THE CLASSICAL THEORY V

SOERGEL BIMODULES, THE FEAST

Najma Christen University of Zurich 19. October 2020

Twisted actions

- Let A be a commutative graded algebra over a base ring \Bbbk
- An A-bimodule on a \mathbbm{k} module M with actions

 $A \times M \to M$ and $M \times A \to M$ eqiuvalent to a left $A \otimes_{\mathbb{k}} A$ – module with action $A \otimes_{\mathbb{k}} A \times M \to M$ • Twist a right A-module with \mathbbm{k} - algebra automorphism $\eta: A \to A$

• For
$$a \in A, m \in M m \cdot_{\eta} a := m \cdot \eta(a)$$

• If we have an A-bimodule with structure on M encoded by

 $\rho: A \otimes_{\mathbb{K}} A \to End_{\mathbb{K}}(M)$

then the composition $\rho \circ (id \otimes \eta)$ defines a new A-bimodule with same

left action and twisted right action, denoted by M_{η}

• If we had two automorphisms η and ψ , then

 $id \otimes (\eta \circ \psi) = (id \otimes \eta) \circ (id \otimes \psi)$

from which follows, that $M_{\eta \circ \psi} = (M_{\eta})_{\psi}$

• The bimodule M_{η} can be naturally identified with $M \bigotimes_A A_{\eta}$

• We deduce that

$$A_{\eta \circ \psi} \simeq (A_{\eta})_{\psi} \simeq A_{\eta} \bigotimes_{A} A_{\psi}$$

Standard bimodules

• Consider automorphisms of R of the form

 $\eta_x: R \to R, a \mapsto xa \text{ for } x \in W$

- DEFINITION: The **standard bimodules** are the *R*-bimodules of the form $R_x \coloneqq R_{\eta_x}$ obtained by twisting the regular bimodule R on the right side by η_x for some $x \in W$.
- DEFINITION: The *StdBim* is the smallest strictly full subcategory of R-gibm which contains R_x ∀ x ∈ W and is closed under finite direct sums and grading shifts

• From $A_{\eta \circ \psi} \simeq (A_{\eta})_{\psi} \simeq A_{\eta} \bigotimes_{A} A_{\psi}$ we see that

$$R_x \otimes R_y \simeq R_{xy}$$

- \Rightarrow *Std*Bim is monoidal
- EXAMPLE: Let $R = \mathbb{R}[x_1, x_2, x_3]$ and $W = S_3$, for $f(x_1, x_2, x_3) \in R$ and $s = (2,3) \in W$ then the left action of R_s is simple multiplication with $f(x_1, x_2, x_3)$, the right action is multiplication with $f(x_1, x_3, x_2)$

• DEFINITION: For $M, N \in R - gbim$ the graded Hom space is $Hom^{\bullet}(M, N) := \bigoplus_{i \in \mathbb{Z}} Hom(M, N(i))$

We say morphism which send M^i to N^{i+k} for some $k \in \mathbb{Z}$ are homogeneous of degree k

• LEMMA: For any $x, y \in W$ we have

$$Hom^{\bullet}(R_x, R_y) = \begin{cases} R & , if \ x = y \\ 0, otherwise \end{cases}$$

as a graded vector space

• We follow that R_x is indecomposable $\forall x \in W$, since the Lemma implies that $End(R_x) = Hom(R_x, R_x) = R$ so it has no non-trivial idempotents.

Split Grothendieck group

- DEFINITION: The **split Grothendieck group** $[StdBim]_{\oplus}$ is an abelian group generated by symbols [B] for each object B in *Std*Bim
 - with the relations [B] = [B'] + [B''], whenever $B \simeq B' \bigoplus B''$
 - $[StdBim]_{\otimes}$ is a ring, via [B][B'] = [BB']
- We can make $[StdBim]_{\oplus}$ into a $\mathbb{Z}[v^{\pm 1}]$ -algebra, via $v[B] \coloneqq [B(1)]$

- REMARK: The split Grothendieck group $[StdBim]_{\oplus}$ is isomorphic to the group algebra $\mathbb{Z}[v^{\pm 1}][W]$ with an isomorphism sending $[R_x]$ to x
- *Std*Bim is a **categorification** of this group algebra
- Soergel Bimodules categorify the Hecke algebra

• Recall: $B_s = R \bigotimes_{R^s} R(1)$ and the Bott-Samelson bimodule BS(x)associated with the expression $x = (s_1, s_2, ..., s_n)$ is the bimodule $BS(x) = B_{s_1}B_{s_2} \dots B_{s_d} = R \bigotimes_{R^{s_1}} R \bigotimes_{R^{s_2}} \dots \bigotimes_{R^{s_d}} R(d)$ • Consider $c_s \coloneqq \frac{1}{2}(\alpha_s \otimes 1 + 1 \otimes \alpha_s)$ and $d_s \coloneqq \frac{1}{2}(\alpha_s \otimes 1 - 1 \otimes \alpha_s)$ • LEMMA: For any $f \in R$,

$$f \cdot c_{id} = c_{id} \cdot f + d_s \cdot \delta_s(f)$$
$$f \cdot d_s = d_s \cdot s(f)$$

• Proof: First let f be s-symmetric, where $\delta_s(f) = 0$, s(f) = f

•
$$f \cdot c_{id} = c_{id} \cdot f = c_{id} \cdot f + d_s \cdot 0$$

•
$$f \cdot d_s = d_s \cdot f = d_s \cdot \delta_s(f)$$

Then let $f = \alpha_s$, $\delta_s(f) = 2$ and s(f) = -f

• $c_{id} \cdot f + d_s \cdot \delta_s(f) = (1 \otimes 1)\alpha_s + 2d_s = 1 \otimes \alpha_s + \alpha_s \otimes 1 - 1 \otimes \alpha_s = \alpha_s \otimes 1$ which is equal to $\alpha_s(1 \otimes 1)$

•
$$\alpha_s \frac{1}{2} (\alpha_s \otimes 1 - 1 \otimes \alpha_s) = \frac{1}{2} (\alpha_s^2 \otimes 1 - \alpha_s \otimes \alpha_s) = \frac{1}{2} (\alpha_s \otimes (-\alpha_s) - 1 \otimes \alpha_s \cdot (-\alpha_s))$$

$$= \frac{1}{2} (\alpha_s \otimes 1 - 1 \otimes \alpha_s) (-\alpha_s)$$

- Split $f = \delta_s \left(f \frac{\alpha_s}{2} \right) + \frac{\alpha_s}{2} \delta_s(f)$ symmetric and antisymmetric part
- Combine previous results

Filtrations

- c_s generates a copy of R(-1) inside B_s
- d_s generates a copy of $R_s(-1)$ inside B_s
- Short exact sequences:

•
$$0 \to R_s(-1) \xrightarrow{1 \mapsto d_s} B_s \xrightarrow{\mu_{id}} R(1) \to 0$$
 with $\mu_{id}(f \otimes g) = fg$ (Δ)

• $0 \to R(-1)^1 \xrightarrow{\mapsto c_s} B_s \xrightarrow{\mu_s} R_s(1) \to 0$ with $\mu_s(f \otimes g) = f \cdot s(g)$ (∇)

- For an expression $\underline{w} = (s_1, s_2, ..., s_d)$ we can tensor (Δ) together to get a filtration of the Bott-Samelson bimodule BS(w)
- For $B_s B_s$ we get $0 \rightarrow R_s B_s(-1) \rightarrow B_s B_s \rightarrow B_s(1) \rightarrow 0$

- Enumeration of W such that $x_i \le x_j$ in Bruhat order implies $i \le j$
- EXAMPLE: For A_2 we would have id < s < t < st < ts < sts
- DEFINITION: For an enumeration as above, a $\Delta filtration$ of a Soergel bimodule B is a filtration $B^k \subset B^{k-1} \subset \cdots \subset B^0 = B$ with subquotients $B^i/B^{i+1} \simeq R_{x_i}^{\bigoplus h_{x_i}}$, where $h_{x_i} \in \mathbb{Z}_{\geq 0}[v^{\pm 1}]$
- Even if W is infinite, this filtration needs to be of finite length.

- EXAMPLE: If $B^i/B^{i+1} \simeq R_{x_i} \otimes R_{x_i}(3) \otimes R_{x_i}(-5)$, then $h_{x_i} = 1 + v^3 + v^{-5}$
- THEOREM: For a fixed enumeration of W, any Soergel bimodule B has a unique Δ-filtration. Moreover, for any x ∈ W the graded multiplicity h_x of R_x in the Δ-filtration depends only on B and x, not the choice of enumeration on W.

- DEFINITION: The Δ *character* of a Soergel bimodule *B* is the element $ch_{\Delta}(B) \coloneqq \sum_{x \in W} v^{\ell(x)}h_x(B)\delta_x$, of *H*, where δ_x are the standard basis elements.
- EXAMPLE: We have $h_{id}(B_s) = v^1$ and $h_s(B_s) = v^{-1}$, therefore $ch_{\Delta}(B_s) = v\delta_{id} + v \cdot v^{-1}\delta_s = v + \delta_s$, hence $ch_{\Delta}(B_s) = \mathbf{b}_s$ for any $s \in S$

EXAMPLE: Let $W = S_2 = < 1, s >$

- Standard basis $\{\delta_1, \delta_s\}$
- Kazhdan-Lusztig basis $\{b_1, b_s\}$

• Change of basis matrix is
$$\begin{pmatrix} 1 & v \\ 0 & 1 \end{pmatrix}$$
, indeed $(\delta_1, \delta_s) \begin{pmatrix} 1 & v \\ 0 & 1 \end{pmatrix} = (b_1, b_s)$

since
$$\mathbf{b}_1 = \delta_1$$
 and $b_2 = \delta_1 v_1 + \delta_s$

• DEFINITION: The ∇ – *character* of a Soergel bimodule *B* is the

element
$$ch_{\nabla}(B) \coloneqq \sum_{x \in W} v^{\ell(x)} \overline{h'_x(B)} \delta_x \in H$$

• EXAMPLE: We have $h'_{id}(B_s) = v^{-1}$ and $h'_s(B_s) = v^1$, therefore

$$ch_{\nabla}(B_s) = \overline{v^{-1}}\delta_{id} + v \cdot \overline{v}\delta_s = v + \delta_s$$
,
hence $ch_{\Delta}(B_s) = \mathbf{b}_s = \mathbf{ch}_{\nabla}(\mathbf{B}_s)$ for any $s \in S$

• Properties: $ch_{\Delta}(B \bigoplus B') = ch_{\Delta}(B) + ch_{\Delta}(B')$ $ch_{\nabla}(B \bigoplus B') = ch_{\nabla}(B) + ch_{\nabla}(B')$

and

$$ch_{\Delta}(B(1)) = v ch_{\Delta}(B)$$
$$ch_{\nabla}(B(1)) = v^{-1} ch_{\nabla}(B)$$

for all Soergel bimodules B and B'

• \Rightarrow We have \mathbb{Z} -linear maps ch_{Δ} , ch_{∇} : $[SBim]_{\bigoplus} \rightarrow H$ from the split Grothendieck group of SBim

Soergel's Categorification Theorem

- 1. There is a $\mathbb{Z}[v^{\pm 1}]$ -algebra homomorphism $c: H \rightarrow [SBim]_{\otimes}$ sending b_s to $[B_s]$ for all $s \in S$
- 2. There is a bijection between W and the set of indecomposable objects of SBim up to shift and isomorphism:

 $W \leftrightarrow \{indec.objects in SBim\}/\simeq, (1)$

 $w \leftrightarrow B_w$

The indecomposable object B_w appears as direct summand of the Bott-Samelson bimodule BS(w) for a reduced expression of w. Moreover, all other summands of BS(w) are shifts of B_x for x < w in the Bruhat order .

3. The character function $ch = ch_{\Delta}$ defined above descends to a $\mathbb{Z}[v^{\pm 1}]$ -module homomorphism

ch: $[SBim]_{\otimes} \to H$

Which is the inverse to c. Thus, both are isomorphisms.

 $[SBim]_{\bigotimes} \simeq Hecke \ algebra$

Soergel's Conjecture

For any $x \in W$, $ch(B_x) = b_x$. In other words, the Kazhdan-Lusztig

polynomial $h_{x,y}$ is equal to $h_x(B_y)$.