THE CLASSICAL THEORY V

SOERGELBIMODULES, THE FEAST

Najma Christen
University of Zurich
19. October 2020

Twisted actions

- Let A be a commutative graded algebra over a base ring \mathbb{k}
- An A-bimodule on a \mathbb{k} - module M with actions

$$
A \times M \rightarrow M \text { and } M \times A \rightarrow M
$$

eqiuvalent to a left $A \bigotimes_{\mathbb{k}} A$ - module with action

$$
A \bigotimes_{\mathbb{k}_{\mathrm{k}}} A \times M \rightarrow M
$$

- Twist a right A-module with \mathbb{k} - algebra automorphism $\eta: A \rightarrow A$
- For $a \in A, m \in M m \cdot{ }_{\eta} a:=m \cdot \eta(a)$
- If we have an A-bimodule with structure on M encoded by

$$
\rho: A \otimes_{\mathbb{k}} A \rightarrow \operatorname{End}_{\mathbb{k}}(M)
$$

then the composition $\rho \circ(i d \otimes \eta)$ defines a new A-bimodule with same left action and twisted right action, denoted by $\boldsymbol{M}_{\boldsymbol{\eta}}$

- If we had two automorphisms η and ψ, then

$$
i d \otimes(\eta \circ \psi)=(i d \otimes \eta) \circ(i d \otimes \psi)
$$

from which follows, that $M_{\eta \circ \psi}=\left(M_{\eta}\right)_{\psi}$

- The bimodule M_{η} can be naturally identified with $M \otimes_{A} A_{\eta}$
- We deduce that

$$
A_{\eta \circ \psi} \simeq\left(A_{\eta}\right)_{\psi} \simeq A_{\eta} \otimes_{A} A_{\psi}
$$

Standard bimodules

- Consider automorphisms of R of the form

$$
\eta_{x}: R \rightarrow R, a \longmapsto x a \text { for } x \in W
$$

- DEFINITION: The standard bimodules are the R-bimodules of the form $R_{x}:=R_{\eta_{x}}$ obtained by twisting the regular bimodule R on the right side by η_{x} for some $x \in W$.
- DEFINITION: The StdBim is the smallest strictly full subcategory of R-gibm which contains $R_{x} \forall x \in W$ and is closed under finite direct sums and grading shifts
- From $A_{\eta \circ \psi} \simeq\left(A_{\eta}\right)_{\psi} \simeq A_{\eta} \otimes_{A} A_{\psi}$ we see that

$$
R_{x} \otimes R_{y} \simeq R_{x y}
$$

- \Rightarrow StdBim is monoidal
- EXAMPLE: Let $R=\mathbb{R}\left[x_{1}, x_{2}, x_{3}\right]$ and $W=S_{3}$, for $f\left(x_{1}, x_{2}, x_{3}\right) \in R$ and $s=(2,3) \in W$ then the left action of $\boldsymbol{R}_{\boldsymbol{s}}$ is simple multiplication with $f\left(x_{1}, x_{2}, x_{3}\right)$, the right action is multiplication with $f\left(x_{1}, x_{3}, x_{2}\right)$
- DEFINITION: For $M, N \in R$ - gbim the graded Hom space is $\operatorname{Hom}^{\bullet}(M, N):=\bigoplus_{i \in \mathbb{Z}} \operatorname{Hom}(M, N(i))$
We say morphism which send M^{i} to N^{i+k} for some $k \in \mathbb{Z}$ are homogeneous of degree k
- LEMMA: For any $x, y \in W$ we have
$\operatorname{Hom}^{\bullet}\left(R_{x}, R_{y}\right)=\left\{\begin{array}{l}R, \text { if } x=y \\ 0, \text { otherwise }\end{array}\right.$
as a graded vector space
- We follow that R_{x} is indecomposable $\forall x \in W$, since the Lemma implies that $\operatorname{End}\left(R_{x}\right)=\operatorname{Hom}\left(R_{x}, R_{x}\right)=R$ so it has no non-trivial idempotents.

Split Grothendieck group

- DEFINITION: The split Grothendieck group $[\boldsymbol{S t d B i m}]_{\oplus}$ is an abelian group generated by symbols $[B]$ for each object B in StdBim
- with the relations $[B]=\left[B^{\prime}\right]+\left[B^{\prime \prime}\right]$, whenever $B \simeq B^{\prime} \oplus B^{\prime \prime}$
- $[S t d \mathrm{Bim}]_{\otimes}$ is a ring, via $[B]\left[B^{\prime}\right]=\left[B B^{\prime}\right]$
- We can make $[S t d \mathrm{Bim}]_{\oplus}$ into a $\mathbb{Z}\left[v^{ \pm 1}\right]$-algebra, via $v[B]:=[B(1)]$
- REMARK: The split Grothendieck group $[\text { StdBim }]_{\oplus}$ is isomorphic to the group algebra $\mathbb{Z}\left[v^{ \pm 1}\right][W]$ with an isomorphism sending $\left[R_{x}\right]$ to x
- StdBim is a categorification of this group algebra
- Soergel Bimodules categorify the Hecke algebra

- Recall: $B_{s}=R \otimes_{R^{s}} R(1)$ and the Bott-Samelson bimodule $B S(x)$ associated with the expression $x=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ is the bimodule $B S(x)=B_{s_{1}} B_{s_{2}} \ldots B_{s_{d}}=R \otimes_{R^{s_{1}} R \otimes_{R^{s_{2}}} \ldots \otimes_{R^{s}}} R(d)$
- Consider $c_{s}:=\frac{1}{2}\left(\alpha_{s} \otimes 1+1 \otimes \alpha_{s}\right)$ and

$$
d_{s}:=\frac{1}{2}\left(\alpha_{s} \otimes 1-1 \otimes \alpha_{s}\right)
$$

- LEMMA: For any $f \in R$,

$$
\begin{gathered}
f \cdot c_{i d}=c_{i d} \cdot f+d_{s} \cdot \delta_{s}(f) \\
f \cdot d_{s}=d_{s} \cdot s(f)
\end{gathered}
$$

- Proof: First let f be s-symmetric, where $\delta_{s}(f)=0, s(f)=f$

$$
\begin{aligned}
& \text { - } f \cdot c_{i d}=c_{i d} \cdot f=c_{i d} \cdot f+d_{s} \cdot 0 \\
& \cdot f \cdot d_{s}=d_{s} \cdot f=d_{s} \cdot \delta_{s}(f)
\end{aligned}
$$

Then let $f=\alpha_{s}, \delta_{s}(f)=2$ and $s(f)=-f$

- $c_{i d} \cdot f+d_{s} \cdot \delta_{s}(f)=(1 \otimes 1) \alpha_{s}+2 d_{s}=1 \otimes \alpha_{s}+\alpha_{s} \otimes 1-1 \otimes \alpha_{s}=\alpha_{s} \otimes 1$ which is equal to $\alpha_{s}(1 \otimes 1)$
- $\alpha_{s} \frac{1}{2}\left(\alpha_{s} \otimes 1-1 \otimes \alpha_{s}\right)=\frac{1}{2}\left(\alpha_{s}^{2} \otimes 1-\alpha_{s} \otimes \alpha_{s}\right)=\frac{1}{2}\left(\alpha_{s} \otimes\left(-\alpha_{s}\right)-1 \otimes \alpha_{s} \cdot\left(-\alpha_{s}\right)\right)$

$$
=\frac{1}{2}\left(\alpha_{s} \otimes 1-1 \otimes \alpha_{s}\right)\left(-\alpha_{s}\right)
$$

- Split $f=\delta_{s}\left(f \frac{\alpha_{s}}{2}\right)+\frac{\alpha_{s}}{2} \delta_{s}(f)$ symmetric and antisymmetric part
- Combine previous results

Filtrations

- c_{s} generates a copy of $R(-1)$ inside B_{s}
- d_{s} generates a copy of $R_{S}(-1)$ inside B_{s}
- Short exact sequences:
$-0 \rightarrow R_{s}(-1) \xrightarrow{1 \xrightarrow{d_{s}}} B_{s} \xrightarrow{\mu_{i d}} \mathrm{R}(1) \rightarrow 0 \quad$ with $\mu_{i d}(f \otimes g)=f g$
$\cdot 0 \rightarrow R(-1)^{1} \xrightarrow{1} c_{s} B_{s} \xrightarrow{\mu_{S}} \mathrm{R}_{\mathrm{s}}(1) \rightarrow 0 \quad$ with $\mu_{s}(f \otimes g)=f \cdot s(g)$
- For an expression $\underline{w}=\left(s_{1}, s_{2}, \ldots, s_{d}\right)$ we can tensor (Δ) together to get a filtration of the Bott-Samelson bimodule $B S(w)$
- For $B_{s} B_{s}$ we get $0 \longrightarrow R_{s} B_{s}(-1) \longrightarrow B_{s} B_{s} \rightarrow B_{s}(1) \longrightarrow 0$
- Enumeration of W such that $\mathrm{x}_{1} \leq x_{j}$ in Bruhat order implies $i \leq j$
- EXAMPLE: For A_{2} we would have $i d<s<t<s t<t s<s t s$
- DEFINITION: For an enumeration as above, a Δ - filtration of a Soergel bimodule B is a filtration $B^{k} \subset B^{k-1} \subset \cdots \subset B^{0}=B$ with subquotients $B^{i} / B^{i+1} \simeq R_{x_{i}}{ }^{\oplus h_{x_{i}}}, \quad$ where $h_{x_{i}} \in \mathbb{Z}_{\geq 0}\left[v^{ \pm 1}\right]$
- Even if W is infinite, this filtration needs to be of finite length.
- EXAMPLE: If $B^{i} / B^{i+1} \simeq R_{x_{i}} \otimes R_{x_{i}}(3) \otimes R_{x_{i}}(-5)$, then

$$
h_{x_{i}}=1+v^{3}+v^{-5}
$$

- THEOREM: For a fixed enumeration of W, any Soergel bimodule B has a unique Δ-filtration. Moreover, for any $x \in W$ the graded multiplicity h_{x} of R_{x} in the Δ-filtration depends only on B and x, not the choice of enumeration on W .
- DEFINITION: The $\boldsymbol{\Delta}$ - character of a Soergel bimodule B is the element $c h_{\Delta}(B):=\sum_{x \in W} v^{\ell(x)} h_{x}(B) \delta_{x}$, of H, where δ_{x} are the standard basis elements.
- EXAMPLE: We have $h_{i d}\left(B_{s}\right)=v^{1}$ and $h_{s}\left(B_{s}\right)=v^{-1}$, therefore $c h_{\Delta}\left(B_{s}\right)=v \delta_{i d}+v \cdot v^{-1} \delta_{s}=v+\delta_{s}$, hence $\boldsymbol{c h}_{\Delta}\left(\boldsymbol{B}_{s}\right)=\mathbf{b}_{\boldsymbol{s}}$ for any $\mathrm{s} \in S$

EXAMPLE: Let $W=S_{2}=\langle 1, s\rangle$

- Standard basis $\left\{\delta_{1}, \delta_{s}\right\}$
- Kazhdan-Lusztig basis $\left\{b_{1}, b_{s}\right\}$
- Change of basis matrix is $\left(\begin{array}{ll}1 & v \\ 0 & 1\end{array}\right)$, indeed $\left(\delta_{1}, \delta_{s}\right)\left(\begin{array}{ll}1 & v \\ 0 & 1\end{array}\right)=\left(b_{1}, b_{s}\right)$ since $\mathrm{b}_{1}=\delta_{1}$ and $b_{2}=\delta_{1} v_{1}+\delta_{s}$
- DEFINITION: The ∇ - character of a Soergel bimodule B is the element $c h_{\nabla}(B):=\sum_{x \in W} v^{\ell(x)} \overline{h_{x}^{\prime}(B)} \delta_{x} \in H$
- EXAMPLE: We have $h^{\prime}{ }_{i d}\left(B_{s}\right)=v^{-1}$ and $h_{s}^{\prime}\left(B_{s}\right)=v^{1}$, therefore $\operatorname{ch}_{\nabla}\left(B_{s}\right)=\overline{v^{-1}} \delta_{i d}+v \cdot \bar{v} \delta_{s}=v+\delta_{s}$, hence $\boldsymbol{c h}_{\boldsymbol{\Delta}}\left(\boldsymbol{B}_{s}\right)=\mathbf{b}_{\mathbf{s}}=\boldsymbol{c h}_{\boldsymbol{\nabla}}\left(\mathbf{B}_{\mathbf{s}}\right)$ for any $\mathrm{s} \in S$
- Properties: $\quad c h_{\Delta}\left(B \oplus B^{\prime}\right)=c h_{\Delta}(B)+c h_{\Delta}\left(B^{\prime}\right)$

$$
c h_{\nabla}\left(B \oplus B^{\prime}\right)=c h_{\nabla}(B)+c h_{\nabla}\left(B^{\prime}\right)
$$

and

$$
\begin{aligned}
& c h_{\Delta}(B(1))=v c h_{\Delta}(B) \\
& c h_{\nabla}(B(1))=v^{-1} c h_{\nabla}(B)
\end{aligned}
$$

for all Soergel bimodules B and B^{\prime}

- \Rightarrow We have \mathbb{Z}-linear maps $\quad c h_{\Delta}, c h_{\nabla}:[\$ B i m]_{\oplus} \rightarrow H$ from the split Grothendieck group of $\mathbb{S B i m}$

Soergel's Categorification Theorem

1. There is a $\mathbb{Z}\left[v^{ \pm 1}\right]$-algebra homomorphism $c: H \rightarrow[\mathbb{S B i m}]_{\otimes}$ sending b_{s} to $\left[B_{s}\right]$ for all $s \in S$
2. There is a bijection between W and the set of indecomposable objects of $\mathbb{S B i m}$ up to shift and isomorphism:

$$
\begin{aligned}
& W \leftrightarrow\{\text { indec.objects in SBim }\} / \simeq \text {, (1) } \\
& w \leftrightarrow B_{w}
\end{aligned}
$$

The indecomposable object B_{w} appears as direct summand of the BottSamelson bimodule $B S(w)$ for a reduced expression of w. Moreover, all other summands of $B S(w)$ are shifts of B_{x} for $x<w$ in the Bruhat order.
3. The character function $c h=c h_{\Delta}$ defined above descends to a $\mathbb{Z}\left[v^{ \pm 1}\right]$-module homomorphism

$$
c h:[\mathbb{S B i m}]_{\otimes} \rightarrow H
$$

Which is the inverse to c. Thus, both are isomorphisms.

$$
[S B i m]_{\otimes} \simeq \text { Hecke algebra }
$$

Soergel's Conjecture

For any $x \in W, \operatorname{ch}\left(B_{x}\right)=b_{x}$. In other words, the Kazhdan-Lusztig polynomial $h_{x, y}$ is equal to $h_{x}\left(B_{y}\right)$.

