if |W | is infinite.
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