Today

Soergel calculus for an arbitrary Coxeter system

Recap Geometric Realization

- (W, S) Coxeter system
- $\{\alpha_s\}$ \mathbb{R} -spans V. Symmetric bilinear form on V: $(\alpha_s, \alpha_t) = -\cos\frac{\pi}{m_{st}}$
- W acts on $V: s(v) = v 2(v, \alpha_s)\alpha_s$. Faithful
- Let $R = \operatorname{Sym} V$. W acts on R
- $R^S = \{ f \in R : s \cdot f = f \}$ is a subring
- Chevalley–Shephard–Todd: R^S is a polynomial ring; R is a graded finite-rank free R^S -module
- Splitting: $R = R^s \oplus R^s \alpha_s \cong R^s \oplus R^s (-2)$

Recap Bott-Samelson Bimodules

- Demazure operators: $\partial_S: R \to R^S(-2), f \mapsto \frac{f-s(f)}{\alpha_S}$
- Let $B_S = R \otimes_{R^S} R(1)$ and $\mathrm{BS}(\underline{w}) = B_{S_1} \cdots B_{S_n} = R \otimes_{R^{S_1}} \cdots \otimes_{R^{S_n}} R(n)$
- BS (\underline{w}) 's are graded free left/right R-modules of finite ranks
- $\mathbb{B}SBim$: objects are $BS(\underline{w})$'s; $Hom(B,B') = \bigoplus_{k \in \mathbb{Z}} Hom_{R\text{-gbim}}(B,B'(k))$

Recap Soergel Bimodules

- A direct summand of $BS(w_1)(i_1) \oplus \cdots \oplus BS(w_n)(i_n)$
- SBim: objects as above; $\operatorname{Hom}(B,B') = \bigoplus_{k \in \mathbb{Z}} \operatorname{Hom}_{R-\operatorname{gbim}}(B,B'(k))$
- Soergel categorification theorem: $H \to [\mathbb{S}Bim]_{\bigoplus}, b_s \mapsto [B_s]$ is a $\mathbb{Z}[v^{\pm 1}]$ -algebra isomorphism (H is the associated Hecke algebra)
- Objects & morphisms hard to describe, algebraically/diagrammatically
- On the other hand, $\mathbb{S}Bim = Kar \mathbb{B}\mathbb{S}Bim$, where $Kar \mathcal{C}$ has objects $f \in Hom(x,x)$, $f \circ f = f$ and morphisms

Goal: to present BSBim diagrammatically

Recap Temperley-Lieb Category

• \mathcal{TL}_{δ} has objects 0,1,2, ... and morphisms crossingless matchings between m and n dots, e.g. $|\c 0)|$

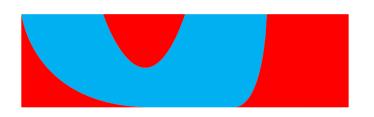
(no multivalent/univalent vertices)

subject to
$$\left(\begin{array}{c} \end{array}\right) = \delta$$
 and isotopy

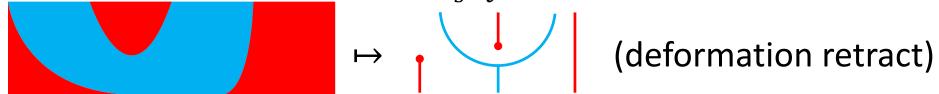
• Temperley–Lieb algebras: $\mathrm{TL}_{n,\delta} = \mathrm{Hom}_{\mathcal{TL}_{\delta}}(n,n)$. $\mathbb{Z}[\delta]$ -algebras

Temperley-Lieb 2-Category

• $2\mathcal{TL}_{\delta}$: objects = colored line segments (— or —); morphisms = dots separating objects (e.g. — • • •); 2-morphisms = ($\mathbb{Z}[\delta]$ -linear combinations of) crossingless matchings with alternatingly-colored regions, e.g.



• Well-defined functor $\Sigma: 2\mathcal{TL}_{\partial_S \alpha_t} \to \mathbb{BSBim}$, $\longrightarrow \longrightarrow B_S B_t B_S B_t$,



• Σ lifted to Kar $2\mathcal{T}\mathcal{L}_{\partial_s \alpha_t}$ is fully faithful onto degree-0 maps.

Jones-Wenzl Projectors

- Tensor $\mathrm{TL}_{n,\delta}$ with $\mathbb{Q}(\delta) = \mathrm{Frac}\,\mathbb{Z}[\delta]$
- **Theorem.** There's unique $JW_n \in TL_{n,\delta}$, such that

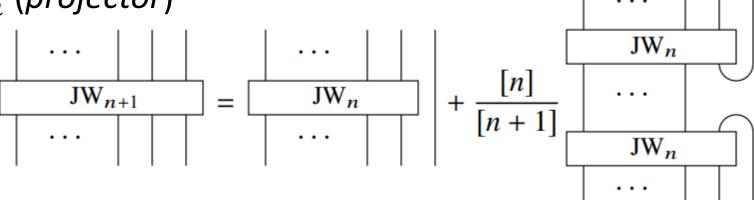
• $JW_n = id_n + linear$ combination of non-identity matchings

Moreover,
$$JW_n^2 = JW_n$$
 (projector)

• Recursive formula:

$$[n] = \frac{q^n - q^{-n}}{q - q^{-1}}; \delta = q + q^{-1}$$

$$[n] \text{ is a polynomial of } \delta$$



Jones-Wenzl Projectors (Cont'd)

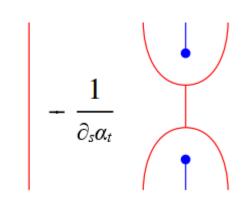
•
$$JW_1 =$$
 $JW_2 =$ $-\frac{1}{\delta}$

• Escalate it to
$$2\mathcal{T}\mathcal{L}_{2m_{St}}$$
: $\mathrm{JW}_2 = -\frac{1}{2m_{St}}$

• Apply Σ : let $JW_{(s,t,s)} \in Hom_{\mathbb{BSBim}}(B_sB_tB_s,B_sB_tB_s)$ be $-\frac{1}{\partial_s \alpha_t}$

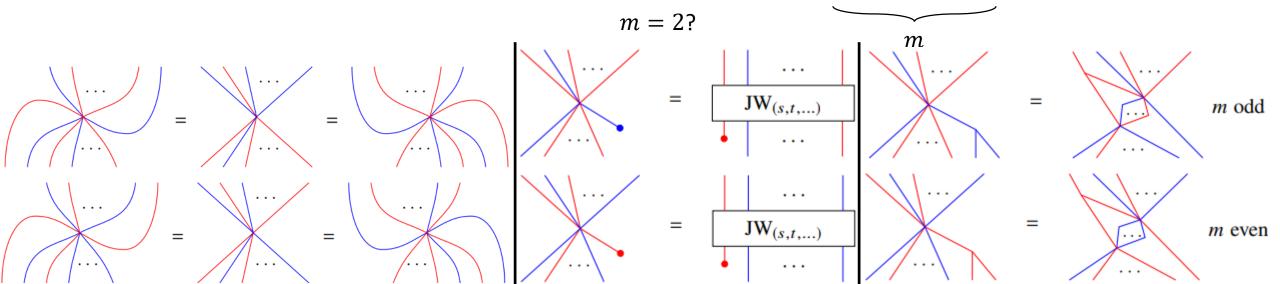
• Similarly for
$$JW_{(s,t,...)}$$

What's $JW_{(s,t)}$?



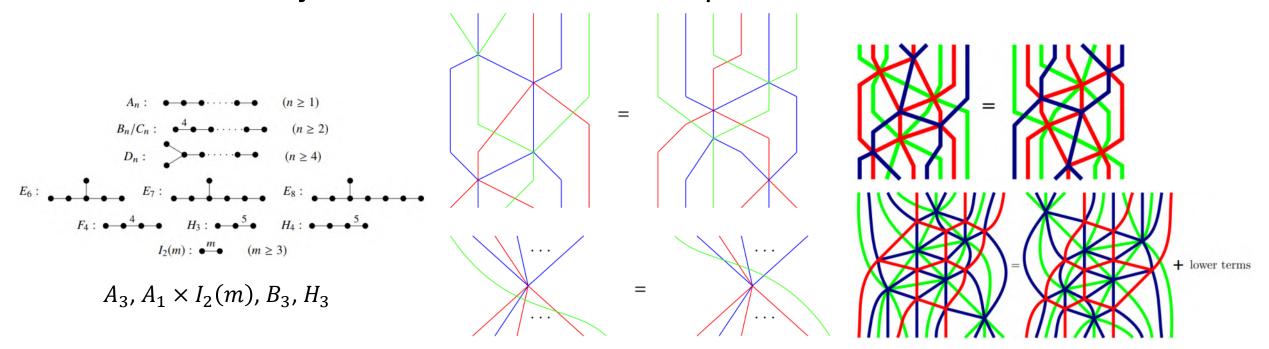
Recap Two-Color Soergel Calculus

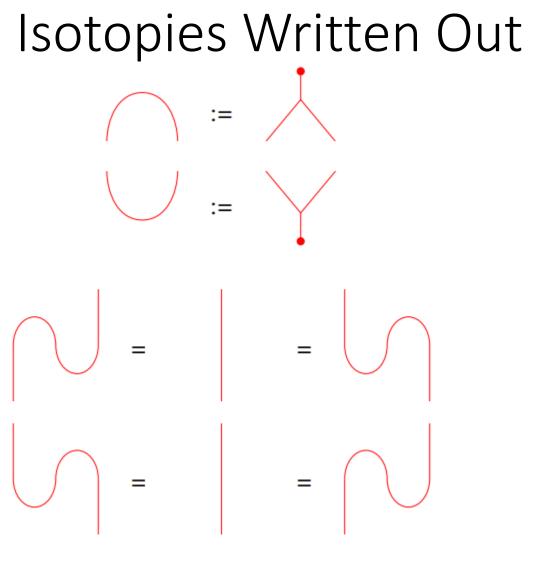
- When $W = \stackrel{s \longrightarrow \infty}{\longleftrightarrow}$, \mathcal{H}_{BS} has objects \underline{w} 's and morphisms the same as those for the one-color calculus; $\mathcal{F}: \overline{\mathcal{H}}_{BS}(s) \to \mathbb{BS}$ Bim and $\mathcal{F}: \mathcal{H}_{BS}(t) \to \mathbb{BS}$ Bim glue to fully-faithful $\mathcal{F}: \mathcal{H}_{BS} \to \mathbb{BS}$ Bim
- When $W = \stackrel{s}{\longleftarrow} \stackrel{m}{\longrightarrow} t$, additional morphisms and additional relations

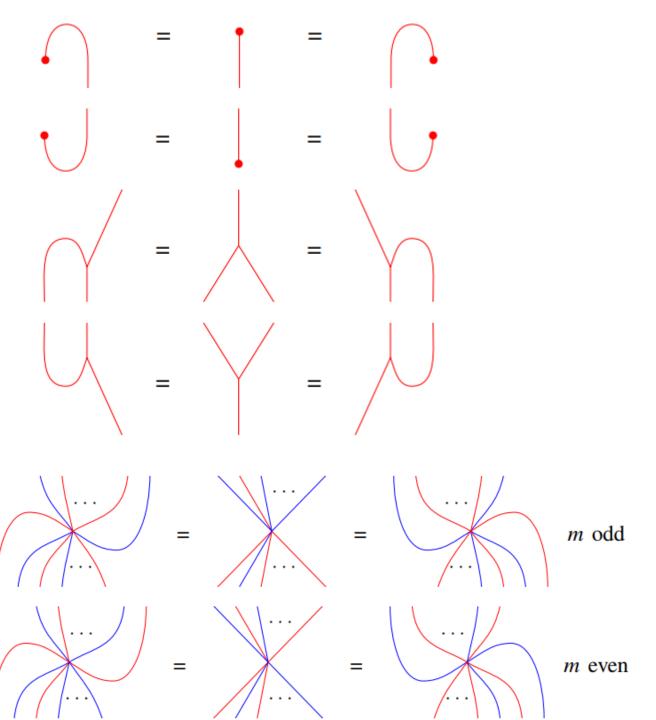


- Now an arbitrary (W, S), S finite
- \mathcal{H}_{BS} : objects are \underline{w} 's; morphisms consist of
 - Univalent vertices
 - Trivalent vertices
 - $2m_{st}$ -valent vertices
 - Boxes

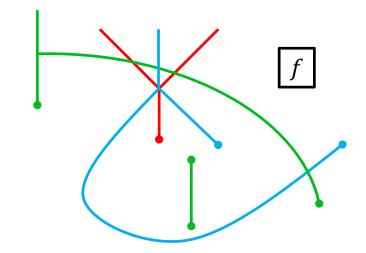
and are subject to all 2-color relations plus the 3-color relations

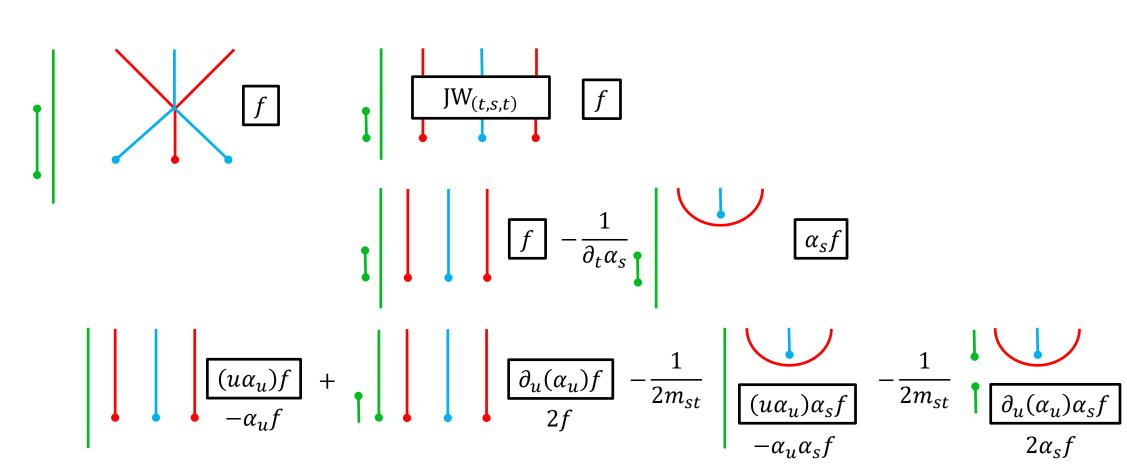






• Example. $W = \sum_{s=3}^{2} \sum_{t=1}^{2} x_{t}$





More Examples

$$= \boxed{JW_{(s,t,s)}} = \boxed{-\frac{1}{\delta}}$$

Elias-Jones-Wenzl

More Examples

$$JW_{3} = JW_{2} + \frac{\delta}{\delta^{2} - 1} JW_{2} = -\frac{\delta^{2} - 2}{\delta^{3} - \delta} + \frac{\delta}{\delta^{2} - 1} - \frac{1}{\delta^{2} -$$

The Ultimate Categorical Equivalence

• $\mathcal{F}: \mathcal{H}_{BS} \to \mathbb{BSBim}$, $s \mapsto B_s$, monoidal

 m_{st}

$$\mathcal{F}\left(\begin{array}{c}f\end{array}\right): R \to R, \qquad 1 \mapsto f.$$

$$\mathcal{F}\left(\begin{array}{c}\bullet\end{array}\right): B_s \to R, \qquad f \otimes g \mapsto fg.$$

$$\mathcal{F}\left(\begin{array}{c}\bullet\end{array}\right): R \to B_s, \qquad 1 \mapsto \frac{1}{2}\left(1 \otimes \alpha_s + \alpha_s \otimes 1\right).$$

$$\mathcal{F}\left(\begin{array}{c}\bullet\end{array}\right): B_s B_s \to B_s, \qquad 1 \otimes g \otimes 1 \mapsto \partial_s g \otimes 1.$$

$$\mathcal{F}\left(\begin{array}{c}\bullet\end{array}\right): B_s \to B_s B_s, \qquad f \otimes g \mapsto f \otimes 1 \otimes g.$$

$$\mathcal{F}\left(\begin{array}{c}\bullet\end{array}\right): B_s B_t \dots \to B_t B_s \dots, \qquad B_s B_t \dots \twoheadrightarrow B_{w_{s,t}} \hookrightarrow B_t B_s \dots$$

 m_{st}

 m_{st}

 m_{st}

$$\mathcal{F}()$$

- Let $w_{s,t}$ be the longest element of $\langle s,t \rangle$
- Then $B_sB_t\cdots$ and B_tB_s both contain $B_{w_{s,t}}$ as a direct summand (up to isomorphism) with multiplicity 1
- This gives \twoheadrightarrow and \hookrightarrow . Rescale so that $1 \otimes \cdots \otimes 1$ is sent to $1 \otimes \cdots \otimes 1$
- Example. $W = \underbrace{\overset{s}{\longrightarrow} \overset{2}{\longleftarrow} \overset{t}{\longrightarrow}}_{t}$ $\mathcal{F}(): B_{S}B_{t} \xrightarrow{\sim} B_{St} \hookrightarrow B_{t}B_{S}$

Walkthrough

• [\$Bim]⊕

```
    (W,S)
    H ←
    B$SBim
    $Bim = Kar B$SBim
```

Next Time

- Why there're no 4-color relations
- Soergel categorification theorem