Classical Theory II
 Reflection groups and Coxeter groups

Rızacan Çiloğlu
University of Zürich

September 28, 2020

Reflections

Let V be a finite-dimensional \mathbb{R} vector space equipped with an inner product.

Reflections

Let V be a finite-dimensional \mathbb{R} vector space equipped with an inner product.
A reflection of V is an orthogonal trasformation (i.e a transformation preserving the inner product) whose fixed subspace is a hyperplane (called the reflecting hyperplane).

Reflections

Let V be a finite-dimensional \mathbb{R} vector space equipped with an inner product.
A reflection of V is an orthogonal trasformation (i.e a transformation preserving the inner product) whose fixed subspace is a hyperplane (called the reflecting hyperplane).

$$
v \mapsto v-2(v, n) n
$$

Affine reflections

An affine transformation is a linear transformation composed with a translation.

Affine reflections

An affine transformation is a linear transformation composed with a translation.
The set of all affine transformations form a group $\operatorname{Aff}(V)$ under composition.

Affine reflections

An affine transformation is a linear transformation composed with a translation.
The set of all affine transformations form a group $\operatorname{Aff}(V)$ under composition. An affine reflection is a reflection conjugated by a translation.

Affine reflections

An affine transformation is a linear transformation composed with a translation.
The set of all affine transformations form a group $\operatorname{Aff}(V)$ under composition. An affine reflection is a reflection conjugated by a translation.

$$
v \mapsto v-2(v, n) n+2 \gamma n
$$

Affine reflections

An affine transformation is a linear transformation composed with a translation.
The set of all affine transformations form a group $\operatorname{Aff}(V)$ under composition. An affine reflection is a reflection conjugated by a translation.

$$
v \mapsto v-2(v, n) n+2 \gamma n
$$

So it is the reflection with respect to the hyperplane that is the orthogonal complement of n shifted by γ in the direction of n.

Affine reflection groups

$W<\operatorname{Aff}(V)$ is called an affine reflection group if

- W is generated by affine reflections
- W is proper, i.e for any compact sets $K, L \subset V$ the set of $w \in W$ such that $K \cap w L \neq \emptyset$ is finite.

Affine reflection groups

Lemma:Every orbit of W is a discrete subset of V with its natural topology

Affine reflection groups

Lemma:Every orbit of W is a discrete subset of V with its natural topology
This is a consquence of the properness of W

Examples of affine reflection groups

1. Consider $V=\mathbb{R}$ with its standard Euclidean structure. Let W denote the group generated by reflections in the integral points $\mathbb{Z} \subset \mathbb{R}$:

Examples of affine reflection groups

1. Consider $V=\mathbb{R}$ with its standard Euclidean structure. Let W denote the group generated by reflections in the integral points $\mathbb{Z} \subset \mathbb{R}$:

Let s_{i} denote the reflection at i. Then s_{0}, s_{1} generate the above reflection group.

Examples of affine reflection groups

1. Consider $V=\mathbb{R}$ with its standard Euclidean structure. Let W denote the group generated by reflections in the integral points $\mathbb{Z} \subset \mathbb{R}$:

Let s_{i} denote the reflection at i. Then s_{0}, s_{1} generate the above reflection group. $s_{1} s_{0}$ correspond to translation by 2 (Note that this implies its order is infinite). To get s_{i} just translate until i lands at either 1 or 0 then reflect by whichever i is on and then translate i back to its place.

Examples of affine reflection groups

1. Consider $V=\mathbb{R}$ with its standard Euclidean structure. Let W denote the group generated by reflections in the integral points $\mathbb{Z} \subset \mathbb{R}$:

Let s_{i} denote the reflection at i. Then s_{0}, s_{1} generate the above reflection group. $s_{1} s_{0}$ correspond to translation by 2 (Note that this implies its order is infinite). To get s_{i} just translate until i lands at either 1 or 0 then reflect by whichever i is on and then translate i back to its place.

Therefore the infinite dihedral group is a reflection group.

Examples of affine reflection groups

2. Consider $V=\mathbb{R}^{2}$ with the standard Euclidean structure. Let W denote the affine reflection group generated by the following affine arrangement of hyperplanes

Examples of affine reflection groups

3. Or the following arrangement

Some definitions

$$
\Phi:=\{H \mid H \text { is a reflecting hyperplane for some reflection in } W\}
$$

Some definitions

$$
\Phi:=\{H \mid H \text { is a reflecting hyperplane for some reflection in } W\}
$$

Given $H \in \Phi$ denote the corresponding reflection in W by s_{H}. Choosing a vector n normal to H, one can write

$$
V \backslash H=\{v \in V \mid(v, n)>0\} \cup\{v \in V \mid(v, n)<0\}
$$

Some definitions

$$
\Phi:=\{H \mid H \text { is a reflecting hyperplane for some reflection in } W\}
$$

Given $H \in \Phi$ denote the corresponding reflection in W by s_{H}. Choosing a vector n normal to H, one can write

$$
V \backslash H=\{v \in V \mid(v, n)>0\} \cup\{v \in V \mid(v, n)<0\}
$$

These two subsets are the connected components of $V \backslash H$ and they are called the half-spaces defined by H.

Some definitions

$\Phi:=\{H \mid H$ is a reflecting hyperplane for some reflection in $W\}$
Given $H \in \Phi$ denote the corresponding reflection in W by s_{H}. Choosing a vector n normal to H, one can write

$$
V \backslash H=\{v \in V \mid(v, n)>0\} \cup\{v \in V \mid(v, n)<0\}
$$

These two subsets are the connected components of $V \backslash H$ and they are called the half-spaces defined by H.If $v, w \in V$ belong to the same half-space of H they are in the same side of H. Otherwise they are on the opposite sides and they are seperated by H.

Some definitions

This allows us to define an equivalence relation \sim on $V($ relative to $\Phi)$ as follows:
$v \sim w$ if for every $H \in \Phi$ either $v, w \in H$ or v, w lie on the same side of H

Some definitions

This allows us to define an equivalence relation \sim on $V($ relative to $\Phi)$ as follows:
$v \sim w$ if for every $H \in \Phi$ either $v, w \in H$ or v, w lie on the same side of H
The equivalence classes of this relation are called facets

Some definitions

This allows us to define an equivalence relation \sim on $V($ relative to $\Phi)$ as follows:
$v \sim w$ if for every $H \in \Phi$ either $v, w \in H$ or v, w lie on the same side of H
The equivalence classes of this relation are called facets For a facet F the subset

$$
\text { supp } F:=\bigcap_{\substack{F \subset H \\ H \in \Phi}} H
$$

is an affine subspace, called the support of F.

Some definitions

This allows us to define an equivalence relation \sim on $V($ relative to $\Phi)$ as follows:
$v \sim w$ if for every $H \in \Phi$ either $v, w \in H$ or v, w lie on the same side of H
The equivalence classes of this relation are called facets For a facet F the subset

$$
\text { supp } F:=\bigcap_{\substack{F \subset H \\ H \in \Phi}} H
$$

is an affine subspace, called the support of F. The dimension of F is defined as the dimension of supp F.

Some definitions

The properness of W (after a small amount of work) implies that the set $V \backslash \bigcup_{H \in \Phi} H$ is open.

Some definitions

The properness of W (after a small amount of work) implies that the set $V \backslash \bigcup_{H \in \Phi} H$ is open. Let

$$
\begin{gathered}
\mathcal{A}:=\text { connected components of } V \backslash \bigcup_{H \in \Phi} H \\
\overline{\mathcal{A}}:=\{\bar{A} \mid A \in \mathcal{A}\}
\end{gathered}
$$

Some definitions

The properness of W (after a small amount of work) implies that the set $V \backslash \bigcup_{H \in \Phi} H$ is open. Let

$$
\begin{gathered}
\mathcal{A}:=\text { connected components of } V \backslash \bigcup_{H \in \Phi} H \\
\overline{\mathcal{A}}:=\{\bar{A} \mid A \in \mathcal{A}\}
\end{gathered}
$$

elements of $\mathcal{A}(\operatorname{resp} \overline{\mathcal{A}})$ are called alcoves (resp. closed alcoves). A face of an alcove A is a facet contained in the closure of A whose support is a hyperplane; and a wall of A is a hyperplane that i the support of a face of A.

Some definitions

The properness of W (after a small amount of work) implies that the set $V \backslash \bigcup_{H \in \Phi} H$ is open. Let

$$
\begin{gathered}
\mathcal{A}:=\text { connected components of } V \backslash \bigcup_{H \in \Phi} H \\
\overline{\mathcal{A}}:=\{\bar{A} \mid A \in \mathcal{A}\}
\end{gathered}
$$

elements of $\mathcal{A}(\operatorname{resp} \overline{\mathcal{A}})$ are called alcoves (resp. closed alcoves). A face of an alcove A is a facet contained in the closure of A whose support is a hyperplane; and a wall of A is a hyperplane that i the support of a face of A. Note that

$$
V=\bigcup_{\bar{A} \in \overline{\mathcal{A}}} \bar{A}
$$

Example

Fundamental alcove

Pick an arbitrary but fixed $\Delta \in \mathcal{A}$ and call it the fundamental alcove.

Fundamental alcove

Pick an arbitrary but fixed $\Delta \in \mathcal{A}$ and call it the fundamental alcove. Denote by Φ_{Δ} the set of hyperplanes which contain the walls of Δ.

Fundamental alcove

Pick an arbitrary but fixed $\Delta \in \mathcal{A}$ and call it the fundamental alcove. Denote by Φ_{Δ} the set of hyperplanes which contain the walls of Δ. Denote by S, the set of reflections with respect to these hyperplanes.

Fundamental alcove

Pick an arbitrary but fixed $\Delta \in \mathcal{A}$ and call it the fundamental alcove. Denote by Φ_{Δ} the set of hyperplanes which contain the walls of Δ. Denote by S, the set of reflections with respect to these hyperplanes.

$$
W_{s}:=\langle S\rangle
$$

Fundamental alcove

Pick an arbitrary but fixed $\Delta \in \mathcal{A}$ and call it the fundamental alcove. Denote by Φ_{Δ} the set of hyperplanes which contain the walls of Δ. Denote by S, the set of reflections with respect to these hyperplanes.

$$
W_{s}:=\langle S\rangle
$$

Note that W acts naturally on the sets \mathcal{A} and $\overline{\mathcal{A}}$.

Some lemmas

$1 W_{S}$ acts transitively on \mathcal{A} and $\overline{\mathcal{A}}$ Idea: Pick $\rho \in \Delta$ and v in another alcove. There must a wall H of Δ seperating them.

Some lemmas

$1 W_{S}$ acts transitively on \mathcal{A} and $\overline{\mathcal{A}}$ Idea: Pick $\rho \in \Delta$ and v in another alcove. There must a wall H of Δ seperating them. Then $\left|s_{H}(v)-\rho\right|<|v-\rho|$.

Some lemmas

$1 W_{S}$ acts transitively on \mathcal{A} and $\overline{\mathcal{A}}$ Idea: Pick $\rho \in \Delta$ and v in another alcove. There must a wall H of Δ seperating them. Then $\left|s_{H}(v)-\rho\right|<|v-\rho|$. Properness implies there are finitely many points in the orbit of v close enough to ρ therefore there will be one where applying any reflections in W_{S} will not decrease the distance to ρ and that one must be in Δ and we are done.

Some lemmas

$1 W_{S}$ acts transitively on \mathcal{A} and $\overline{\mathcal{A}}$ Idea: Pick $\rho \in \Delta$ and v in another alcove. There must a wall H of Δ seperating them. Then $\left|s_{H}(v)-\rho\right|<|v-\rho|$. Properness implies there are finitely many points in the orbit of v close enough to ρ therefore there will be one where applying any reflections in W_{S} will not decrease the distance to ρ and that one must be in Δ and we are done.
$2 W=W_{S}$
Idea: Same thing we did in the case of reflections on integral points of the line.

Some lemmas

$1 W_{S}$ acts transitively on \mathcal{A} and $\overline{\mathcal{A}}$ Idea: Pick $\rho \in \Delta$ and v in another alcove. There must a wall H of Δ seperating them. Then $\left|s_{H}(v)-\rho\right|<|v-\rho|$. Properness implies there are finitely many points in the orbit of v close enough to ρ therefore there will be one where applying any reflections in W_{S} will not decrease the distance to ρ and that one must be in Δ and we are done.
$2 W=W_{S}$
Idea: Same thing we did in the case of reflections on integral points of the line. For any reflection, pick an alcove that has the corresponding hyperplane as a wall. Carry that alcove to the fundamental alcove using elements of W_{S}

Some lemmas

$1 W_{S}$ acts transitively on \mathcal{A} and $\overline{\mathcal{A}}$ Idea: Pick $\rho \in \Delta$ and v in another alcove. There must a wall H of Δ seperating them. Then $\left|s_{H}(v)-\rho\right|<|v-\rho|$. Properness implies there are finitely many points in the orbit of v close enough to ρ therefore there will be one where applying any reflections in W_{S} will not decrease the distance to ρ and that one must be in Δ and we are done.
$2 W=W_{S}$
Idea: Same thing we did in the case of reflections on integral points of the line. For any reflection, pick an alcove that has the corresponding hyperplane as a wall. Carry that alcove to the fundamental alcove using elements of W_{S} (Possible because of Lemma 1). Then do the reflection there and carry it back.

Some lemmas

3 Suppose $H, H^{\prime} \in \Phi_{\Delta}$. If H, H^{\prime} intersect then they do so at an angle $\leq \pi / 2$. Moreover the angle is of the form π / m for some $m \in \mathbb{N}$. Idea of the proof of 3 :

Some lemmas

3 Suppose $H, H^{\prime} \in \Phi_{\Delta}$. If H, H^{\prime} intersect then they do so at an angle $\leq \pi / 2$. Moreover the angle is of the form π / m for some $m \in \mathbb{N}$.

Idea of the proof of 3 :

Properness implies there will be finitely many alcoves having the intersection point in their closure. Since reflections preserve angles, there will be $2 m$ alcoves with the same angle meeting there. So the angle will be

$$
2 \pi / 2 m=\pi / m
$$

Reflection groups are Coxeter groups

For $H, H^{\prime} \in \Phi_{\Delta}$, let s, t denote their corresponding reflections. Define $m_{s t}:= \begin{cases}m \text { (where } \pi / m \text { is the angle they meet) } & \text { if } H \text { and } H^{\prime} \text { meet } \\ \infty & \text { if } H \text { and } H^{\prime} \text { do not meet }\end{cases}$

Reflection groups are Coxeter groups

For $H, H^{\prime} \in \Phi_{\Delta}$, let s, t denote their corresponding reflections. Define $m_{s t}:= \begin{cases}m \text { (where } \pi / m \text { is the angle they meet) } & \text { if } H \text { and } H^{\prime} \text { meet } \\ \infty & \text { if } H \text { and } H^{\prime} \text { do not meet }\end{cases}$
Composition of reflections of two parallel hyperplanes is a translation. Therefore it has infinite order.

Reflection groups are Coxeter groups

For $H, H^{\prime} \in \Phi_{\Delta}$, let s, t denote their corresponding reflections. Define $m_{s t}:= \begin{cases}m \text { (where } \pi / m \text { is the angle they meet }) & \text { if } H \text { and } H^{\prime} \text { meet } \\ \infty & \text { if } H \text { and } H^{\prime} \text { do not meet }\end{cases}$
Composition of reflections of two parallel hyperplanes is a translation. Therefore it has infinite order. Meanwhile, the compostion of reflections of two hyperplanes meeting at angle π / m is a rotation of degree $2 \pi / m$ therefore it has order m.

Reflection groups are Coxeter groups

For $H, H^{\prime} \in \Phi_{\Delta}$, let s, t denote their corresponding reflections. Define $m_{s t}:= \begin{cases}m \text { (where } \pi / m \text { is the angle they meet }) & \text { if } H \text { and } H^{\prime} \text { meet } \\ \infty & \text { if } H \text { and } H^{\prime} \text { do not meet }\end{cases}$
Composition of reflections of two parallel hyperplanes is a translation. Therefore it has infinite order. Meanwhile, the compostion of reflections of two hyperplanes meeting at angle π / m is a rotation of degree $2 \pi / \mathrm{m}$ therefore it has order m.

Reflection groups are Coxeter groups

For $H, H^{\prime} \in \Phi_{\Delta}$, let s, t denote their corresponding reflections. Define $m_{s t}:= \begin{cases}m \text { (where } \pi / m \text { is the angle they meet }) & \text { if } H \text { and } H^{\prime} \text { meet } \\ \infty & \text { if } H \text { and } H^{\prime} \text { do not meet }\end{cases}$

Composition of reflections of two parallel hyperplanes is a translation. Therefore it has infinite order. Meanwhile, the compostion of two reflections of two hyperplanes meeting at angle π / m is a rotation of degree $2 \pi / m$ therefore it has order m.
Theorem: W admits the following Coxeter presentation:

$$
\left.W=\langle s \in S| s^{2}=\text { id for all } s \in S,(s t)^{m_{s t}}=\text { id for all distinct } s, t \in S\right\rangle
$$

Stroll

A stroll is a sequence $\underline{A}:=\left(A_{0}, A_{1}, \ldots, A_{k}\right)$ of alcoves such that $A_{0}=\Delta$ and A_{i-1} and A_{i} share a face F_{i} for all $1 \leq i \leq k$ and $A_{i} \neq A_{i-1}$ for any $i \geq 1$.

Stroll

A stroll is a sequence $\underline{A}:=\left(A_{0}, A_{1}, \ldots, A_{k}\right)$ of alcoves such that $A_{0}=\Delta$ and A_{i-1} and A_{i} share a face F_{i} for all $1 \leq i \leq k$ and $A_{i} \neq A_{i-1}$ for any $i \geq 1$.
A stroll can be thought of as a path in V starting at Δ and only passing through shared faces of alcoves.

Stroll

A stroll is a sequence $\underline{A}:=\left(A_{0}, A_{1}, \ldots, A_{k}\right)$ of alcoves such that $A_{0}=\Delta$ and A_{i-1} and A_{i} share a face F_{i} for all $1 \leq i \leq k$ and $A_{i} \neq A_{i-1}$ for any $i \geq 1$.
A stroll can be thought of as a path in V starting at Δ and only passing through shared faces of alcoves.
The length of a stroll is the number of times it crosses a hyperplane.

Stroll

A stroll is a sequence $\underline{A}:=\left(A_{0}, A_{1}, \ldots, A_{k}\right)$ of alcoves such that $A_{0}=\Delta$ and A_{i-1} and A_{i} share a face F_{i} for all $1 \leq i \leq k$ and $A_{i} \neq A_{i-1}$ for any $i \geq 1$.
A stroll can be thought of as a path in V starting at Δ and only passing through shared faces of alcoves.
The length of a stroll is the number of times it crosses a hyperplane. A stroll is reduced if F_{i} and F_{j} are never contained in the same hyperplane for $i \neq j$, i.e if the stroll never passes through the same hyperplane twice.

How a stroll looks like in \mathbb{R}^{2}

How a stroll looks like in \mathbb{R}^{2}

The left one is reduced while the right one is not reduced.

Strolls and expressions

Let $\underline{x}=\left(s_{1}, s_{2}, \ldots, s_{k}\right)$ be an expression. Note that Δ and $s_{1} \Delta$ share a common face (namely, the face that corresponds to s_{1}). Similarly, Δ and $s_{2} \Delta$ share a common face. Then $s_{1} \Delta$ and $s_{1} s_{2} \Delta$ also share a face. Therefore iterating this, to any expression we can associate a stroll

$$
\left.\underline{A}(\underline{x}):=A_{0}=\Delta, A_{1}=s_{1} \Delta, A_{2}=s_{1} s_{2} \Delta, \ldots, A_{k}=s_{1} s_{2} \ldots s_{k} \Delta\right)
$$

Reduced expressions are reduced strolls

Proposition: An expression \underline{x} for $x \in W$ is reduced if and only if the coressponding stroll $\underline{A}(\underline{x})$ is reduced. Moreover,

$$
\ell(x)=\#\{H \in \Phi \mid H \text { seperates } \Delta \text { and } x \Delta\}
$$

Reduced expressions are reduced strolls

Proposition: An expression \underline{x} for $x \in W$ is reduced if and only if the coressponding stroll $\underline{A}(\underline{x})$ is reduced. Moreover,

$$
\ell(x)=\#\{H \in \Phi \mid H \text { seperates } \Delta \text { and } x \Delta\}
$$

Example:

Reduced expressions are reduced strolls

Proposition: An expression \underline{x} for $x \in W$ is reduced if and only if the coressponding stroll $\underline{A}(\underline{x})$ is reduced. Moreover,

$$
\ell(x)=\#\{H \in \Phi \mid H \text { seperates } \Delta \text { and } x \Delta\}
$$

Example:

Therefore $\ell(x)=6$

Proof

$$
\ell^{\prime}(x): \#\{H \in \Phi \mid H \text { seperates } \Delta \text { and } x \Delta\}
$$

Proof

$$
\ell^{\prime}(x): \#\{H \in \Phi \mid H \text { seperates } \Delta \text { and } x \Delta\}
$$

We will show that $\ell(x)=\ell^{\prime}(x)$ and that reduced expressions give reduced strolls by induction.

$$
\underline{x}=\left(s_{1}, \ldots, s_{k}\right)
$$

Proof

$$
\ell^{\prime}(x): \#\{H \in \Phi \mid H \text { seperates } \Delta \text { and } x \Delta\}
$$

We will show that $\ell(x)=\ell^{\prime}(x)$ and that reduced expressions give reduced strolls by induction.

$$
\begin{aligned}
& \underline{x}=\left(s_{1}, \ldots, s_{k}\right) \\
& \underline{y}=\left(s_{1}, \ldots, s_{k-1}\right)
\end{aligned}
$$

Proof

$$
\ell^{\prime}(x): \#\{H \in \Phi \mid H \text { seperates } \Delta \text { and } x \Delta\}
$$

We will show that $\ell(x)=\ell^{\prime}(x)$ and that reduced expressions give reduced strolls by induction.

$$
\begin{gathered}
\underline{x}=\left(s_{1}, \ldots, s_{k}\right) \\
\underline{y}=\left(s_{1}, \ldots, s_{k-1}\right)
\end{gathered}
$$

By induction $\ell(y)=\ell^{\prime}(y)$ so $\underline{A}(\underline{y})$ crosses $k-1$ distinct hyperplanes.

Proof

$$
\ell^{\prime}(x): \#\{H \in \Phi \mid H \text { seperates } \Delta \text { and } x \Delta\}
$$

We will show that $\ell(x)=\ell^{\prime}(x)$ and that reduced expressions give reduced strolls by induction.

$$
\begin{gathered}
\underline{x}=\left(s_{1}, \ldots, s_{k}\right) \\
\underline{y}=\left(s_{1}, \ldots, s_{k-1}\right)
\end{gathered}
$$

By induction $\ell(y)=\ell^{\prime}(y)$ so $\underline{A}(\underline{y})$ crosses $k-1$ distinct hyperplanes. Since $x \Delta$ is one step away from $y \Delta$, either $\ell(x)=\ell^{\prime}(x)$ or the hyperplane seperating $x \Delta$ from $y \Delta$ has been crossed before in $\underline{A}(\underline{y})$.

Proof

$$
\ell^{\prime}(x): \#\{H \in \Phi \mid H \text { seperates } \Delta \text { and } x \Delta\}
$$

We will show that $\ell(x)=\ell^{\prime}(x)$ and that reduced expressions give reduced strolls by induction.

$$
\begin{gathered}
\underline{x}=\left(s_{1}, \ldots, s_{k}\right) \\
\underline{y}=\left(s_{1}, \ldots, s_{k-1}\right)
\end{gathered}
$$

By induction $\ell(y)=\ell^{\prime}(y)$ so $\underline{A}(\underline{y})$ crosses $k-1$ distinct hyperplanes. Since $x \Delta$ is one step away from $y \Delta$, either $\ell(x)=\ell^{\prime}(x)$ or the hyperplane seperating $x \Delta$ from $y \Delta$ has been crossed before in $\underline{A}(\underline{y})$.

Then $\left(s_{1}, \ldots, s_{i-1}, s_{i+1}^{\prime}, \ldots, s_{k-1}^{\prime}\right)$ where s_{j}^{\prime} are obtained by taking the reflection of the stroll $\underline{A}(\underline{y})$ after the ith step with respect to H (as demonstrated in the figure below) is an expression for x shorter than k.

Matsumoto's theorem

Any two reduced expressions for $x \in W$ may be related by braid relations This is proven by induction on the length $\ell(x)$. Suppose
$\underline{x}_{1}=\left(s_{1}, \ldots, s_{\ell}\right), \underline{x}_{2}=\left(s_{1}^{\prime}, \ldots, s_{\ell}^{\prime}\right)$ are two reduced expressions for x. If $s_{\ell}=s_{\ell}^{\prime}$ we are done.

Matsumoto's theorem

Any two reduced expressions for $x \in W$ may be related by braid relations This is proven by induction on the length $\ell(x)$. Suppose
$\underline{x}_{1}=\left(s_{1}, \ldots, s_{\ell}\right), \underline{x}_{2}=\left(s_{1}^{\prime}, \ldots, s_{\ell}^{\prime}\right)$ are two reduced expressions for x. If $s_{\ell}=s_{\ell}^{\prime}$ we are done. Otherwise consider the hyperplanes H, H^{\prime} seperating, $x \Delta$ from $x s_{\ell} \Delta$ and $x s_{\ell}^{\prime} \Delta$ respectively.

Matsumoto's theorem

Any two reduced expressions for $x \in W$ may be related by braid relations This is proven by induction on the length $\ell(x)$. Suppose
$\underline{x}_{1}=\left(s_{1}, \ldots, s_{\ell}\right), \underline{x}_{2}=\left(s_{1}^{\prime}, \ldots, s_{\ell}^{\prime}\right)$ are two reduced expressions for x. If $s_{\ell}=s_{\ell}^{\prime}$ we are done. Otherwise consider the hyperplanes H, H^{\prime} seperating, $x \Delta$ from $x s_{\ell} \Delta$ and $x s_{\ell}^{\prime} \Delta$ respectively.

Matsumoto's theorem

Any two reduced expressions for $x \in W$ may be related by braid relations This is proven by induction on the length $\ell(x)$. Suppose $\underline{x}_{1}=\left(s_{1}, \ldots, s_{\ell}\right), \underline{x}_{2}=\left(s_{1}^{\prime}, \ldots, s_{\ell}^{\prime}\right)$ are two reduced expressions for x. If $s_{\ell}=s_{\ell}^{\prime}$ we are done. Otherwise consider the hyperplanes H, H^{\prime} seperating, $x \Delta$ from $x s_{\ell} \Delta$ and $x s_{\ell}^{\prime} \Delta$ respectively.

There is a unique alcove which contains $H \cap H^{\prime}$ in its closure and lies on the same side of H and H^{\prime} as the fundamental alcove. It is $y \Delta$ for some $y \in W$.

Matsumoto's theorem

Any two reduced expressions for $x \in W$ may be related by braid relations This is proven by induction on the length $\ell(x)$. Suppose $\underline{x}_{1}=\left(s_{1}, \ldots, s_{\ell}\right), \underline{x}_{2}=\left(s_{1}^{\prime}, \ldots, s_{\ell}^{\prime}\right)$ are two reduced expressions for x. If $s_{\ell}=s_{\ell}^{\prime}$ we are done. Otherwise consider the hyperplanes H, H^{\prime} seperating, $x \Delta$ from $x s_{\ell} \Delta$ and $x s_{\ell}^{\prime} \Delta$ respectively.

There is a unique alcove which contains $H \cap H^{\prime}$ in its closure and lies on the same side of H and H^{\prime} as the fundamental alcove. It is $y \Delta$ for some $y \in W$.

Matsumoto's theorem

Matsumoto's theorem

Pick a fixed reduced stroll from Δ to $y \Delta$. It corresponds to a reduced expression $\underline{w}=\left(t_{1}, \ldots, t_{k}\right)$.

Matsumoto's theorem

Pick a fixed reduced stroll from Δ to $y \Delta$. It corresponds to a reduced expression $\underline{w}=\left(t_{1}, \ldots, t_{k}\right)$. Then there is two ways to extend it to $x \Delta$:

$$
\begin{aligned}
& w_{1}:=(t_{1}, \ldots, t_{k}, \underbrace{s_{\ell}^{\prime}, s_{\ell}, \ldots, s_{\ell}^{\prime}, s_{\ell}}_{m}) \\
& w_{2}:=(t_{1}, \ldots, t_{k}, \underbrace{s_{\ell}, s_{\ell}^{\prime}, \ldots, s_{\ell}, s_{\ell}^{\prime}}_{m})
\end{aligned}
$$

Coxeter complex

Does there exist a similar space with a natural action for an arbitrary Coxeter group?

Coxeter complex

Does there exist a similar space with a natural action for an arbitrary Coxeter group?
The answer is yes: Coxeter Complex.

Coxeter complex

Does there exist a similar space with a natural action for an arbitrary Coxeter group?
The answer is yes: Coxeter Complex.
Let (W, S) be a Coxeter group of rank n. Take the ($\mathrm{n}-1$) simplex Δ embedded in affine $(n-1)$ space and fix a coloring of its n faces by S.

Coxeter complex

Does there exist a similar space with a natural action for an arbitrary Coxeter group?
The answer is yes: Coxeter Complex.
Let (W, S) be a Coxeter group of rank n. Take the ($\mathrm{n}-1$) simplex Δ embedded in affine $(n-1)$ space and fix a coloring of its n faces by S. For any $s \in S$ we can reflect Δ along the face colored by any $s \in S$. This is a way of gluing two copies of Δ together, called an s-glueing.

Coxeter complex

Does there exist a similar space with a natural action for an arbitrary Coxeter group?
The answer is yes: Coxeter Complex.
Let (W, S) be a Coxeter group of rank n. Take the ($\mathrm{n}-1$) simplex Δ embedded in affine $(n-1)$ space and fix a coloring of its n faces by S. For any $s \in S$ we can reflect Δ along the face colored by any $s \in S$. This is a way of gluing two copies of Δ together, called an s-glueing. Example ($|S|=3$ and s red):

Coxeter complex

Coxeter complex of (W, S) is constructed as follows:

- Take a copy of Δ for each $w \in W$ and call it Δ_{w}
- For all $w \in W$ and $s \in S$, glue Δ_{w} to $\Delta_{w s}$ via an s-glueing W acts faithfully on the complex by identifying Δ_{x} with $\Delta_{w x}$.

Coxeter complex of the Dihedral groups

Lets construct the Coxeter complex for:
Lets say s is the blue one and t the red one. Clearly, an expression here will be an alternating sequence of s, t. And the maximum length of a reduced expression will be m since if it is longer, there will be a sequence of s, t of length m inside it which we can switch up using the braid relation and get rid of either $2 s$ or $2 t$ resulting in lowering the length of the expression. Now, lets put this reasoning to pictures.

For $m<\infty$

For $m<\infty$

For $m<\infty$

For $m<\infty$

For $m<\infty$

For $m<\infty$

For $m<\infty$

For $m<\infty$

Modulo my bad drawing abilities, this is a 2 m -gon.

A better drawn example for $m=3$


```
\[
\mathrm{m}=\infty
\]
```



```
\[
m=\infty
\]
```


It is an infinite line

Coxeter complex of a Coxeter group W is either homeomorphic to S^{n} (if $|W|$ is finite of rank $n+1$) or contractible if $|W|$ is infinite.

